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Abstract— Important throughput improvements in multiple-
input multiple-output (MIMO) fading channels can be obtained
by merging beamforming at the transmitter and maximal ratio
combining (MRC) at the receiver. However, to attain these
performance gains it is important to obtain accurate channel
state information (CSI). For this purpose a channel estimation
technique is used at the receiver: channel prediction to feed back
to the transmitter for beamforming, and channel interpolation
for MRC at the receiver. In this paper, the impact of imperfect
channel prediction on bit error probability (BEP) is analyzed in
Rayleigh fading, taking into account the channel response varia-
tions over the frame interval. An exact closed-form expression for
BEP is obtained, and we evaluate this expression assuming both
time-variant and time-invariant channel models. These results
indicate that the BEP performance degrades on the order of 1.5
dB due to channel variations.

I. INTRODUCTION

One of the most promising and powerful techniques in
wireless communications is multiple-input multiple-output
(MIMO) systems [1]. When channel state information (CSI)
is available to both the transmitter and the receiver, it can be
used for beamforming at the transmitter and maximal ratio
combining (MRC) at the receiver.

The quality of the CSI at the transmitter impacts beamform-
ing performance [2]. In most systems CSI is predicted by the
receiver and it is sent back to the transmitter by a feedback
channel. However, the knowledge of CSI at the transmitter
can never be perfect due to unavoidable prediction errors, for
example using a pilot aided modulation (PSAM) in a noisy
channel [3]. Adaptive modulation in MIMO systems has been
studied in [2][4]-[7]. These works are based on approximated
expressions for the BEP under imperfect CSI, usually starting
from exponential type bounds [8, eq.17].

In [9] exact closed-form BEP expressions for MIMO beam-
forming with MRC under imperfect CSI due to prediction
errors are derived, assuming a fixed modulation scheme and
transmit power and a time-invariant channel response over the
frame interval. This paper considers a model where the channel
response varies over the frame interval. Under this assumption,
an exact closed-form BEP expression is obtained for MIMO
Beamforming with MRC employing BPSK or M -QAM over
Rayleigh fading channels. The expression is evaluated for

different modulation types and the degradation in BEP due
to channel variation shown to be on the order of 1.5 dB.

The remainder of this paper is organized as follows. Section
II describes the system model. In Section III the BEP expres-
sions are derived. Section IV presents numerical results which
exploit the analytical expressions derived in previous sections.
Conclusions are provided in Section V.

II. SYSTEM MODEL

The system model for MIMO beamforming with MRC
is depicted in Figure 1. The following channel model is
assumed. We consider NT transmit antennas and NR receive
antennas, and the channel gain is modelled by an NR × NT

complex matrix H, so that each entry Hi,j is the channel
gain between the j-th transmit and the i-th receive antennae.
These channel gains exhibit frequency-flat slowly time-varying
fading, according to Jake’s model. The entries Hi,j are as-
sumed independent and identically-distributed (i.i.d) complex
Gaussian circularly symmetric random variables (RVs), with
zero-mean and unity-variance, i.e. Hi,j ∼ CN(0, 1), where
the symbol ∼ means statistically distributed as. Noise is
modelled by an additive NR-dimensional vector ς , whose
entries ςi are i.i.d. complex Gaussian circularly symmetric
RVs ∼ CN(0, N0).

Assuming a data stream parsed into frames of P symbols,
the received signal corresponding to the symbol interval n
(0 � n � P − 1) of the frame l is

y[l, n] = H[l, n]x[l, n] + ς[l, n], (1)

where y[l, n] is the received NR-dimensional complex vector
and x[l, n] is the transmitted NT -dimensional complex vector.

At the receiver, two different channel estimation processes
are required: prediction and interpolation. The predicted chan-
nel is employed to obtain the beam-steering vector which
must be fed back to the transmitter. The interpolated chan-
nel is needed to carry out the MRC at the receiver. Both
channel estimates are obtained by filtering a previous channel
estimate obtained by adapting classical pilot symbol assisted
modulation (PSAM) to a MIMO channel. This adaptation
is done as follows. A known pilot symbol sP is inserted
within each frame. The pilot symbol spreads along the first
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Fig. 1. System model for MIMO beamforming with MRC.

NT symbol intervals, since orthogonal signatures are used
to decouple the MIMO channel estimation problem into NT

single transmit-antenna problems at each receiver branch.
Once the pilot symbols are extracted and decoupled, an initial
channel estimation Ḣ is obtained by dividing the pilots by sP

and it can be expressed as

Ḣ[l] = H[l] + Ξ̇[l], (2)

where H[l] is the channel matrix during the pilot interval of the
l-th frame, assuming the channel response is invariant along
the pilot interval, and Ξ̇[l] is the estimation error matrix due
to noise. As the entries of the noise vector ςi[l, n] are i.i.d
complex Gaussian circularly symmetric RVs and there is no
correlation between time samples, the entries of estimation
error matrix Ξ̇i,j are i.i.d complex Gaussian circularly sym-
metric RVs ∼ CN(0, N0/EP ), where EP is the energy of
pilot symbol sP .

To perform beamforming at the transmitter, the receiver
needs to predict the channel matrix ahead of time. We further
assume that the transmitter only adapts its beam-steering
vector once per frame. Hence, the feedback delay is a multiple
τ of the frame interval. The predicted channel matrix is
obtained applying a digital filter, usually a Wiener prediction
filter, to the initial channel estimates Ḣ[l], i.e.

Ĥ[l] =
N−1∑
m=0

amḢ[l − m − τ ], (3)

where N is the number of taps of the prediction filter, am

is a real-value coefficient of the prediction filter, Ĥ[l] is the
predicted channel matrix at l-th frame. The prediction error
matrix can be expressed as

Ξ̂[l, n] = H[l, n] − Ĥ[l]. (4)

The joint distribution of each entry of the predicted channel
matrix Ĥi,j [l] and its corresponding entry of the prediction
error matrix Ξ̂i,j [l, n] is required to carry out the BEP analysis.
Both RVs are jointly Gaussian with zero-mean, because they
can be expressed as linear combinations of jointly Gaussian
RVs with zero mean, but they are generally correlated. Under
these considerations and assuming the well-known Jake’s
channel correlation model, we can obtain after some algebra
their variances and covariance to set their joint probability
density function (pdf). First, the variance of each entry of the
predicted channel matrix Ĥi,j [l] can be obtained as

σ2
Ĥ

= aWat, (5)

where a is the N -dimensional coefficient row vector of the
prediction filter used in expression (3) and the entries of the
N × N dimensional matrix W results as

Wm,m′ = J0 (2π (m − m′) TD) + N0/EP δ[m − m′], (6)

where TD = PTSfD is the frame interval normalized to the
Doppler frequency fD and TS is the symbol interval. The
variance of each entry of the prediction error matrix Ξ̂i,j [l, n]
is given by

σ2
Ξ̂
[n] = 1 + (aW − 2w[n])at, (7)

where the entries of the N -dimensional row vector w results
as

wm[n] = J0

(
2π
[
m + τ +

n

P

]
TD

)
. (8)

Finally, the correlation between each entry of the prediction
error matrix Ξ̂i,j [l, n] and the corresponding entry of the
channel predicted matrix Ĥi,j [l] can be obtained as

σΞ̂Ĥ [n] = 1
2 (σ2

H − σ2
Ξ̂
[n] − σ2

Ĥ
) = (w[n] − aW)at. (9)
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The channel interpolated matrix H̃[l, n] is obtained by
applying a different filter for each symbol n of the frame to
the estimated channel matrix Ḣ[l]. In this paper we assume
perfect interpolation, so the interpolated channel matrix can
be expressed as

H̃[l, n] = H[l, n]. (10)

From now on, frame index l will be omitted in all expres-
sions without generality loss for simplicity reasons.

Using the predicted channel matrix Ĥ, the optimum beam-
steering vector v̂ is the NT -dimensional eigenvector corre-
sponding to the largest eigenvalue λ̂ of the matrix ĤHĤ,
which is given by λ̂ = v̂HĤHĤv̂ [10]. Each frame the
transmitter performs beamforming using the predicted beam-
steering vector v̂, so that the transmitted vector becomes
x[n] = v̂z[n], where z[n] is the transmitted symbol. The
effective channel gain is a NR-dimensional vector defined
as h[n] = H[n]v̂ and the predicted effective channel gain
is the vector ĥ = Ĥv̂, whose square Euclidean norm is
||ĥ||2 = λ̂. The effective channel gain can also be expressed
as h[n] = H[n]v̂ = (Ĥ + Ξ̂[n])v̂ = ĥ + ψ̂[n], where ψ̂[n] is
the prediction error of the effective channel gain vector.

At the receiver, the effective channel gain vector h[n] is
estimated to perform MRC. Using the interpolated channel
H̃[n] and the beam-steering vector v̂ sent to the transmitter,
according to our system model, the interpolated effective
channel gain vector h̃[n] results as

h̃[n] = H̃[n]v̂ = H[n]v̂ = h[n], (11)

and the symbol r[n] which results from applying MRC to the
received vector y[n] is given by

r[n] =
h̃H[n]y[n]∥∥∥h̃[n]

∥∥∥2 =
hH[n]y[n]
‖h[n]‖2 = z[n] + ς ′[n] (12)

where

ς ′[n] �

(
ĥ + ψ̂[n]

)H
ς[n]∥∥∥ĥ + ψ̂[n]
∥∥∥2 (13)

is the resultant noise after MRC. As is shown in [9], the pdf
of the resultant noise ς ′[n] has two important properties: the
real and imaginary parts have the same pdf, which is an even
function. Under these conditions and using a BPSK (L=2) or
a square M-QAM (L2 = M ) modulation with independent
mapping for the in-phase an quadrature components, the BEP
analysis can be significantly simplified, as is shown in [11].
The BEP for the n-th symbol of the frame can be expressed
as

BEP (n) =
L−1∑
k=1

ωkI(k, n), (14)

where I(k, n) ∆= Pr {�{ς ′[n]} > (2k − 1)d} is named the
component of error probability (CEP), the coefficients ωk can
be explicitly computed using the expressions proposed in [9]
and d is the minimum symbol to decision boundary distance

which can be expressed as d =
√

κES , where κ = 1 for BPSK
modulation or κ = 3

2(M−1) for M -QAM modulation and ES

is the average data symbol energy.

III. BEP ANALYSIS

In this section, a exact closed-form BEP analysis is carried
out. First, the CEP conditioned on the predicted channel Ĥ,
which is called the conditioned component of error probability
(CCEP), is computed using Proakis’ analysis of complex
Gaussian quadratic forms [12]. Then, the CCEP is averaged
over the predicted channel and over all the data symbols of
the frame to obtain the BEP.

As in [9][11], the CCEP can be computed as

I(k, n|Ĥ) = Pr
{
�{ς ′[n]} > (2k − 1)d

∣∣∣ Ĥ} =

Pr
{

D[k, n] < 0
∣∣∣ Ĥ} ,

(15)

where
D[k, n] �

∑NR

i=1
xH

i [n]Qkxi[n], (16)

and

xi[n] ∆=
[

yi[n]
h̃i[n]

]
,Qk

∆=
[

0 −1/2
−1/2 (2(u+k−1)−L)d

]
. (17)

According to our system model, each entry of the received
signal yi[n] and each entry of the interpolated effective channel
gain h̃i[n] are{

yi[n] = hi[n]su,v + ςi[n] =
(
ĥi + ψ̂i[n]

)
z + ςi[n],

h̃i[n] = hi[n] = ĥi + ψ̂i[n],
(18)

when the symbol z = su,v = (2u−L−1)d + j(2v−L−1)d is
transmitted (1 ≤ {u, v} ≤ L − 1).

Using Proakis’ analysis of complex Gaussian quadratic
forms [12] the CCEP can be calculated, but it is necessary
to show that the vectors xi[n] are independent vectors of
Gaussian RVs conditioned on Ĥ and have the same covari-
ance matrix. As the entries of ς[n] are independent complex
Gaussian variables with the same variance N0, we only have
to show that the entries of ψ̂[n] conditioned on Ĥ are
also independent complex Gaussian RVs and have the same
variance, which is shown as follows.

Taking into account that the joint pdf of Ĥi,j and Ξ̂i,j [n]
is Gaussian, the pdf of Ξ̂i,j [n] conditioned on Ĥi,j is also
Gaussian. Thus, the NR × NT complex matrix MΞ̂|Ĥ [n],
whose (i, j)-th entry is the mean of Ξ̂i,j [n] conditioned on
Ĥi,j , can be expressed as

MΞ̂|Ĥ [n] =
σΞ̂Ĥ [n]
σ2

Ĥ
[n]

Ĥ, (19)

and the variance of Ξ̂i,j [n] conditioned on Ĥi,j can be obtained
as follows

σ2
Ξ̂|Ĥ [n] = σ2

Ξ̂
[n] − σ2

Ξ̂Ĥ
[n]

σ2
Ĥ

[n]
. (20)

Recall that the predicted effective channel gain ĥ =
Ĥv̂ and the prediction error of the effective channel gain
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ψ̂[n] = Ξ̂[n]v̂. The entries Ξ̂i,j [n] conditioned on the entries
Ĥi,j are independent complex Gaussian variables with the
same variance σ2

Ξ̂|Ĥ [n]. Since the vector v̂ only depends on Ĥ

and is a unitary vector, the entries ψ̂i[n] conditioned on Ĥ are
independent complex Gaussian RVs with the same variance as
the entries Ξ̂i,j [n] conditioned on Ĥi,j , i.e.

σ2
ψ̂|Ĥ[n] = σ2

Ξ̂|Ĥ [n], (21)

and the mean of ψ̂[n] conditioned on Ĥ, using (19), becomes

µψ̂|Ĥ[n] = MΞ̂|Ĥ [n]v̂ =
σΞ̂Ĥ [n]
σ2

Ĥ
[n]

ĥ. (22)

Now we can calculate the CCEP using Proakis’ analysis of
complex Gaussian quadratic forms [12], which results

I(k, n|Ĥ) = Pr
{

D[k, n] < 0
∣∣∣ Ĥ} = Q1(a, b)+

NR−1∑
p=0

Cp(a, b, η)Ip(ab) exp
[
−a2 + b2

2

]
,

(23)

where Q1(·) is the Marcum Q function, Ip(·) is the modified
Bessel function, and the parameters a, b, η and Cp can be ob-
tained using the expressions that appear in [12, pag. 944-947]
or the following alternative expressions proposed in [13]

η =
∣∣∣∣δ1

δ2

∣∣∣∣ , (24)

a =

√√√√2δ2

(∑NR

i=1 µH
i [n] [Qk − δ1R−1[n]] µi[n]

)
(δ1 − δ2)2

, (25)

b =

√√√√2δ1

(∑NR

i=1 µH
i [n] [Qk − δ2R−1[n]] µi[n]

)
(δ1 − δ2)2

, (26)

Cp(a, b, η) =


−1 +
1

(1 + η)2NR−1

NR−1∑
k=0

(
2NR − 1

k

)
ηk , p = 0,

1

(1 + η)2NR−1

NR−1−p∑
k=0

(
2NR − 1

k

)
×[(

b

a

)l

ηk −
(a

b

)p

η2NR−1−k

]
,

p �= 0,

(27)

where µi[n] and R[n] are the mean and the covariance matrix
of xi[n], respectively (note that the covariance matrix has no
dependence on i), δ1 and δ2 are the eigenvalues of the matrix
R[n]Qk and δ1 > δ2 by definition.

At this point we use the statistical characterization of the
RVs which appear in (18) given by (21) and (22). The mean
µi[n] and the covariance matrix R[n] of the vector xi[n] can
be expressed as follows

µi[n] = ĥi

(
1 +

σΞ̂Ĥ [n]
σ2

Ĥ
[n]

)[
su,v

1

]
= ĥig[n], (28)

R[n] =

[
σ2

ψ̂|Ĥ[n] |su,v|2 + N0 σ2
ψ̂|Ĥ[n]su,v

σ2
ψ̂|Ĥ[n]s∗u,v σ2

ψ̂|Ĥ[n]

]
. (29)

Now we show that the CCEP dependence on Ĥ can be
expressed as a CCEP dependence on λ̂, i.e.

I(k, n|Ĥ) = I(k, n|λ̂). (30)

The CCEP dependence on Ĥ in expression (23) is contained in
the parameters a and b, specifically, in the term ĥi that appears
in the expression of µi[n] (28). Substituting expression (28)
in the expression (25), the parameter a results

a =

√√√√√2δ2

(∑NR

m=1

∣∣∣ĥm

∣∣∣2) (gH [n] [Qk − δ1R−1[n]]g[n])

(δ1 − δ2)2
=√

2δ2λ̂ (gH [n] [Qk − δ1R−1[n]]g[n])
(δ1 − δ2)2

= ak[n]
√

λ̂.

(31)

In the same way, the parameter b can be expressed as

b = bk[n]
√

λ̂, (32)

and, therefore, it is shown the CCEP dependence on λ̂.
After some algebra it can be shown that, for the complex

Gaussian quadratic form defined in this analysis, the parameter
η can be expressed as

η = ηk[n] =
bk[n]
ak[n]

. (33)

We can obtain the CEPs averaging the CCEPs over all the
data symbols of the frame (NT ≤ n ≤ P − 1) and over λ̂.
Then, using the expression (14), we can obtain the BEP from
the CEPs as

BEP =
L−1∑
k=1

ωk

P−1∑
n=NT

1
(P−NT )

∫ ∞

0

I(k, n|λ̂)p(λ̂)dλ̂, (34)

where p(λ̂) is the pdf of the largest eigenvalue of complex a
Wishart matrix. This pdf can be expressed as a weighted sum
of elementary Gamma pdfs [14] as

p(λ̂) =
N1∑
l=1

(N2+N1−2l)l∑
r=N2−N1

Bl,r
λ̂r

(1 − χ)r+1
exp

(
−lλ̂

1 − χ

)
,

(35)
where N1

∆= min {NT , NR}, N2
∆= max {NT , NR} and the

constants Bl,r are

Bl,r (N1, N2)
∆=

Al,r∏N1
l=1 (N1 − l)!

∏N1
l=1 (N2 − k)!

, (36)

and coefficients Al,r can be exactly computed by the algorithm
proposed in [14].

Finally, the BEP is obtained by substituting the expres-
sions (23), (31)-(33) and (35) in (34), using the expres-
sion [15, eq.8.772-3] and the integrals given in [16] and
[15, eq.8.914-1].
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The exact closed-form BEP expression is given by

BEP = 1
(P−NR)

P−1∑
n=NR

L−1∑
k=1

N1∑
l=1

(N2+N1−2k)k∑
r=N2−N1

ωkBl,r

lr+1
×

{
r!

l1+r

{
1 +

b2
k[n]

sk[n]

r∑
l=0

(l + 1)
(

2l

s

)l

×
[
a2

k[n]
sk[n] 2F1

(
l + 2

2
,
l + 2

2
+

1
2
; 2;

4a2
k[n]b2

k[n]
s2

k[n]

)
−

1
1 + l

2F1

(
l + 1

2
,
l + 1

2
+

1
2
; 1;

4a2
k[n]b2

k[n]
s2

k[n]

)]}
+

(r + l)!
(ak[n]bk[n])r+1

1
l!

(
wk[n] − 1
wk[n] + 1

)l/2(
wk[n] + 1

2

)r

×

2F1

(
−r,−r + l; l + 1;

wk[n] − 1
wk[n] + 1

)√
(w2

k[n] − 1)r+1
}

,

(37)

where 2F1 is the Gauss hypergeometric function, sk[n] =

a2
k[n] + b2

k[n] + 2k and wk[n] =
(
1 − 4a2

k[n]b2k[n]

s2
k[n]

)−1/2

.

IV. NUMERICAL RESULTS

Figure 2 shows the BEP for a 2x2 MIMO system for BPSK,
4-QAM and 16-QAM modulations as a function of the average
SNR γ = ES/N0. The remaining parameters correspond to a
realistic scenario with equal power for pilot and data symbols
(EP = ES), carrier frequency fc=3 GHz, frame interval
PTS=2.56 ms, which corresponds to a system with P=256
and 1/TS=100 KHz, mobile speed v=36 Km/h, and feedback
delay τ = 1 frame. We consider imperfect prediction using a
16-taps Wiener prediction filter and two channel models: the
usual frame-invariant channel model (FIC) [2][9], where the
channel response remains invariant over the frame and the BEP
is calculated using the expressions show in [9]; and a frame-
variant channel model (FVC), in which the channel response is
variable over the frame and the BEP is calculated using (37).
Moreover, it is shown simulation results considering the FVC
model. The figure indicates significant differences between the
BEP calculated with both channel models, especially for high
γ because the effects of prediction error due to the channel
variation over the frame dominates over the noise effects.

V. CONCLUSIONS

Exact closed-form BEP expressions for MIMO beamform-
ing with MRC systems under channel prediction errors have
been derived. These results allow us to analyze the per-
formance of BPSK and square M-QAM modulations using
practical estimation methods under a channel model that
includes channel response variation over the frame interval.
The system performance has been analyzed for a realistic
scenario with different constellations and our results show
performance degradation of up to 1.5 dB due to imperfect
channel estimates from prediction errors.
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