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Motivation: An important feature of microbiome count data is the presence of a large

number of zeros. A common strategy to handle these excess zeros is to add a small

number called pseudo-count (e.g., 1). Other strategies include using various probability

models to model the excess zero counts. Although adding a pseudo-count is simple and

widely used, as demonstrated in this paper, it is not ideal. On the other hand, methods

that model excess zeros using a probability model often make an implicit assumption that

all zeros can be explained by a common probability models. As described in this article,

this is not always recommended as there are potentially three types/sources of zeros in

a microbiome data. The purpose of this paper is to develop a simple methodology to

identify and accomodate three different types of zeros and to test hypotheses regarding

the relative abundance of taxa in two or more experimental groups. Another major

contribution of this paper is to perform constrained (directional or ordered) inference when

there are more than two ordered experimental groups (e.g., subjects ordered by diet or

age groups or environmental exposure groups). As far as we know this is the first paper

that addresses such problems in the analysis of microbiome data.

Results: Using extensive simulation studies, we demonstrate that the proposed

methodology not only controls the false discovery rate at a desired level of significance

while competing well in terms of power with DESeq2, a popular procedure derived from

RNASeq literature. As expected, the method using pseudo-counts tends to be very

conservative and the classical t-test that ignores the underlying simplex structure in the

data has an inflated FDR.

Keywords: Microbiome data, Aitchisons log-ratio, bootstrap, covariates, cross-sectional data, false discovery rate

(FDR)

1. INTRODUCTION

Microbial count data are represented using operational taxonomic units (OTUs) from 16S rRNA
studies. For each specimen (e.g. fecal sample) drawn from an ecosystem (e.g. gut), the number of
occurrences of each OTU is measured and the resulting OTU table is summarized to obtain relative
abundance for bacterial taxa in a specimen. These OTU counts may be summarized at any level of
the bacterial phylogeny, e.g., species, genus, family, order, etc. Throughout this paper we use the
generic term “taxa” to denote a particular phylogenetic classification. Since the relative abundances
of taxa in a specimen sum to 1, these are compositional data and they reside in a simplex rather than
the entire Euclidean space. Another important feature of these microbiome data is that not all taxa
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may be present in each sample, i.e., some of the OTUs
may take zero values. Using such microbial compositional
data, researchers are interested in understanding the interplay
between microbiome, diet, genome and human health (Clemente
et al., 2012; den Besten et al., 2013). Accordingly, there is an
urgent need for statistical methods for analyzing these complex
microbial count data. This is an active area of research and
a variety of statistical and computational methods have been
proposed in the literature to answer a variety of scientific
questions. For a review one may refer to Li (2015) and Mandal
et al. (2015). The latter described in detail various statistical
parameters associated with microbial compositional data and
discuss which are estimable, and hence testable, and which are
not. They proposed Aitchison’s log-ratio based methodology
(Aitchison, 1982, 1985, 1986) called ANCOM for comparing the
taxa abundance at the ecosystem level in two or more groups or
populations. Earlier, Xia et al. (2013) also considered Aitchison’s
log-ratio based methodology for microbiome data and proposed
a penalized likelihood based methodology to select covariates
influencing microbiome expression.

Excess zeros in microbiome data present a challenge when
analyzing these data, specifically when comparing two or more
experimental groups. A common strategy to handle these excess
zeros is to add a small number called pseudo-count (e.g., 1, cf.
Xia et al., 2013; Mandal et al., 2015). Although adding a pseudo-
count appears to be a reasonable and a simple strategy, it is ad-
hoc. Other strategies include modeling excess zeros using various
probability models (Paulson et al., 2013; Chen and Li, 2016).
However, such models often make an implicit assumption that
all zeros can be explained by a common probability model. As
described in this article, this is not always the case as there
are potentially three different sources of zeros in microbiome
data. The first major contribution of this paper is a method
which identifies the three major types or sources of zeros in
microbiome data. The second major contribution of this paper
is to compare the mean relative abundance of taxa in two or
more groups while taking into consideration the compositional
structure and the type of zeros in the data. Unlike ANCOM
(Mandal et al., 2015), which compares the taxa abundance in the
ecosystem of two or more groups, the proposed methodology
compares the abundance of taxa relative to a background value.
The method is general enough that the reference background
value can be a specific taxon the user is interested in or it can
be some suitable background value specific to each specimen,
such as the geometric mean (Aitchison’s centered log-ratios). The
main idea is to normalize data within each specimen so that any
background values within the specimen are eliminated. This idea
is analogous to what is often done in gene expression studies. If a
particular taxon is used as the reference taxon or reference value
, then we assume that the taxon is present in all specimens. Thus
the normalizing variable is same across all specimens. From our
experience, in practice this condition is not particularly stringent,
especially if the researcher is interested in studyingmicrobiome at
the genus or a higher level of the phylogenetic tree. For example,
in the Yatsunenko et al. (2012) study consisting of 531 samples
over three geographical locations (US, Venezuela and Malawi)
there exist at least one taxon (at the genus level) that is present

in all samples. These data are discussed later in this manuscript.
If no such taxon exists, then the proposed methodology can
be implemented using the geometric mean as the reference to
correct for the background abundance levels of each specimen.

In some applications researchers are interested in performing
inferences regarding mean relative abundances of individual
taxon in the ecosystems of more than two ordered groups.
For example, one may be interested in comparing the mean
relative abundances of individual taxon in subjects ordered by
different levels of fat intake or levels of dietary supplements
or subjects belong to different age groups etc. In all such
situations the classical two-sided tests are not as informative
or powerful as the constrained inference (or order restrictions)
based tests (Farnan et al., 2014; Jelsema and Peddada, 2016).
Since the proposed methodology converts the simplex data to
Euclidean space data, constrained inference theory developed in
Farnan et al. (2014) is directly applicable to the present setting.
Thus the third major contribution of this paper is to perform
constrained inference when there are more than two ordered
experimental groups. As far as we know this is the first paper
that addresses such problems in the analysis of microbiome data.
Owing to the generality of Farnan et. al. methodology to (a)
cross-sectional as well as repeatedmeasures/longitudinal designs,
(b) detecting trends in the relative abundances of taxa in two
or more ordered experimental groups such as in time course
experiments, dose-response studies or when comparing subjects
at stages of disease, (c) multiple pairwise comparisons of several
experimental groups against a pre-specified control group, the
methodology described in this paper is therefore very broadly
applicable. Thus, the proposed methodology can be used for
testing a wide range of hypotheses while controlling for false
discovery rate (FDR) at the desired nominal level. Extensive
simulations are performed to demonstrate that the proposed
methodology controls the FDR in a variety settings considered
in the simulation study while enjoying higher power than some
commonly used methods including those based on pseudo-
counts. We illustrate the methodology using the global gut data
of Yatsunenko et al. (2012).

2. NOTATION AND PROBLEM
FORMULATION

Suppose a sample of nj specimens are drawn from the jth

experimental group, j = 1, 2, . . . , J. On each specimen suppose
the abundance of p taxa are obtained. Here the word “taxa”
could be at any level of the bacterial phylogeny, e.g., species,
genus, family, order, etc., or just the counts of OTU categories
themselves. Let zijk denote the observed abundance of kth taxon,

k = 1, 2, . . . , p, in the ith specimen from the jth experimental
group. In vector notation we have zij = (zij1, . . . , zijp). For
simplicity of exposition throughout this paper, we shall take
nj = n, j = 1, 2, . . . , J even though the methodology does
not require the design to be balanced. As explained in Mandal
et al. (2015), unlike most commonly encountered biological
data, the basic counts of OTU categories within each specimen
cannot be regarded as absolute values but only relative values
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as they depend upon the sampling depth corresponding to each
specimen. In other words, it does not make sense to compare the
expected value of the observed counts between two experimental
groups. To draw any meaningful inferences regarding the taxa
abundance in two or more groups one needs to “normalize” the
data within each specimen. Since classical inference, such as t-
tests or ANOVA are not valid in the present context due to
the simplex constraint, following Aitchison (1980) and Mandal
et al. (2015) worked with log-ratios of relative abundances within
each specimen. This is equivalent to computing log-ratios of
abundances of each taxon relative to a “reference value.” Thus, for
the ith specimen in the jth experimental group, one may consider
the following expression to normalize the data zijk:

log zijk − fij(zij1, . . . , zijp), (2.1)

using some pre-specified “reference value” fij(zij1, . . . , zijp). For
example, fij(zij1, ..., zijp) = log zijb, where zijb is the count
corresponding to a pre-specified reference taxon b. Alternatively,
using the non-zero values zijk, k = 1, 2, ..., p, the user may

choose fij(zij1, . . . , zijp) = r−1
∑

{k : zijk 6=0} log zijk, where r is the

number of non-zero components in (zij1, zij2, . . . , zijp)
′, i.e., the

logarithm of the geometric mean of the OTU counts within each
experimental group j = 1, . . . , J (Aittchisons centered log-ratio).

Although the above normalization procedure eliminates the
effect of the library size within specimen, it does not account for
differences in the library sizes across specimens. To deal with this,
we make another correction to the above normalization step. We
make the assumption that all specimens within an experimental
group are a random sample from a common population of
specimens so that the observed background value for a given
specimen is a random realization from a common population
of all background values. Thus we have the following one-way
ANOVAmodel describing the observed background value:

fij(zij1, . . . , zijp) = µj + εij, (2.2)

where µj is the fixed effect due to the experimental group
j = 1, . . . , J and εij ∼ N (0, σε) is a random variable that
captures variation due to the sampling depth. This quantity
can then be predicted by the residual ε̂ij = fij(zij1, . . . , zijp) −
1
n

∑

i∈jth group fij(zij1, . . . , zijp) which can be interpreted as the best

linear unbiased predictor (BLUP) in the assumed model.
Hence in place of the typical normalization (2.1), we

normalize the raw abundances using the following normalized
formula:

yijk = log zijk −
(

fij(zij1, ..., zijp)− µ̂j

)

(2.3)

where µ̂j = 1
n

∑

i∈jth group fij(zij1, ..., zijp). This normalization

procedure can be easily extended to the case when there are
covariates present in the model. Of course, in the above formula,
all logarithms are calculated under the assumption that there are
no zero values. However, as mentioned earlier, this is not true
with the microbiome data. We address this problem in the next
section.

3. ZEROS

A special feature of a microbiome data matrix is that it is higly
sparse, i.e., a very high proportion of data entries are zero (absent
taxa). For example, at the genera level, nearly 80% of the data
matrix in the Global gut data of Yatsunenko et al. (2012) are
zero. Furthermore, corresponding to a given taxon, the counts
may vary from 0 to the order of 105 across samples within an
experimental group. In this section we develop a pre-processing
step that not only helps us potentially understand the different
types of zeros in the data but address them accordingly.

3.1. Outlier Zeros
For a given taxon k in the jth group, we declare the sample i to
be an “outlier zero” if its count is zero and is declared to be an
outlier by the methodology described below. In our assessment,
this taxon is recorded as zero due to some extraneous reasons but
not because it is below detection limits due to sampling depth.
Thus, as far as taxon k is concerned, the ith sample within group j
is an outlier.

We first convert the count data into continuous scale by
adding a pseudo-count of 1 and normalize the data using the
transformation pseudo-count (2.3). Let yij = (yij1, ..., yijp) denote

the p dimensional vector for ith observation in the jth group, then
for each j, k, we model yijk using the following mixture of normal
distributions. Since our outlier detection algorithm is applied to
each experimental group j and each taxon k, for simplicity of
exposition, we drop the subscript j and k from the following:

yi ∼
i.i.d πN (µ1, σ1)+ (1− π)N (µ2, σ2), i = 1, . . . , n (3.1)

The main idea of our methodology is that when means of
the two normal distributions N (µ1, σ1) and N (µ2, σ2) in the
above mixture are “well separated and the left cluster, i.e. cluster
corresponding to mean µ1, forms only a small fraction of the
total number of observations of the group, i.e. π is small, then
it is reasonable to assume that the left cluster is a collection of
outlier observations in the group and the observed zero might be
a potential outlier. On the other hand, if the two groups are not
well separated then the observed zero may not be an outlier zero
but zero due to other reasons. Such zeros are handled later in this
section.
Identification of two clusters: For a given taxon within a group,
we declare that its distribution is a mixture of two “distant”
normal distributions if the following two criteria are satisfied:

1. Separation: The 97.5th percentile of the first distribution
does not overlap with the 2.5th percentile of the second
distribution, i.e., µ1 + 1.96σ1 < µ2 − 1.96σ2.

2. Frequency: One distribution is “c % heavier” than other, i.e.,
π < c for some pre-specified c.

The above determinations, along with the estimation of
parameters π ,µ1,µ2, σ1, σ2 of the mixture (3.1) can be
performed efficiently by an algorithm due to Peddada andHwang
(2002). We refer to the data cells identified by this mechanism as
“outlier zeros” which are ignorable entries (replaced by NA in the
data).
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3.2. Structural Zeros
In many cases, because of the nature of the experimental groups,
some taxa are not supposed to be present in samples obtained
from some groups but may be present in others. For example,
babies exposed to antibiotics may be devoid of some taxa in their
fecal samples, which are present in healthy babies not exposed
to antibiotics. Although, in theory the antibiotics exposed babies
are expected to be completely devoid to some taxa, due to
variability in the exposure and other factors, such taxa may not
be 100% missing in the antibiotics exposed babies. Suppose p
represents the proportion of non-zero taxa across all specimens
in an experimental group. Then we expect p to be close to zero,
if not exactly zero, in experimental groups where the taxon is
not expected to be present. We refer to such zeros as structural
zeros. For the jth taxon in the kth experimental group, let p̂jk =
∑n

i=1 zijk
/

n. Then we declare the taxon to have a structural zero
value if either of the following is true.

1. p̂jk = 0

2. p̂jk − 1.96
√

p̂jk(1− p̂jk)/n ≤ 0.

Taxa that are identified as structural zeros in any given group
are ignored from all future analyses for that group. Thus, for
example, if in a study there are three experimental groups and
if a particular taxon t is declared to have structural zero in Group
1 but not in Groups 2 and 3, then we automatically declare that
taxon t is differentially abundant in Group 2 relative to Group
1 as well as in Group 3 relative to Group 1. We then compare
the relative abundance of t between Groups 2 and 3 using the
methodology developed in this paper.

3.3. Sampling Zeros
If an observed zero in the data does not qualify as an outlier zero
or as a structural zero, then we declare such a zero to be sampling
zero, perhaps caused by the sampling depth. In other words,
these zeros are potentially due to the fact the taxon is relatively
a rare taxon compared to other taxa in the specimen and due
to technological (or other) reasons it was not observed. These
sampling zeros are imputed by using a small pseudo-count value
(e.g., 1) before analyzing the data. More generally, an imputation
approach could also be applied to these left over zeros, however
this is outside the scope of this manuscript.

To summarize, using the above process, we obtain a modified
data set where; (a) samples with structural zeros are suitably
removed from the data matrix, (b) the outlier zeros are treated as
missing at random (MAR) in the sense of Rubin (1976) and the
corresponding entries are replaced as “NA”, and (c) the sampling
zeros are imputed as 1.

4. ANALYSIS OF TWO OR MORE GROUPS

In rest of this paper, we work with normalized data y described in
Equation (2.3) after suitably dealing with zeros as described in the
previous section. For the kth taxon in the jth experimental group,
for i = 1, 2 . . . , n, let µjk = E(yijk) and σ 2

jk
= Var(yijk). Using

the zeros corrected data, we obtain the following unconstrained
estimators for µjk and σ 2

jk
, for j = 1, 2, . . . , J and k = 1, 2, . . . , p:

µ̂jk =

∑n
i=1 1[yijk 6= NA]yijk

∑n
i=1 1[yijk 6= NA]

,

σ̂ 2
jk =

∑n
i=1 1[yijk 6= NA](yijk − µ̂)2
∑n

i=1 1[yijk 6= NA]− 1
(4.1)

In many applications, researchers are interested in comparing
taxa relative abundances in two or more experimental groups.
Depending upon the scientific question, one may perform a
wide range of analyses. In this section we describe four different
classes of analyses one may perform. In each case the statistical
parameters of interest are µjk, j = 1, 2, . . . , J, k = 1, 2, . . . , p.

Note that, by construction, within each group j,
∑p

k=1
µjk = 0.

Hence without loss of generality, we limit rest of the discussion

to the first p− 1 taxa because µjp = −
∑p−1

k=1
µjk.

4.1. H1: Two-Sided Global Hypotheses
Since the data yijk belong to the Euclidean space, therefore for
each taxon k, k = 1, 2, . . . , p − 1, we can use standard linear
model based methodology to test such hypotheses on the group
means µ1k,µ2k, . . . ,µGk. adjusting for any covariates present in
the data. If there are repeated measures or longitudinal data, then
one can invoke the standard linear mixed effects models theory
and test two-sided global hypotheses such as:

H0 : µ1k = µ2k = . . . = µJk

Vs.

µrk 6= µsk,

for some r 6= s. The p-values obtained for each taxon k,
k = 1, 2, . . . , p − 1, can be corrected for multiple testing
using a suitable multiple testing correction procedure, such as
Bonferroni or Benjamini-Hochberg (BH), depending upon the
criterion of interest, namely, the Familywise error rate (FWER)
or the false discovery rate (FDR).

4.2. H2: Directional Multiple Pairwise
Testing
For each taxon k, k = 1, 2, . . . , p − 1, often researchers
are not interested in testing the global hypotheses H1 but
are interested in pairwise comparisons among some (or all)
pre-specified experimental groups. Furthermore, within each
pairwise comparison, a researcher may be interested in knowing
if the (relative) abundance of a taxon increased or decreased
from one group to the other. For example, a researcher may
be interested in testing whether there is a greater (relative)
abundance of Bifidobacterium Sp. in vaginally born babies who
were never exposed to antibiotics during the first four months
of life, than vaginally born babies who received at least one
dose of antibiotics during the first four months. To draw such
directional inferences in pairwise comparisons while controlling
for the overall false discovery rate, one may apply the mdFDR
(mixed directional FDR) controlling procedure introduced in
Guo et al. (2010). When there are no covariates present,
the Guo et al. (2010) procedure is available in the software
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ORIOGEN4.1. https://www.niehs.nih.gov/research/atniehs/labs/
bb/staff/peddada/.

4.3. H3: Directional Multiple Pairwise
Testing against a Specific Experimental
Group
Hypotheses H2 deals pairwise comparisons among some pre-
specified subset (or all) experimental groups. However, there
are instances where researchers may be interested in testing
all experimental groups against one pre-specified experimental
group, such as, for example the control group. In such cases
the power of Guo et al. (2010) procedure can be improved by
appealing to the Dunnett’s type test derived in Grandhi et al.
(2016). The R-code for the method is provided in Grandhi et al.
(2016).

4.4. H4: Testing for Patterns
In some applications, a researcher may not be specifically
interested in pairwise comparisons, but may be interested in
detecting overall trends/patterns in the relative abundance of a
taxon over multiple ordered (or partially ordered) experimental
groups. Order (or partial order) among experimental groups
arises when the experimental groups represent time or dose or
stages of disease etc.

For example, researchers may be interested in understanding
the trends in (relative) abundance of taxa across four partially
ordered groups, namely, (G1) Vaginally born babies who were
not exposed to any antibiotics during the first four months after
birth, (G2) Vaginally born babies who were exposed to at least
one dose of antibiotics during the first four months of after
birth, (G3) C-Section born babies who were not exposed to any
antibiotics during the first four months after birth and (G4) C-
Section born babies who were exposed to at least one dose of
antibiotics during the first four months of after birth. In this
case, groups G1 and G4 are the extreme groups in terms of
gut microbial environment. In G1 there are no interventions,
and in G4 there are two interventions (C-section and antibiotics
exposure). Groups G2 and G3 are intermediate groups with
one intervention each (either C-Section or antibiotics exposure).
Although, groups G2 and G3 are intermediate to G1 and G4, the
order betweenG2 andG3 is uncertain and hence we have a partial
ordering among the four groups.

A study design such as the one in this example can be
represented using the Figure 1C, called a simple loop order,
where, for each taxon, the researcher is interested in obtaining
two sets of patterns, namely, pattern over G1, G2, and G4 and
a pattern over G1, G3, and G4. Note that members within
each set are completely ordered in terms of baby’s exposure to
interventions. When groups are ordered, one may be interested
in identifying taxa whose mean relative abundance increases
(or decreases) as we go from one extreme group (e.g., Group
1) to the other extreme group (e.g., Group 4) within each set.
Such monotonic patterns, increasing or decreasing, are called
the simple order (Figure 1A). More, precisely, for each taxon,
k = 1, 2, . . . , p− 1, one may be interested in testing the following

hypotheses:

H10 : µ1k = µ2k = µ4k

Vs.

H1a :{µ1k ≤ µ2k ≤ µ4k}
⋃

{µ1k ≥ µ2k ≥ µ4k},

and

H20 : µ1k = µ3k = µ4k

Vs.

H2a :{µ1k ≤ µ3k ≤ µ4k}
⋃

{µ1k ≥ µ3k ≥ µ4k}.

In some applications one may be interested in identifying taxa
that have an umbrella shaped pattern as in Figure 1B.

As observed above, rather than using some arbitrary
parametric functions, one can describe various patterns or trends
using mathematical inequalities, called order restrictions. To
determine the best pattern or trend for each taxon we adopt
the strategy in Peddada et al. (2003), where a similar problem
was considered for time-course gene expression data. For each
taxon, we test the null hypothesis that there is no change in
mean relative abundance (in log scale) over all the experimental
groups against the alternative hypothesis which is the union of
all patterns of interest. For each pattern we construct a suitable
order restricted test and the final test statistic is taken to be the
maximum of all test statistics. The null distribution of the test
statistic is derived using the residual bootstrap based procedure
developed in Farnan et al. (2014) which is implemented in the
package called constrained linear mixed effects (CLME), an R
code developed by Casey Jelsema and is described in Jelsema and
Peddada (2016). The R code allows for modeling covariates as
well as longitudinal/repeated measurements data. Since there are

FIGURE 1 | Illustration of hypotheses H1a and H2a testing for trends amongst

groups.
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a large number of taxa, we perform multiple testing corrections
using the BH procedure to control for the overall FDR. As in
Peddada et al. (2003), if for a taxon, the null hypothesis is rejected
at the desired level of significance (FDR ≤ α), then we assign
the pattern with largest value of the test statistic. Thus, we are
essentially adopting the ORIOGEN methodology developed in
Peddada et al. (2003) to the present context.

5. NUMERICAL RESULTS

We evaluate the performance of our proposed methodology,
which we refer to as ANCOM-II, using two distinct simulation
studies. The first is inspired by a real data set collected by
Yatsunenko et al. (2012). This setup also allows for all three
kinds of zeros described in the paper. The second is based
on a negative binomial distribution, which is commonly used
to model OTU count data of microbiome studies. The results
of the proposed method are obtained by filtering outlier zeros
at a threshold of c = 0.15. We compare the proposed with
methodology with three other methods, namely, DESeq2 (Love,
Huber and Anders 2014), t-test based on sample proportions
(Prop-T) and t-test based on data transformed via (2.3) after
adding a pseudo-count of 1 to each entry (Pseudo-C). Note that
a comparison between ANCOM-II and the Pseudo-C method
provides numerical results on how our assessment of zeros
impacts the analysis. We also provide a user friendly R code
in the supplementary materials to implement the proposed
methodology described in this section.

5.1. Simulation Study Based on Real Data
This simulation study is based on the OTU count data (at
the genus level) corresponding to the US group provided in
Yatsunenko et al. (2012). We constructed two groups, namely,
cases and controls (J = 2). Each group consisting of 175
subjects and 200 taxa. Among these 200 taxa, 100 are taken to be
differentially abundant. As detailed below, our simulation study
allows for all three forms of zeros discussed in the paper.

Step 1 Generate a simple random sample of 175 subjects from
the US group in Yatsunenko et al. (2012) data. Process the data
as described in Section 2 by taking the genus Bifidobacterium as
the reference taxon for the transformation (2.3). This provides
us with a 175 × 661 data matrix. Let m = (m1, ...,m200) denote
the vector of 200 column means which are highest in magnitude
obtained after normalization of (2.3).

Step 2 (Outlier zeros) Using the vector m simulate 175 case
and control samples using a bimodal distribution as follows. For
i = 1, .., 175

yi1k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3, 1),

k = 1, ..., 100

yi2k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3, 1),

k = 1, ..., 50

yi2k ∼iid πN (mk − 3, 1)+ (1− π)N (mk + 3+ δ, 1),

k = 51, ..., 100.

For each simulated repetition π is chosen uniformly between
(0.85,0.95).
Step 3 (Sampling zeros) Using the vector m simulate 175 case
and control samples with a unimodal distribution. For i =

1, .., 175

yi1k ∼iid N (mk, 1), k = 101, ..., 175

yi2k ∼iid N (mk, 1), k = 101, ..., 125

yi2k ∼iid N (mk + δ, 1), k = 126, ..., 175

Step 4 (Structural zeros) Create 175 case and control samples
for taxa that are structurally zero in the control group. For i =
1, .., 175, k = 176, ..., 200, set yi1k = 0 and yi2k = N (mk, 1) with
probability 0.01.
Step 5 Back transform the above continuous scale data to the
count scale by inverting the transformation (2.3) and rounding
the observations. Specifically, using the transformation

zijk = eyijk
[

zijb
/(

∏

i

zijb
)1/n

]

here zijb represents the counts of “Bifidobacterium” taxa in the
subset of the global gut data described in Step 1. In the above
steps, all values between (0,1) are rounded to zero counts. Thus,
although we are generating continuous random variables, with
a positive probability we generate zeros. Recall that in Step 2

samples are generated from amixture of two independent normal
distributions. The observations corresponding to zero counts
are induced by the first component of the mixture distribution.
Since the two components are independently generated, the zero
observations are not dependent on the taxa itself (assuming
that the true distribution of the taxa is given by the second
component). Thus, these zeros, by design, represent observations
that aremissing at random.On the other hand, the zeros obtained
in Step 3 are from a single distribution, and are zero because zijk
with values between 0 and 1 are set to 0.

Step 6 Apply the three methods on the above simulated count
data. Repeat Steps 1 through 6 and estimate the false discovery
rate (FDR) and power of each method.

The left and right panels of Figure 2 provides the estimated
FDR and power of the four methods, respectively. Here the shift
parameter of Steps 2 and 3 is set to δ = 0.5. In this setting, on
average (red dot), our proposed method, DESeq2 and Pseudo-C
appear to control the FDR at the nominal level of 0.05. However,
in terms of power our method appears to outperform the rest.
In Figure 3, we further examine the effect of a varying shift
parameter δ. We compare the powers of the four methods for
100 distinct values of δ ∈ (0, 0.5). Once again we note that the
proposed method ANCOM-II, tends to have larger power than
the others. Specifically, a comparison between ANCOM-II and
the Pseudo-C method emphasizes the importance of identifying
the various sources of zeros and dealing with them accordingly,
rather than using a constant pseudo-count for all observed zeros.
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5.2. Simulation based on Negative Binomial
Distribution
In this section we investigate the performance of the four
methods by generating data according to negative binomial (NB)
distribution as follows. For j = 1, 2, k = 1, ..., 200, we generate,

zijk ∼ NB(µjk, sjk), i = 1, .., 100 (5.1)

where µjk, sjk are the mean and dispersion parameters of the
negative binomial distribution respectively, in all cases we set
sjk = µ2

jk
. The control samples are generated for j = 1 and

k = 1, .., 200 by choosing µjk from a uniform distribution over
(1,1500). The case samples are generated by shifting the mean
of the first one hundred taxa. Thus,for j = 2, k = 1, .., 100
set µjk = µ1k + 5k. The remaining k = 101, ..., 200 micorbes
for group j = 2 are generated with the same mean parameters
as the control samples. Furthermore we induce additional zeros
in the data set by multiplying the previously generated counts
with independent Bernoulli random variables wijk = 0 with
probability 1 − πjk where πjk is chosen uniformly between
(0.8,1). This simulation experiment is repeated 100 times and
the FDR and power comparison results are reported in Figure 4.
From these simulation results we note that only ANCOM-II and
Pseudo-C have estimated FDR at or below the nominal level
of 0.05. Furthermore, between the two methods, ANCOM-II
enjoys higher power. DESeq2 and Prop-T have unacceptably high
estimated FDR.

6. ANALYSIS OF GLOBAL HUMAN GUT
MICROBIOME DATA

We illustrate ANCOM-II using global human gut microbiome
data of Yatsunenko et al. (2012). The data consists of microbial
taxa counts obtained from 317 subjects from US, 99 from
Venezuela and 114 fromMalawi. We used Bifidobacterium as the
reference taxon because it was present in all samples.

Let Si denote the set of genera with i countries having
structural zeros. According to our method, by taking c = 0.15
we found that out of 661 genera, 262 belong to S0, 86 belong

to S1, 95 belong to S2 and 218 belong to S3. Depending upon
the set a genus belongs to, the method tests suitable hypotheses
as outlined below (the corresponding R code is provided in the
supplementary materials).

Hypotheses 1. For genera j ∈ S0 we test the following hypothesis

H0j : µUS,j = µVenezuela,j = µMalawi,j, against

Haj :

{

µUS,j ≤ µVenezuela,j ≤ µMalawi,j

}

∪
{

µUS,j ≤ µVenezuela,j ≥ µMalawi,j

}

∪
{

µUS,j ≥ µVenezuela,j ≤ µMalawi,j

}

∪
{

µUS,j ≥ µVenezuela,j ≥ µMalawi,j

}

Hypotheses 2a. For genera j ∈ S1, when a taxon is structurally
zero in Malawi data we test the following hypothesis

H0j : µUS,j = µVenezuela,j against

Haj :

{

µUS,j ≤ µVenezuela,j

}

∪
{

µUS,j ≥ µVenezuela,j

}

FIGURE 3 | Power comparisons among ANCOM II, DESeq2, Prop-T, and

Pseudo-C, for different values of δ ∈ (0, 0.5).

FIGURE 2 | FDR (Left) and Power (Right) comparisons among ANCOM II, DESeq2, Prop-T, and Pseudo-C. Power comparisons are for δ = 0.5.
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FIGURE 4 | FDR (Left) and Power (Right) comparisons among ANCOM II, DESeq2, Prop-T, and Pseudo-C for simulation based on negative binomial distribution.

Hypotheses 2b. For genera j ∈ S1, when a taxon is structurally
zero in Venezuela data we test the following hypothesis

H0j : µUS,j = µMalawi,j against

Haj :

{

µUS,j ≤ µMalawi,j

}

∪
{

µUS,j ≥ µMalawi,j

}

Hypotheses 2c. For genera j ∈ S1, when a taxon is structurally
zero in US data we test the following hypothesis

H0j : µVenezuela,j = µMalawi,j against

Haj :

{

µVenezuela,j ≤ µMalawi,j

}

∪
{

µVenezuela,j ≥ µMalawi,j

}

Hypotheses 3. For genera j ∈ S2 , which is structurally zero
in Malawi and Venezuela data, we declare it to be differentially
abundant (relative to a reference taxon) in the US compared to
the other two countries. A similar conclusion is arrived for the
other two possibilities.

Hypotheses 4. All genera belonging to thisset are discarded
because they are considered to be absent in all three data sets.

Using the above approach ANCOM-II, relative to
Bifidobacterium identified a total of 83 differentially abundant
genera. Furthermore, ANCOM-II identified patterns of relative
abundance of genera over the three countries. For genera in
set S0 that are significant we discovered 34 genera belong
to the phylum Firmicutes, followed by Proteobacteria (25),
Actinobacteria (6), Tenericutes (5), Bacteroidetes (5) and others.
Only 1 genera in set S1 (absent in Malawi) was found significant
and belonged to the phylum Proteobacteria. Numbers within
parenthesis represent the number genera within each phylum
that were significant. We note that, the second highest number of
differentially abundant genera belonged to phyla Proteobacteria.
This is surprising given that this is typically one of the smaller
phyla in the gut microbiome. This phylum consists of a large
number of opportunistic pathogenic bacteria and an increased
abundance of Proteobacteria is known to be associated with the
disease necrotizing enterocolitis (NEC) Wang et al. (2009); Mai
et al. (2011) and Inflammatory Bowel Disease (IBD), [Balfour

Sartor and Mazmanian (2012)]. The genera in this phylum were
observed to be uniformly lower in the US group as compared
to the other two. A total of 29 taxa were present in US but
structurally zero in Venezuela and Malawi, 53 were present in
Venezuela but structurally zero in US and Malawi, lastly 13 were
present in Malawi but structurally zero in Venezuela and US. In
addition to ANCOM-II, we also applied DESeq2, Prop-T and
Pseudo - C methods to these data. The results are summarized in
the Venn diagram provided in Figure 5.

For comparison purposes, we re-analyzed the data using
ANCOM-II but using the geometric mean (GM) of all non-zero
taxa within subject as the reference, instead of Bifidobacterium.
All taxa identified using Bifidobacterium as the reference taxon
were a subset of taxa identified by the geometric mean as the
reference taxon. The results are summarized in the Venn diagram
in Figure 5.

7. DISCUSSION

One of the challenges when dealing with compositional
microbiome data is the presence of a large frequency of
zero counts. At the moment there is no generally applicable
methodology for comparing relative abundances of taxa among
two or more populations/groups in presence of excess zero
counts. In this article we took the first step toward identifying
different types of zero counts and provided a strategy to deal
with them. We take a principled approach to these data by
classifying these zero counts into three different types. Inspired
by gene expression studies, we proposed a simple method to
“normalize” the data to eliminate specimen level effects. To
deal with specimen specific background value, one may use a
taxon that is present in all specimens, such as Bifidobacterium
in the example considered in this paper, or one can use
the geometric mean of taxa within the specimen. From our
empirical studies, the choice of the background does not seem
to affect the FDR, but could impact the power. Using this
framework, a variety of statistical tests can be carried over
from the literature depending upon the scientific question and
hypotheses of interest. In this paper we describe four different
types of statistical tests that are of common interest. Methodology
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FIGURE 5 | (Left) Venn diagram illustrating overlapping features detected by different procedures. (Right) overlapping features detected by assuming

Bifidobacterium as normalizer or the geometric mean of all taxa as the normalizer.

developed in this paper, called ANCOM - II, is a general
procedure that is not only applicable to cross-sectional as well
as longitudinal designs, but in each case it can be used for
detecting trends and patterns in a taxon over two or more
groups. Our simulation study suggests that the methodology
controls the overall false discovery rate while maintaining
high power. In addition, since the methodology is based on
residual bootstrap, it does not make any major distributional
assumptions. For testing non-directional alternative hypotheses
(hypothesis H1), ANCOM-II can be implemented using the R-
code accompanying this paper. If no covariates are present and
if there are no repeated measurements, then using residuals
calculated in Equation (2.2) ANCOM-II can be implemented for
testing directional alternatives H2, H3 by applying ORIOGEN.
However, if covariates are present and if there are repeated
measurements then ANCOM-II can be implemented for testing
directional alternatives H2, H3 by applying CLME. At the
moment we do not have a unified user friendly code that would
be suitable for all scenarios described above. A general purpose
software is being developed and we hope to release it in the near
future.
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