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Abstract

Background: MicroRNAs are a class of small non-coding RNAs that regulate mRNA expression at the post - 

transcriptional level and thereby many fundamental biological processes. A number of methods, such as multiplex 

polymerase chain reaction, microarrays have been developed for profiling levels of known miRNAs. These methods 

lack the ability to identify novel miRNAs and accurately determine expression at a range of concentrations. Deep or 

massively parallel sequencing methods are providing suitable platforms for genome wide transcriptome analysis and 

have the ability to identify novel transcripts.

Results: The results of analysis of small RNA sequences obtained by Solexa technology of normal peripheral blood 

mononuclear cells, tumor cell lines K562 and HL60 are presented. In general K562 cells displayed overall low level of 

miRNA population and also low levels of DICER. Some of the highly expressed miRNAs in the leukocytes include several 

members of the let-7 family, miR-21, 103, 185, 191 and 320a. Comparison of the miRNA profiles of normal versus K562 

or HL60 cells revealed a specific set of differentially expressed molecules. Correlation of the miRNA with that of mRNA 

expression profiles, obtained by microarray, revealed a set of target genes showing inverse correlation with miRNA 

levels. Relative expression levels of individual miRNAs belonging to a cluster were found to be highly variable. Our 

computational pipeline also predicted a number of novel miRNAs. Some of the predictions were validated by Real-time 

RT-PCR and or RNase protection assay. Organization of some of the novel miRNAs in human genome suggests that 

these may also be part of existing clusters or form new clusters.

Conclusions: We conclude that about 904 miRNAs are expressed in human leukocytes. Out of these 370 are novel 

miRNAs. We have identified miRNAs that are differentially regulated in normal PBMC with respect to cancer cells, K562 

and HL60. Our results suggest that post - transcriptional processes may play a significant role in regulating levels of 

miRNAs in tumor cells. The study also provides a customized automated computation pipeline for miRNA profiling and 

identification of novel miRNAs; even those that are missed out by other existing pipelines. The Computational Pipeline 

is available at the website: http://mirna.jnu.ac.in/deep_sequencing/deep_sequencing.html

Background
Small non-coding RNAs participate in a variety of pro-

cesses from cell development and differentiation, stress

responses to carcinogenesis by regulating gene expres-

sion [1-4]. Regulatory non-coding RNAs have been

reported from almost all organisms from bacteria to

mammals [5]. Among the various classes of non-coding

small RNAs (sRNAs), the most conserved and prominent

ones are the microRNAs or miRNAs [for a recent review

see, [6]]. Mature miRNA sequences are single stranded,

typically 18-24 nucleotides long and encoded as a precur-

sor molecule of about 60-120 nucleotides (in humans) [7].

These precursors are derived from processing pri-

miRNA (usually in kilobases) by a ribonuclease, such as

DROSHA [8]. Pre-miRNAs are also further cleaved to

generate active mature miRNAs with the help of DICER

[9]. So far more than 800 miRNAs have been described in
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human [10]. miRNAs interact with 3'UTR of mRNAs

through base pairing and bring about their degradation,

destabilization, or repression of translation through

RISC, a complex of multiple proteins and miRNA-mRNA

adduct [11,12]. Occasionally it can also up regulate gene

expression [13].

The expression profiles of miRNAs have been deter-

mined in order to understand the role of miRNAs in a

specific biological process [14]. The profiles generated

revealed altered levels of miRNAs in different systems,

such as oncogenesis and development [15,16]. These

studies showed strong correlation between specific

miRNA expression and phenotype suggesting it can be

used as a potential biomarker for diagnosis and prognosis

in human cancer [17]. Several groups of miRNAs have

been identified that regulate the expression of tumor-

associated genes while others seem to hold prognostic

value in predicting patient survival. For example, miR-21

is frequently over expressed in various cancers [18]. It is

now considered as an oncomiR that acts by down regulat-

ing PTEN, a tumor suppressor gene [19]. Similarly let-7

family of miRNAs is frequently down regulated in lung

cancers [20]. miR-15a and 16-1 are often deleted in

chronic lymphocytic leukemia [21]. These miRNAs target

RAS, HMGA2 and BCL2 oncogenes, respectively,

thereby regulating tumorigenesis [22-24]. Expression of

let-7a, miR-210 and miR-200 clusters was demonstrated

to be a strong prognostic marker for lung cancer, breast

cancer and ovarian cancer, respectively [25-27]. Many of

the fundamental processes are regulated by miRNAs,

such as cell differentiation (miR-223, miR-145) [28,29],

apoptosis (miR-34, miR-16) [21,30], body patterning

(miR-9, miR-196) [31,32], nervous system and muscle

development (miR-134, miR-1 and miR-133) [33,34].

A number of different approaches have been used for

expression profiling, such as northern analysis [35], clon-

ing [36], real time polymerase chain reaction [37],

microarray analysis [38,39] and RNase protection assay

[25,40]. These methods are not generally useful for dis-

covery and expression profiling of low-abundance tran-

scripts or yet unidentified novel miRNAs. Recently a

number of different platforms have been developed for

carrying out large scale parallel sequencing in order to

generate genome wide sequences in a short time and

reduced cost [41-43]. These have also been applied to

analyze transcriptome including sRNA sequences [41].

Generally sequences derived using these platforms can be

processed to generate expression profiles of known genes

and suitable computational methods can be employed to

identify unknown genes. Some of these platforms along

with custom computation pipelines have been used to

study sRNAs from different systems, such as plants,

human embryonic cells and developing chicken embryo

[44-46]. All these studies not only generated expression

profiles of known miRNAs but also identified a few novel

miRNAs. Morin et al. used this strategy in combination

with RNAfold, MiPred and an in house SVM model to

identify novel miRNAs [47]. Though the study identified

104 novel miRNAs there was no attempt to verify these

by other experiments. A software pipeline miRDeep has

been developed to analyze large-scale sRNA sequencing

data and identification of novel miRNAs [48]. Some of

the filters used in this approach are highly stringent and it

is likely that many novel miRNAs may be missed. Genera-

tion of expression profiles and identification of novel

miRNAs from deep sequencing is dependent on tools

used for analysis. It appears from this discussion that

there is a need for development of efficient automated

pipelines for analysis of deep sequencing data and setting

up validation pipeline for checking the results, as newer

algorithms may allow improved profiling and identifica-

tion of novel miRNAs.

In this manuscript we have profiled sRNA expression

from normal human peripheral blood mononuclear cells

and two cancer cell lines using Solexa technology and

developed automated computation pipelines for analyz-

ing quantitative expression. Our pipelines use statistical

analysis of the Solexa sequences for generation of expres-

sion profiles and a number of different methods for pre-

diction of novel miRNAs. We believe that these pipelines

are highly robust and can be useful for other studies.

Results
Sequencing and Annotation of Small RNAs

sRNAs were size selected by gel electrophoresis and then

sequenced using a Solexa platform (Illumina, USA). The

details of sequencing reads of the four samples are given

in Additional file 1. The length of an average read was

about 33-35 nucleotides. The processing of the raw

sequences through computation pipeline is outlined in

Figure 1 and described in "Methods". Briefly, the adaptor

sequences were first removed from the sequence reads.

Only those reads that were greater than 10 nucleotides

were considered for further analysis. These sequences

were clustered on the basis of sequence similarity and

subjected to similarity searches using specific databases

(rRNAs, tRNA, sn/snoRNAs, miRNAs, other non-coding

RNAs). The reads that did not match known RNA

sequences were checked to see if these were encoded by

intergenic, intronic or exonic regions of the human

genome (Figure 2).

Sequencing reads derived from mRNAs and rRNAs

made up about 2-4 and 2-13% of the total reads of all the

samples, respectively except that from K562 cells. Since

mRNAs and rRNAs are likely to have been derived by

degradation it appears that the degradation was minimal

in these samples. The sequencing reads derived from

miRNAs were estimated to be about 60-80%, similar to
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some of the other studies on sRNAs [47]. The result from

K562 was quite different. Only about 18% of total sRNA

population was found to be derived from miRNA. Low

level of miRNAs in K562 cells is unlikely to be due to arti-

fact as we got similar values in two independent experi-

ments (data not shown). Out of a total of 904 miRNAs

(718 major and 186 star sequences) present in miRBase

version 14, 534 miRNAs were detected in at least one of

the four samples sequenced [49]. A total of 370 miRNAs

were not detected in any of the samples.

MicroRNA expression patterns

Absolute sequence reads were transformed into tran-

script abundance by first normalizing the data in 'tran-

scripts per million (TPM)' for each library (see

"Methods"). The expression levels ranged from less than

10 to more than 100,000 counts (Figure 3, refer Addi-

tional file 1). Thus the sequencing data revealed a wide

range of expression levels spanning five orders of magni-

tude. Several members of the let-7 family, 103, 185 and

320a were observed as some of the highly expressed miR-

NAs (Figure 4). These miRNAs were also reported as

highly abundant miRNAs in peripheral blood mononu-

clear cells using "Taqman microRNA assay" [50]. While

the members of let-7 family, let-7a, f and g represented

about 77% of the total miRNA counts, a number of miR-

NAs with less than 10 counts including singletons were

also noticed (Additional file 1). It is not clear if the single-

tons represent true transcript or noise of the system.

miR-219-5p was one of the singletons found in all the

four samples suggesting that such sequences may not be

due to experimental noise or a chance event. Star

sequences of many miRNAs (20% of all known miRNAs)

were also observed mostly at low abundance level. Some

of the highly abundant star sequences observed by us

were miR-106-b* (N1, TPM- 288.28); miR-17* (N1, TPM-

1321.41); miR-92a-1* (N1, TPM- 942.78), miR- 25* (N1,

Figure 1 Flowchart describing the elimination pipeline used to 

filter out the indicated sequences from the library of sRNA se-

quences. The sequences were matched using an "in house" devel-

oped fast algorithm. Alignment with maximum of two mismatches 

was considered as hits. All the hits were removed before the next 

round of elimination. The databases used in this pipeline were either 

generated in house or downloaded from publicly available sites as de-

scribed in "Methods".

Figure 2 Frequency of different classes of RNA species present in sRNA libraries. The sequences obtained from the sRNA libraries were subject-

ed to a series of sequence similarity searches using specific databases (rRNAs, tRNA, sn/snoRNAs, miRNAs, other non-coding RNAs) and the pipeline 

described in Figure 1. The sequences that did not match with any known sequence were matched against databases of intergenic and intronic re-

gions of the human genome. The pie-charts represent an overview of small RNA gene expression (shown in percentage) in normal PBMC and two 

cancer cell lines K562 and HL60. Small RNAs belonging to the miRNA family constitute the majority as in normal PBMC (61%) and HL60 (77%) samples. 

However, in K562 miRNAs constitute only 18% of the sRNA population.
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TPM-265.44), and miR-374a* (N1, TPM-201.34). The

results suggest that sRNA sequencing is a good approach

for studying miRNA* abundance.

Expression patterns of miRNA clusters

miRNAs are often present in gene clusters and it is gener-

ally believed that individual miRNAs are generated from

common polycistronic transcript by post - transcriptional

processing [51,52]. Since the genes in clusters are co-reg-

ulated and co-transcribed it is expected that the levels of

these miRNAs are likely to be similar. This was investi-

gated by checking the relative levels of individual miR-

NAs present in clusters using the expression patterns

derived from deep sequencing. A total of 265 miRNA

genes organized in 68 clusters were studied. As the

sequencing reads represent mainly mature miRNAs and

not individual precursors, it was not possible to analyze

some of the clusters, such as those containing miR-15a,

16-1 and 15b, 16-2 that encode different precursors but

the same mature miRNA. Furthermore, 19 clusters were

also excluded from analysis as the miRNAs encoded in

these clusters were either not expressed or expressed

below 1 TPM based on our data. Therefore in this study

results from analysis of only 20 clusters are shown (Addi-

tional file 2).

The level of expression of different miRNAs in many

clusters displayed variable expression as exemplified by

the cluster containing miR-532 and 99b (Figure 5). In

some cases the variation observed within a cluster was as

much as 500 fold and the miRNA that showed highest

level of expression was not the one closest to the tran-

scription start site. For example, miR-25 showed highest

expression though it was farthest from the start site in

miR-106b cluster (Figure 5). This is likely to be due to

variation in processing mechanisms at post - transcrip-

tional level as has been seen in case of p53-mediated

alteration in processing some of the miRNAs, such as

miR-16-1 [53]. Overall the results suggest that the levels

of miRNAs in any cell may be regulated by a number of

different processes and mechanistic details of many of

these are not yet known.

Differentially Regulated miRNAs in K562 and HL60

Microarray based methods have been used extensively to

profile expression levels of annotated genes at genomic

scale. These methods cannot be used satisfactorily for

analyzing expression levels of unknown transcripts. Deep

sequencing of cellular RNAs is an alternative approach

for deciphering expression profiles of genes [46,54].

Though a few reports describing analysis of differentially

expressed miRNAs deciphered by deep sequencing are

available, there is no study yet on human PBMC. More-

over, there is no standardized tool available for profiling

miRNA expression using deep sequencing of sRNA

[47,55]. Therefore we have studied normal peripheral

blood mononuclear cells from two different individuals

and cancer cells of myeloid lineage, K562 (chronic myelo-

cytic leukemia) and HL60 (acute promyelocytic leuke-

mia) by deep sequencing of sRNAs followed by analysis of

the sequences using a custom designed computation

pipeline. We used intersection of two methods for finding

differentially expressed genes; a) SAM (significance anal-

ysis of microarrays) that allows for the control of false

detection rate (FDR) and b) fold change, that is, miRNAs

that showed more than 2.5 fold differences when com-

pared to both normal samples. A list of differentially reg-

ulated miRNAs is shown (Figure 6). Interestingly, miR-1,

101, 106b, 146b-5p, 151-3p, 192, 21, 22, 27b, 30e and 361-

3p displayed low expression in both the cell lines indicat-

ing a common role in leukemia genesis or progression

(Figure 6, see inset). In K562 most of the miRNAs were

down regulated except miR-486-3p and miR-504. The

expression patterns derived from sRNA sequences were

Figure 3 Overall level of expression of known miRNAs. The distri-

bution of known miRNA levels with respect to number of miRNAs is 

shown. Numbers of sequence reads are taken as miRNA levels and the 

values are represented in the form of range of values. The expression 

levels of the miRNAs span up to five orders of magnitude.

Figure 4 The abundance of selected miRNAs in human normal 

PBMC. The numbers of reads were used as expression level of respec-

tive miRNAs. [A]. Some of the highly expressing miRNAs (> 10,000 

counts). [B]. Some of the low expressing miRNAs (< 10 counts).
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Figure 5 Differential expression of individual miRNAs present in the same cluster in different datasets. Here TPM (transcript per million) is 

used as a measure of expression. [A] miRNAs belonging to cluster miR-532, [B] cluster miR-99b and [C] cluster miR-106b in normal PBMC, K562 and 

HL60 cell lines. A large variation in expression levels of different miRNAs present within the same cluster is observed.
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validated by RNase protection assay (RPA) which allowed

both qualitative and quantitative analysis of RNA levels

[25,56]. Down regulation of expression of some of the

miRNAs, such as miR-16, 22, 27a, 192 and let-7g in CML

cell line K562 was observed using RPA assay (Figure 7).

RNU6B was used as a loading control, for all the samples.

We have also used quantitative RT-PCR for validating

some of the results derived by deep sequencing and RPA.

Fold differences in the expression of some of the differen-

tially expressed genes in normal and K562 cells (miR-22

and miR-27a) using all three methods were found to be

comparable indicating quantitative nature of these

approaches (Additional file 3).

While miR-21 was found to be one of the down regu-

lated miRNAs in our study, it is expressed at high level in

all the cancers tested till date indicating that miRNA

expression is likely to be cell type and context dependent

[18]. Reduced expression of some of the miRNAs, such as

miR-16, 151 and 142 was previously reported in CML

[57-59]. Up regulation of the polycistronic miR-17-92

cluster in CD34+ cells of CML patients was initially

described by Venturini et al., 2007 and later was chal-

lenged by Agirre et al., 2008 [59,60]. According to the lat-

ter group there is no significant increase in the expression

of this cluster in CML cells. We too did not observe any

induction of this cluster in K562 cell line in agreement

with the latter group.

A significant number of differentially expressed miR-

NAs of HL60 (downregulated-miR-101, 126, 27b, 7; up

regulated- let-7a, let-7d, miR-181a, -181a*, -181b and

miR-199b) were mapped to chromosome 9 (Figure 8).

Differential expression of miR-181a family (miR-181a,

181a* and 181b) was previously reported [61]. Some of

the differentially regulated miRNAs of K562, such as

Figure 6 Differentially regulated known miRNAs. Up regulated/down regulated miRNAs are represented in the form of Venn diagrams. A subset 

of miRNAs that are differentially regulated but common in both cell lines as compared to normal PBMC is in the overlapped area and their expression 

levels can be seen in the heat map. Heat map of some of the differentially regulated known miRNAs with respect to datasets from normal PBMC and 

cancer cell lines K562 and HL60 is shown as an inset.
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miR-101, miR-27b and miR-24 were also encoded by

chromosome 9. The genomic locations of some of these

miRNAs were distant from the ABL gene locus. Altera-

tions in chromosome 9 are associated with a large num-

ber of diseases, particularly cancer [62]. Therefore, there

may be a link between alterations in chromosome 9 and

differential expression of miRNAs.

Predicted targets of differentially regulated miRNAs

Identification of putative targets may help to understand

the biological role of the differentially regulated miRNAs.

In this study two different approaches were used for tar-

get identification. In the first approach a number of dif-

ferent software tools were employed for target prediction

and in the second approach mRNA expression profiles

were generated and the genes that showed inverse corre-

lation with miRNA expression were identified. The sec-

ond approach is based on a number of observations

where target mRNA degradation by miRNAs were

reported [63,64]. For computational prediction stringent

criteria, that is, only those genes that are predicted to be

target of specific miRNAs by at least five of the eleven

established target prediction programs (DIANA-microT,

MicroInspector, miRanda, MirTarget2, miTarget,

NBmiRTar, PicTar, PITA, RNA22, RNAhybrid, and Tar-

getScan/TargertScanS) integrated by miRecords and also

showed expression levels that are inversely correlated

with the specific miRNA levels were considered [65].

Putative targets of differentially regulated miRNAs are

shown in Additional file 4 (K562) and Additional file 5

(HL60). Genes targeted by three or more miRNAs are

shown in Table 1. Genes that are targets of multiple miR-

NAs are likely to be tightly regulated and may show

graded response on the basis of expression of different

miRNAs [66]. MEIS2, up regulated in K562, was found to

be the target of up to five different miRNAs, down regu-

lated in both K562 and HL60. MEIS2 has been previously

reported to be important for myeloid leukemogenesis

[67]. Similarly, SMAD7 a down regulated gene in HL60 is

predicted to be a target of three miRNAs, up regulated in

HL60. It is known that SMAD7 regulates SMAD and

mitogen activated kinase (MAPKs) signaling and controls

erythroid and megakaryocytic differentiation of erythro-

leukemia cells [68]. TRIB2, multiply targeted by three up

regulated miRNAs in HL60 has been reported to be pres-

ent at low levels in AML [69].

Expression of intronic miRNAs

Many intron-encoded miRNAs are processed in

DROSHA independent way (miRtrons) [70]. We have

also analysed expression levels of differentially regulated

intronic miRNAs. In order to check if differential expres-

sion of intronic miRNAs is due to transcriptional or post

- transcriptional mechanisms, the levels of intronic miR-

NAs were compared with that of the host transcripts.

Comparative analysis revealed positive correlations with

respect to 8 out of 14 intronic miRNA - mRNA pairs

(Table 2). Unlike miRNAs in clusters, the expression of

Figure 7 Expression levels of some of the known miRNAs deter-

mined by RNase protection assay. The relative expression levels of 

some of the differentially regulated miRNAs were determined using 

RPA. Briefly, total RNA from indicated cells was incubated with a la-

belled probe specific for a given miRNA and eventually treated with ri-

bonuclease as described in the "Methods". The protected fragments, 

suggesting presence of specific transcripts, were first separated on 

12% urea PAGE and then visualized by phosphorimager. Loading con-

trol was transcripts corresponding to RNU6B visualized using RPA.

Figure 8 A map of chromosome 9 showing locations of the differ-

entially expressed HL60 miRNAs. The differentially expressed HL60 

miRNAs were mapped to chromosomes based on the coordinates 

(GRCh37) available on miRBase version 14. The chromosome 9 is 

shown here as most of the miRNAs mapped to this chromosome.
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Table 1: List of Genes targeted by 3 or more differentially regulated miRNAs in K562 and HL60.

Genes targeted by 3 or more downregulated 

miRNAs in K562

Genes targeted by 3 or more 

downregulated miRNAs in HL60

Genes targeted by 3 or more upregulated 

miRNAs in HL60

ABCC5 let-7g, let-7i, miR-101 BCL11A miR-1, miR-21, miR-152 ARID3B let-7a, let-7c, let-7d, miR-98

ACVR2B miR-16, miR-101, miR-186, EDEM3 miR-27b, miR-30e, miR-101 ARRDC3 miR-25, miR-181a, miR-181b

ADAMTS3 miR-16, miR-30e, miR-146b-5p GALNT7 miR-7, miR-27b, miR-30e BAZ2A miR-25, miR-99a, miR-181a

ARRDC4 miR-27a, miR-27b, let-7i, let-7g MEIS2 miR-27b, miR-30e, miR-101, 

miR-194

CCR7 let-7a, let-7b, let-7c, let-7d

BZW2 let-7g, let-7i, miR-101 PHF6 miR-1, miR-30e, miR-101, 

miR-106b

CD200R1 let-7a, let-7b, let-7c, let-7d, miR-98

CDC25A let-7g, let-7i, miR-16, miR-21, 

miR-339-3p

PTGFRN miR-30e, miR-106b, miR-

146b-5p

CPEB2 let-7a, let-7b, let-7c, let-7d, miR-25, 

miR-98

CIT miR-27a, miR-27b, miR-30e, 

miR-142-5p

SATB2 miR-22, miR-27b, miR-30e CPEB4 miR-25, miR-181a, miR-181b

CLCN3 miR-1, miR-101, miR-27a, miR-

27b

DUSP16 let-7a, let-7b, let-7c, miR-98

CLDN12 let-7g, let-7i, miR-16 EGR3 let-7a, let-7b, let-7c, let-7d, miR-98, 

miR-181a

CPEB1 let-7g, let-7i, miR-1, miR-22 EPHA4 let-7a, let-7b, let-7c, miR-98, miR-

181a

DCBLD2 miR-16, miR-24, miR-101 FOS miR-181a, miR-181b, miR-221

E2F7 miR-16, miR-27a, miR-27b GCNT4 let-7a, let-7b, let-7c, let-7d, miR-98

GALNT7 miR-27a, miR-27b, miR-30e GPX7 let-7a, let-7b, let-7c

HIC2 let-7g, let-7i, miR-24, miR-30e, 

miR-146b-5p

IGF2BP2 let-7a, let-7b, let-7c, miR-98, 

miR-181a

IGF2BP3 let-7g, let-7i, miR-142-5p ITGB3 let-7a, let-7b, let-7c, miR-98

LIN28B let-7g, let-7i, miR-30e KIAA1539 let-7a, let-7b, let-7c, let-7d, miR-98

MEIS2 let-7i, miR-27a, miR-27b, 

miR-30e, miR-101

KLHL24 let-7a, let-7b, let-7c, miR-98, miR-

618

NEDD4 miR-27a, miR-27b, miR-30e LRIG1 let-7a, let-7b, let-7c, let-7d, miR-98, 

miR-425

PDIK1L miR-1, miR-16, miR-22, miR-142-

5p

MAP3K3 let-7b, miR-181a, miR-181b

PHF6 miR-1, miR-30e, miR-106b, miR-

186

MYO1F let-7a, let-7b, let-7c, let-7d

PTGFRN miR-30e, miR-106, miR-146b-5p PPP1R16B let-7a, let-7b, let-7c, let-7d, miR-98

RELN miR-16, miR-27a, miR-27b PRKCE miR-25, miR-181a, miR-181b

SATB2 miR-16, miR-22, miR-27a, miR-

27b, miR-30e

RAB11FIP4 let-7a, let-7b, let-7c, let-7d, miR-98

SGMS1 miR-27a, miR-27b, miR-106b, 

miR-142-5p

SLAMF6 let-7a, let-7b, let-7c, let-7d, miR-98

SPRED1 miR-1, miR-16, miR-101 SLC30A4 let-7a, let-7b, let-7c, miR-98

STRBP let-7g, let-7i, miR-146b-5p SLC35D2 let-7a, let-7b, let-7c, let-7d, miR-98

WEE 1 miR-16, miR-27a, miR-106b SLC4A4 let-7a, let-7b, let-7c, let-7d

SMAD7 miR-25, miR-181a, miR-181b

SNN let-7a, let-7b, let-7c, let-7d,

miR-25, miR-98, miR-181a

STK40 let-7a, let-7b, let-7c, let-7d,

miR-98

SYT11 let-7a, let-7b, let-7c, let-7d

TMEM2 let-7a, let-7b, let-7c, let-7d

TRIB2 let-7a, let-7b, let-7c, miR-98

UTRN let-7a, let-7b, let-7c, let-7d, miR-98
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some of the intronic miRNAs may be transcriptionally

controlled.

miRNA Biogenesis Machinery

The analysis of microarray data revealed induction in the

expression of some of the miRNA biogenesis genes

(RNASEN, DGCR8, XPO5, RAN) in K562 cell line (Table

3). However, DICER1 was found to be down regulated

(1.79 fold). This would result in a likely increase in the

pre-miRNA population in cytosol but decrease in accu-

mulation of mature miRNAs. This is consistent with the

observation that K562 cells contain relatively less amount

of miRNAs and that 23 out of 25 differentially expressed

miRNAs are down regulated (see Figure 6). This observa-

tion was not due to artifact as two independent sequenc-

ing of sRNAs from K562 cells gave similar results (data

not shown here). Low DICER and let-7 levels were also

observed in lung adenocarcinoma [20]. In contrast, a

higher level of DICER1 in prostate adenocarcinoma

accounted for up regulation of 39 of 45 differentially

expressed miRNAs [71]. In HL60 some of the compo-

nents of biogenesis machinery (RNASEN and XPO5)

were found to be up regulated.

Identification of Novel MicroRNA genes

In principle deep sequencing of sRNAs should generate

sequences from as yet unannotated regions of the

genome. The analysis of the sequences through computa-

tional pipeline (Figure 9) showed a large number of unan-

notated sequences that are encoded by either intergenic

or intronic regions. Since miRNAs are predominantly

encoded by intergenic and intronic regions, these

sequences were analyzed by a set of computational tools

to identify putative novel miRNAs. Since predictions are

based on identifying miRNA precursors, genomic regions

(70 nucleotides) surrounding the sRNA sequences were

extracted (see "Methods" for details). A total of 370 (357

major + 13 minor) novel miRNAs were predicted using

computational pipeline (Additional file 6). The sequences

and chromosomal locations of the predicted novel miR-

NAs from intronic and intergenic regions are listed in the

supplementary table (Additional files 7 and 8). More than

Table 2: Correlation of expression patterns in A) K562 and B) HL60 cancer lines between differentially regulated intronic 

miRNAs and their host genes.

A) K562

miRNA Host Transcript miRNA:Host transcript Status

miR-342 EVL Downregulated

miR-548e SHOC2 Downregulated

miR-486 ANK1 Upregulated

B) HL60

miRNA Host Transcript miRNA:Host transcript Status

miR-22 C17orf91 Downregulated

miR-151 PTK2 Downregulated

miR-199b DNM1 Upregulated

miR-25 MCM7 Upregulated

miR-618 LIN7A Upregulated

Table 3: Altered levels of miRNA biogenesis and miRISC components in K562 and HL60.

Protein Function K562/Normal

(Fold Change)

HL60/Normal

(Fold Change)

DROSHA (RNASEN) PrimiRNA processing 2.238954 2.017825

DGCR8 PrimiRNA processing 2.078018 Unchanged

XPO5 Exporting premiRNA 2.669646 2.199101

RAN Exporting premiRNA 1.832214 Unchanged

DICER1 PremiRNA processing -1.79971 Unchanged
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95% of the novel miRNAs showed frequency counts

lower than 10. Many novel miRNAs in our dataset

showed presence of 1-11 isomiRs with varying frequen-

cies. For example, frequencies ranging from 1-280 were

observed for eight isomiRs of jnuhsa-204. Presence of

isomiRs certainly strengthens classification of these mol-

ecules as novel miRNAs [47]. These datasets were also

analyzed using miRDeep, a published tool for miRNA

analysis of deep sequencing data [48]. The number of

novel miRNAs predicted by miRDeep is much less than

that using the pipeline described here (Additional files 7

and 8). This may be due to stringent criteria used by

miRDeep that quite often misses known miRNAs. The

expression of a few novel miRNAs, missed by miRDeep

but predicted by "in-house tools", was validated through

real-time PCR (for precursor miRNA) or RNase protec-

tion assay (for mature miRNAs) as shown in Figure 10

and 11. Interestingly miRNAs that were present as single-

ton (for example- jnuhsa-4-3p, jnuhsa-93-3p) were also

detected using RNase protection assay (Figure 11). We

also mapped predicted novel miRNAs to clusters based

on the inter-miRNA distance of less than 20 kb (Figure

12). Some of the clusters contained only novel miRNAs

while many others were part of previously known clusters

[72]. Based on miRDeep prediction a total of 12 novel

miRNAs showed similarity in the seed region with the

known miRNAs indicating that these miRNAs are likely

to belong to the same family and thus may share common

biology (Additional files 7 and 8).

Discussion
Our effort to understand the microRNAome of human

leukocytes through deep sequencing technology has

given us several interesting observations. These include

discovery of novel miRNAs and a valuable list of differen-

tially expressed miRNAs in chronic and acute myeloge-

nous leukemia. The diversity in the miRNA wealth was

realized through the detection of large number of novel

miRNAs. Our major findings are a list of expressed miR-

NAs (534 known and 370 novel) in leukocytes and the

discovery that the expression of miRNAs may be con-

trolled by regulating post - transcriptional events, such as

manipulating the level of DICER, an enzyme involved in

biosynthesis of miRNAs in tumor cells (K562). Generally,

singletons in the sequenced samples are not taken into

consideration, as these are likely to occur due to potential

sequencing error or transcription noise [73]. Our experi-

mental results show convincingly that such miRNAs are

likely to be real and not a result of artifact of sequencing.

The known miRNAs found to be most abundant in all

the four samples were members of the let-7 family, 103,

185 and 320a, which were also reported in peripheral

blood mononuclear cells using "Taqman microRNA

assay" [50]. Therefore our results are in agreement with

previous studies based on a different methodology. There

are multiple mechanisms that are likely to regulate

miRNA levels similar to that of mRNAs. These include

Figure 10 Detection of precursor novel miRNAs through Real-

time PCR. Real-time PCR confirmation of the precursors of novel miR-

NAs predicted through CID, CSHMM, MiPred tools. A no-RT-PCR reac-

tion is used as negative control.

Figure 9 Flowchart describing the computational pipeline used 

for prediction of novel miRNAs. The sequencing reads that did not 

match with any of the databases of elimination pipeline, but matched 

with the human intergenic and intronic sequences, were extracted 

along with flanking sequences from human genome. These were then 

analysed by a number of miRNA precursor prediction algorithms and 

the hits were further analysed by a set of filters as described. The final 

output of the pipeline gives a list of novel miRNAs.



Vaz et al. BMC Genomics 2010, 11:288

http://www.biomedcentral.com/1471-2164/11/288

Page 11 of 18

both transcriptional and post - transcriptional processes.

It is generally believed that levels of miRNAs are regu-

lated transcriptionally [74,75]. In this study an attempt

was made to understand the role of different mechanisms

in controlling miRNA levels by studying levels of individ-

ual miRNAs present in clusters and intronic miRNAs. It

is expected that all miRNAs in a cluster belong to one

transcription unit and are supposed to be synthesized as

one long precursor [51,52]. Since many miRNAs of a

cluster showed variable expression patterns it is likely

that the levels are controlled using post - transcriptional

mechanisms. Therefore, regulation of post - transcrip-

tional processing may be a preferred mechanism, instead

of transcription control in case of miRNAs present in

clusters. Studies describing the role of post - transcrip-

tional mechanism in regulating levels of a number of

miRNAs have been recently published [53,76]. On the

other hand our results regarding relative levels of intronic

miRNA and the host mRNAs do indicate that the levels of

many intronic miRNAs are regulated at transcriptional

level.

The isomiRs of different miRNAs were also frequently

found suggesting that these do not arise due to rare

events. As 5' and 3' ends of mature miRNAs are defined

by processing from DROSHA and DICER, respectively, it

is likely that isomiRs with extra nucleotides at the 5' end

comes from variation in DROSHA processing while with

extra bases at the 3' end comes from variation in DICER

processing. Another possibility is processing of mature

miRNA ends by yet an unidentified end-processing

enzyme in the nucleus. Whether the extra nucleotides of

Figure 11 Predicted novel miRNAs. A. A partial list of novel miRNAs predicted from deep sequencing data is displayed along with chromosomal 

location and the scores from different prediction tools. B. The precursor sequence and the secondary structure of the novel miRNAs. The highlighted 

regions in blue and yellow colour indicate the presence of 5p and 3p mature miRNA sequences, respectively. Note that the sequenced mature puta-

tive miRNAs map to the stem part of the structure. C. The expressions of these miRNAs were independently validated by RPA. RPA was carried out as 

described in the legend for Figure 7 using total RNA from normal PBMC and K562 cell lines. The phosphor imager images are shown. RNU6B transcripts 

were used as a control. Some of the miRNA star sequences were also detected. The brightness/contrast have been changed to normalize the signals 

across different probes.
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isomiRs affect the target recognition needs to be evalu-

ated.

A number of differentially expressed miRNAs and their

potential targets were identified by comparing miRNA

and mRNA levels of normal PBMC versus that of two

myeloid cancer cell lines K562 and HL60 along with com-

putation approach. This strategy was used as degradation

of many mRNAs was observed as a result of miRNA

action [77]. Both K562 and HL60 have been used as refer-

ence cell lines for studying the cellular and molecular

events involved in the proliferation and differentiation of

chronic myeloid or acute promyelocytic leukemia,

respectively. Many miRNAs that were previously

reported to be involved as tumor suppressors, such as let-

7 g, miR-101, 16 and 192 were found to be down regu-

lated in the leukemia cell lines. Many of the differentially

regulated miRNAs, identified in this study have been

reported to be involved in various cellular processes like

cell cycle (miR-192) [78], apoptosis (miR-16, -126, -98)

[21,79,80] differentiation (miR-27a, -181, -342, -223)

[28,81-83] DNA repair (miR-24, -210) [84,85] metastasis

[86], erythroid maturation (miR-22) [87], erythropoiesis

(miR-24) [88] and hematopoiesis (miR-142, -181) [89,90];

highlighting their putative role in leukemogenesis or pro-

gression. Strikingly, majority of the differentially regu-

lated miRNAs were found to be down regulated in K562

cell line. It is possible that low level of DICER, as revealed

by gene expression profiling, is responsible for an overall

reduction in the miRNA population. Global down regula-

tion of miRNAs in mouse T cells using PCR and conven-

tional sequencing approach was reported before [91].

However, the cause of the down regulation was not clear,

as mRNA profiling was not carried out. DICER has also

been implicated in mouse T cell functions [92]. Our stud-

ies strongly suggest that there may be a link between

DICER and miRNA levels. Many of the genes, identified

in this study as the potential targets of differentially regu-

lated miRNAs are known to be involved in cancer

through their effects on cell differentiation (CDK6, LIFR),

apoptosis (PIM1) or hematopoiesis (GATA2, TAL1) [93-

97]. Interestingly, majority of the targets of the cancer-

associated miRNAs, such as -ARHGEF, CDK6, ETV5,

GATA2, PIM1, LIFR, TAL1, PPARG, RANBP17, TFRC

FOXP1 LPP, NCOA2 and NR4A3 have been previously

shown to be associated with leukemogenesis.

One of the features of this study is the computation

pipeline that identifies novel miRNAs among sRNA

sequences. This pipeline is different from other available

pipelines as it has custom designed tools for identifica-

tion of novel miRNAs that involve pre-processing of the

Figure 12 Clustering of the novel miRNAs. A. Novel miRNAs occurring in the vicinity of the known miRNAs. B. Novel miRNAs forming a new cluster.
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sequences, an exhaustive elimination pipeline, folding

and filtering to get novel predictions. The evidences sup-

porting the predictions are identification of potential pre-

cursors by specific precursor identification tools,

presence of star sequences, presence of isomiRs and in

some cases experimental validation. The fact that even a

single sequence read may not be a noise or error, has been

validated by observing corresponding sRNA experimen-

tally and indicates the power of our computation pipeline

in identification of novel miRNAs. The total number of

novel miRNAs identified from all the four samples is 370.

Therefore, total number of miRNAs encoded by the

human genome may be much larger than current esti-

mate [98].

Conclusions
In conclusion we list about 904 miRNAs that are

expressed in normal and cancerous leukocytes, nearly

41% of these are novel. Our analysis shows that some of

the novel miRNAs are likely to be clustered in the

genome similar to many known clusters of miRNAs.

Moreover, we have also identified a number of miRNAs

that are differentially expressed in cancer cells studied by

us. These are likely to be new markers/cause of carcino-

genesis. In addition we show that miRNA levels can be

regulated at post - transcriptional processing stage. Our

results also show that singletons in deep sequencing

reads are unlikely to be sequencing artifacts. In K562 cells

low levels of miRNAs is correlated with reduced level of

the enzyme DICER. In addition we have developed an

improved automated computation pipeline for analysis of

deep sequencing data to obtain quantitative profiles of

known and novel miRNAs. Based on our observations, it

is now possible to generate leukocyte specific miRNA

arrays in order to study expression profiles of all miRNAs

relevant to leukocytes. Similar approach can be used to

generate other tissue specific miRNAome.

Methods
Cell lines and blood samples

The human chronic myeloid leukemia blast crisis cell

line, K562 and acute promyelocytic leukemia cell line,

HL60 were obtained from National Centre for Cell Sci-

ences, Pune and maintained in RPMI 1640 and DMEM

(Gibco) medium, respectively. The medium was supple-

mented with 10% FBS and penicillin-streptomycin and

maintained at 37°C with 5% CO2 in incubator chamber.

Buffy coat of healthy blood donors (N1 and N2) were col-

lected from volunteers. Red cell lysis buffer (0.144M

NH4Cl, 0.01M NH4HCO3) was added to buffy coat to lyse

the remnant RBCs and pure WBC population was

obtained by centrifugation at 3000 g.

RNA Isolation and sequencing

Total RNA isolation was carried out from peripheral

blood and cell lines using TRIzol® Reagent (Invitrogen) as

per manufacturer's instruction. RNA preparations were

stored at - 80-°C till further use. Small RNA (sRNA) pop-

ulation was isolated by separating 10 μg of total RNA on

denaturing polyacrylamide gel electrophoresis (PAGE)

and cutting a portion of the gel corresponding to the size

18-30 nucleotides based standard oligonucleotide mark-

ers. Adapter (5') was ligated to sRNA population and

ligated RNAs (40-60 nt) were purified by running on urea

PAGE. This was followed by 3' adapter ligation and puri-

fication of adapter ligated RNAs (70-90 nt) in a similar

manner. Modified sRNAs were reverse transcribed and

then PCR amplified with adapter specific primers and the

amplified cDNAs were finally purified on Urea PAGE to

generate cDNA tag libraries for sequencing by illumina

genome analyzer. The average number of sequencing

reads was around 4.9 million.

Datasets

Four sRNA sequencing data comprising of peripheral

blood leukocytes of two normal individuals (N1, N2) and

tumor cells K562 and HL60 were obtained from Illumina

fast track sequencing services. For each sample a

Sequence file and a Tag file was provided. The Tag file

comprises of unique sequences with their corresponding

frequency. Tag Files are generated post alignment as a

summary of Sequence Files and every Sequence File has a

corresponding Tag File. Tag Files are generated to give the

researcher an indication of most common to most rare

sequences in the dataset. The numerical frequency of

each sequence in the Sequence File for gene expression

gives a true indication of relative expression of sequence

transcripts. The unique sequences in the Tag files contain

a 3' adaptor sequence (TCGTATGCCGTCTTCT-

GCTTG). The amount of the 3' adapter is variable and is

dependent on the length of the sRNA. Each delivered

sequence is 33/35 bases in length. A part of the adaptor

sequence is seen in each sequence if the sRNA is shorter

than 33/35 bases. This adapter and segments of it needs

to be trimmed for proper alignment to the transcrip-

tome/genome.

Preparation/Processing of the datasets

i). Removal of the adaptor sequences: Since the

sequence of the adaptor is known, a perl script was writ-

ten to trim the adaptors.

ii). Clustering and removal of redundancy after

removal of the adaptor sequence: Although the tag file

contained unique sequences, there were some, which

after the removal of the adaptor were redundant. These

identical sequences were represented once and their fre-

quency was summed up.
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iii). Sequences less than 10 nucleotides in length were

excluded

iv). Conversion into fasta format: The final trimmed

file was then converted into fasta format where the

unique header (sequence identity) retained the informa-

tion of the sequences length and frequency. The sequence

ID comprised of a running number along with the length

and frequency of that sequence.

Small RNA annotation

The sRNA sequences obtained were annotated against

the known databases using the following protocol-
i). Known/annotated sequence databases

List of the databases used for the annotation/elimination

pipeline were:

a) Mature miRNAs: from miRNA registry, release 14

(includes a total of 904 miRNAs [718 mature (major)

+186 stars (minors)].

b) ncRNAs: from Ensembl

"Homo_sapiens.NCBI36.56.ncrna.fa" (includes the

precursor miRNAs and other ncRNAs like sn/sno/sca

RNAs, tRNAs, rRNAs).

c) RNA database from the FTP site NCBI (includes

rRNAs and mRNAs).

d) The exons were obtained from the Contig files by a

self written script.

e) Intergenic/intronic sequences: obtained through

in-house built Perl script (using the Homo Sapiens

Contig file 29 Feb, 2008 version). These sequences

served as a source for finding novel miRNAs (inter-

genic/intronic).
ii). Finding Known miRNAs

One of our objectives was to study the expression pattern

of the known miRNAs. To generate the expression profile

of the known miRNAs, the sRNA sequences of all the 4

samples were matched against the known miRNA

sequences using BLASTN and an in house built pattern

matching tool. The parameters used for BLAST were

tuned to obtain maximum matches, such as the word size

was set to 7 nucleotides, filtering was turned off and the

number of alignments reported were increased.
iii). The Elimination Pipeline

An in house - built script was written to do a fast match-

ing of the sequences with the created databases. A mis-

match of up to 2 nucleotides was allowed. The pool of

unmatched sequences at the end of the pipeline served as

a source of novel miRNAs (Figure 1).

Normalisation of the data/Calculation of Transcripts Parts 

Per Million (TPM)

Normalisation was carried out as the total number of

reads from different experiments was not same and varia-

tions in the number of reads of individual miRNA can be

due to sequencing depth. The number of reads of a tran-

script/sequence (representing a known miRNA) was

divided by the total clone count of the sample and multi-

plied by 106. The total clone count is the sum of the fre-

quencies of all the unique sequences/transcripts present

in the trimmed file. The Additional file 1 contains a list of

the known miRNAs found in all the 4 samples along with

their respective frequencies and TPM values.

Selecting Differentially expressed MicroRNAs

Differentially expressed miRNAs were identified by using

a combination of two methods:
i) SAM Analysis

We performed the t-test procedure within significance

analysis of microarrays (SAM) to look for differentially

expressed miRNAs. SAM calculates a score for each gene

on the basis of the change in expression relative to the

standard deviation of all measurements.
ii) Fold Change

The known miRNAs in normal samples were compared

to the cancer cell line. The miRNAs showing more than

2.5 fold difference as compared to both the normal cells

were considered as differentially regulated. The samples

with less than 10 TPM in both normal and cancer sam-

ples were ignored.

Novel miRNA Prediction

The strategy is based on first removing all known RNAs

including those derived from exonic regions and then

identifying those that are derived from intronic and inter-

genic regions. These were then subjected to some of the

ab initio miRNA prediction algorithms like SCFG based

CID-miRNA [99] and CSHMM [100] that use stringent

criteria to distinguish between real and pseudo miRNAs.

Besides this we ensure high discriminative power by

using the following filters:

a) Occurrence of the sequence in the stem region of

the precursor

b) Presence of IsomiRs

c) Presence of minor/star sequences.

d) Taking a consensus among the prediction tools

Following is the detailed pipeline used for the predic-

tion of novel miRNAs:
i) Extraction of matches from the intergenic/intronic regions 

of the human genome

The unmatched sequences (from the elimination pipe-

line) were matched to the intergenic/intronic regions.

The exact matched sequences were extracted along with

70 nucleotides flanking both the ends representing

potential precursor sequences.
ii). Folding the extended sequences and checking its location 

in the folded structure

The sequences were scanned for presence of potential

precursor miRNA using CID-miRNA [99] and CSHMM

[100] prediction tools. The folded sequences generated
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were then checked to see if the sRNA (putative mature

miRNA obtained by sequencing) occurs in the folded

putative precursor as the window scanning approach

used could report a folded structure not involving the

concerned sRNA. Only those hairpins were kept which

contained sRNA. The next step involved locating the

position of the sRNA in the hairpins. Since mature miR-

NAs are known to be arising from the stem portion and

not the loop, only those hairpins in which the sRNAs

occurred in the stem were classified as correct cases and

the remaining as prediction errors. These correct cases

were further tested by MiPred [101].
iii). Finding IsomiRs and Star sequences

A list of all the predicted correct precursor sequences was

created and the sRNAs derived from common precursors

were grouped into a common family. The sRNAs derived

from the same precursors were kept together in a family.

The most abundant member was designated as the

mature miRNA. The sRNAs that differed from the repre-

sentative by a few nucleotides were called IsomiRs and

those that had a different, partially complementary

sequence and were located in the other strand (stem of

the hairpin loop) were called stars. The Additional files 7

and 8 comprise of the novel miRNAs grouped into fami-

lies on the basis of sRNAs falling within the same precur-

sor. The representative sequence was chosen on the basis

of abundance. The most abundant sequence was selected

as representative of the family. The scores from the 4

tools (CID-miRNA, CSHMM, miRDeep, MiPred

assigned to the corresponding precursors are also listed).
iv). Locating the potential - novel miRNA in the genome

On the basis of the positions of the predicted novel miR-

NAs, their tendency to occur in a known cluster or a new

cluster was checked. miRNAs located within 20 kb of the

known or novel miRNA were considered as part of the

same cluster.
v). Removal of the redundant miRNAs to get the final list of 

novel miRNAs

The novel miRNAs from the 4 samples (both intergenic

and intronic) were pooled and the redundancy was

removed to get a final set of novel miRNAs. These were

given a unique name (Additional file 6). The representa-

tive miRNAs in the Additional files 7 and 8 along with

their sample IDs also have these names.

RNAse Protection Assay (RPA) for detection of mature 

miRNA and real time RT-PCR for precursor miRNA detection

The RPA assay for mature miRNA detection was done

using mirVana ™ miRNA detection kit as per supplier's

instructions (Applied Biosystems). To detect the precur-

sor miRNA, total RNA was treated with DNAase I (MBI

fermentas). Reverse transcription was done using super-

script® III (Invitrogen) reverse transcriptase as per sup-

plier's instructions. A list of primers used for real time

RT-PCR amplification of precursors of novel miRNAs is

given in Additional file 9. Real-time PCR was done with

following parameters- Initial denaturation - 94°c for 2

min, denaturation- 94°c for 30 sec, annealing- 60°c for 1

min for 40 cycles using SYBR Green PCR Master Mix

(Applied biosystems).

Microarray analysis

Total RNA from normal PBMC and two myeloid leuke-

mia cancer samples (K562 and HL60) was sent for gene

expression profiling using Ocimum microarray platform

(Ocimum, Hyderabad, India). The expression data for

each sample was generated on Affymetrix Human Gene

1.0 ST arrays. A fold change cut-off of ± 1.5 resulted into

FDR < 0.001 for both the comparisons. The quality con-

trol analysis was carried out using Affymetrix Expression

Console (EC). The statistical analysis was performed

using R-programming language and the biological analy-

sis was carried out using GenowizTM software. The data

obtained was normalized and genes showing more than

1.5 fold differences in the cancer cell lines as compared to

normal were marked as differentially expressed genes. A

total of 1856 genes were found to be up regulated and

1696 were down regulated in K562. In HL60, 1497 genes

were up regulated and 1213 genes were found as down-

regulated (Additional file 10).

miRNA target prediction

The most probable targets of the differentially regulated

miRNAs were fished out using following two criteria - 1.

Prediction by at least five of the established target predic-

tion programs- A list of putative targets was prepared

(List A) using intersection between at least five of the

eleven established target prediction programs compiled

by mIRecords: (DIANA-microT, MicroInspector,

miRanda, MirTarget2, miTarget, NBmiRTar, PicTar,

PITA, RNA22, RNAhybrid, and TargetScan/Targ-

ertScanS). 2. Inverse correlation in expression pattern

between miRNA and coding genes- The putative target

genes in list A was compared to the list of differentially

regulated genes (showing more than 1.5 fold difference)

(List B) in K562 and HL60 as obtained from expression

profiling data, and only those genes that show inverse

correlation to the miRNA levels were considered as most

genuine putative targets of the select miRNAs.

Availability and Requirements
The entire computational pipeline described in this paper

is available at the website: http://mirna.jnu.ac.in/

deep_sequencing/deep_sequencing.html. The software is

also available on request.

Accession numbers

The data discussed in this publication have been depos-

ited in NCBI's Gene Expression Omnibus and are accessi-

http://mirna.jnu.ac.in/deep_sequencing/deep_sequencing.html
http://mirna.jnu.ac.in/deep_sequencing/deep_sequencing.html
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ble through GEO Series accession number GSE19833

Super series: http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE19833

The GSE19833 Super series comprises of the following

sub series:

Microarray Expression data: GSE 19789 (consists of raw

data and normalized data) Deep sequencing data: GSE

19812 sequence data (consists of the raw sequences,

untrimmed tag and trimmed tag files and the expression

profile of the known miRNAs (Additional File 1).

Additional material
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