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Analysis of miniaturization effects and channel

selection strategies for EEG sensor networks with

application to auditory attention detection
Abhijith Mundanad Narayanan, Alexander Bertrand

Abstract—Objective: Concealable, miniaturized
electroencephalo-graphy (‘mini-EEG’) recording devices
are crucial enablers towards long-term ambulatory EEG
monitoring. However, the resulting miniaturization limits the
inter-electrode distance and the scalp area that can be covered
by a single device. The concept of wireless EEG sensor networks
(WESNs) attempts to overcome this limitation by placing a
multitude of these mini-EEG devices at various scalp locations.
We investigate whether optimizing the WESN topology can
compensate for miniaturization effects in an auditory attention
detection (AAD) paradigm. Methods: Starting from standard
full-cap high-density EEG data, we emulate several candidate
mini-EEG sensor nodes which locally collect EEG data with
embedded electrodes separated by short distances. We propose a
greedy group-utility based channel selection strategy to select a
subset of these candidate nodes, to form a WESN. We compare
the AAD performance of this WESN with the performance
obtained using long-distance EEG recordings. Results: The
AAD performance using short-distance EEG measurements is
comparable to using an equal number of long-distance EEG
measurements if in both cases the optimal electrode positions
are selected. A significant increase in performance was found
when using nodes with three electrodes over nodes with two
electrodes. Conclusion: When the nodes are optimally placed,
WESNs do not significantly suffer from EEG miniaturization
effects in the case of AAD. Significance: WESN-like platforms
allow to achieve similar AAD performance as with long-distance
EEG recordings, while adhering to the stringent miniaturization
constraints for ambulatory EEG. Their applicability in an
AAD task is important for the design of neuro-steered auditory
prostheses.

Index Terms—Auditory attention detection, brain-computer in-
terface, channel selection, EEG processing, EEG sensor networks

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive neu-

rorecording technique, which has the potential to be used

for 24/7 neuromonitoring in daily life, e.g., in the context of
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neural prostheses, brain-computer interfaces, or for improved

diagnosis of brain disorders [2]–[17]. Although existing mo-

bile wireless EEG headsets are a useful tool for short-term

experiments, they are still too heavy, bulky and obtrusive,

for long-term EEG-monitoring in daily life. However, we

are now witnessing a wave of new miniature EEG sensor

devices containing small electrodes embedded in them, which

we refer to as mini-EEG devices. These mini-EEG devices

are concealable and light-weight, and come in various forms.

Among these forms, some can be concealed behind the ear [5],

[11], [12], placed in the ear [6], [7], [15], [18], attached to the

skin as a stick-on tattoo [4] or inserted under the skin [3]. The

research towards novel concealable mini-EEG devices is still

highly active, with regular emergence of new innovative form

factors.

However, due to their miniaturization, these mini-EEG

devices have the drawback that only a few EEG channels

can be recorded within a small area. Therefore, to capture

more spatial information, one could use a multitude of such

devices and wirelessly connect them in a sensor network-like

architecture, referred to as a wireless EEG sensor network

(WESN) [13], [19]. The EEG measured in such a WESN

will consist of local short-distance measurements made by

multiple mini-EEG devices or ‘nodes’, which consist of at

least two electrodes. This is unlike EEG recordings made by

traditional headsets where electrodes are typically referenced

to a common reference electrode or an average reference

signal. In this paper, we carry out a comprehensive study

on the effect of short-distance measurements recorded by the

nodes of a WESN and we propose a method to find the optimal

scalp locations to place those nodes. The nodes of this WESN

are emulated by re-referencing standard cap-EEG electrodes

to nearby electrodes.

In this work, we consider the application of auditory

attention detection (AAD) to explore the impact of these

short-distance measurements. Several studies have success-

fully demonstrated that it is possible to estimate the attended

speech envelope from EEG [8], [16], [20]–[24], thereby detect-

ing which speaker a subject is attending to in a multi-speaker

listening environment (the so-called ‘cocktail party’ problem).

It is believed that in the future these AAD systems can be

used for the cognitive control of auditory prostheses, such

as hearing aids and cochlear implants [23], [24]. Therefore,

AAD is an application that could benefit hugely from chronic

neuromonitoring using a WESN-like platform.

We compare the AAD performance between the short-
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distance EEG measurements acquired by single-channel (two-

electrode) mini-EEG nodes and two different long-distance

EEG measurement configurations. In the first long-distance

configuration, EEG measurements were obtained from elec-

trodes with respect to a common reference electrode (Cz). In

the second configuration, EEG measurements were obtained

with the freedom to choose any electrode-reference pair. The

comparison between short and long-distance configurations

was carried out after selecting the best subset of channels

in each case, which equates to choosing the most relevant

positions on the scalp. To this end, we use a greedy utility-

based sensor subset selection method [25], [26] to find these

optimal locations on the scalp. We verify the suitability

of this method in the channel selection problem for AAD

by comparing it to two other methods in literature, viz. a

decoder magnitude-based method [20] and the group-LASSO

(least absolute shrinkage and selection operator) based channel

selection method which was used in [1]. We determine the

optimal locations on the scalp in both a subject-dependent

and subject-independent scenario. In the current work, we

demonstrate that, when placed on these optimal locations,

the short-distance EEG measurements acquired by a multitude

of single-channel mini-EEG nodes do not significantly affect

the AAD performance compared to both long-distance EEG

measurement configurations. In addition, we also investigate

the effect of adding a third electrode to each node used in the

above experiments, to study the impact of having an additional

channel. We show that this additional channel in each node,

increases the AAD performance significantly, but only if the

decoding weights can adapt to the individual subject. We also

show that the optimal locations for both single-channel and

two-channel nodes correspond to the temporal lobe regions

associated with the auditory cortex, as reported in other

experiments on EEG channel selection for AAD [20].

In the sequel, we will consistently use the following termi-

nology:

• Channel: A channel is an EEG signal that originates from

a single electrode pair over which the scalp potential

is measured. Every channel has a one-to-one correspon-

dence with a pair of electrodes. We will generally make

abstraction of the ambiguity in polarity, as we work with

data-driven methods which are not affected by the latter.

• Node: A node represents a group of (at least two) closely

spaced EEG electrodes such as included in a wireless

mini-EEG sensor device, emulated here as a group of

nearby cap-EEG electrodes. One of these electrodes is

treated as a reference electrode, which forms pairs with

all the other electrodes in the node. As such, a node with

N electrodes will contain N − 1 EEG channels. In this

paper, we discuss single-channel and two-channel nodes

which consist of two and three electrodes respectively.

The paper is organized as follows. In Section II, first the

EEG data collection and AAD algorithm based on a least-

squares (LS) estimation is explained followed by the details

on the WESN emulation. This section also describes the

channel selection strategies that are used in our comparison.

In Section III, we show results on the AAD performance in

a WESN setting and benchmark it against other recording

settings with long-distance reference electrodes. Here, we also

show the impact and possible benefits of adding an extra

channel to each EEG node. Discussions on the results are given

in Section IV and conclusions are drawn in Section V.

II. METHODS

A. Experiment Data Collection

This paper reports experiments carried out using the data

set described in [22]. The data set contains 16 subjects

who listened to two simultaneous speakers coming from two

distinct spatial locations, and were asked to attend to only one

of them while ignoring the other. Half of the speech stimuli

were presented to the subjects dichotically, while the other half

was presented using head-related transfer functions to simulate

a realistic acoustic scenario. The side of attention (left or

right) was evenly split over the different trials to avoid decoder

bias [27]. During the entire experiment, 64-channel EEG was

recorded using a BioSemi ActiveTwo system resulting in 72
minutes of EEG data per subject. The electrodes were placed

on the head according to international 10-20 standards and

data was recorded with a common reference montage, with

the Cz electrode used as the reference.

B. Auditory Attention Detection

In this subsection the basic AAD procedure that is used in

this paper is reviewed. In [8] it was shown that AAD can be

achieved by a least-squares (LS) based reconstruction of the

attended speaker’s speech envelope using multi-channel EEG

recordings. Assuming the EEG data is split into Q trials of

equal length, the goal is to detect for each trial to whom of

the two speaker the subject was attending.

First, a linear spatio-temporal decoder ŵ that estimates the

attended speech envelope from the C-channel EEG data is

obtained by solving the following LS optimization problem:

ŵ = argmin
w

1

2
||Aw − sa||

2

2
(1)

where sa is a vector containing the attended speech envelope

samples (which is assumed to be known during a training

phase) and A is a matrix containing M copies of the C EEG

channels in its columns (i.e., M ·C columns in total), in which

a delay of j − 1 samples is added to the j-th copy of each

channel. We selected M = 5 in all of our experiments. The

solution of Eq. (1) is given by

ŵ =
(

ATA
)−1

AT sa (2)

which can be written on a per-trial basis as

ŵ =

(

Q
∑

q=1

AT
q Aq

)−1(
Q
∑

q=1

AT
q sa,q

)

(3)

where Aq and sa,q are the submatrices of A and sa corre-

sponding to trial q.
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The experiments reported in this paper are based on trials

of length 60s. To exclude over-fitting effects in the valida-

tion procedure, we use a subject-specific leave-one-out cross-

validation where each trial is used once as a test trial, while

all the other trials are then used to train a decoder for the

specific trial under test. In [8] the cross-validation is carried

out by computing Eq. (1) over the data of individual trials,

after which the resulting per-trial decoders are averaged across

trials, except for the test trial k. Here, we use a modification

to the above method as proposed in [22], which constructs

the decoder ŵk to decode trial k by including the data from

all the trials except trial k to construct the matrix A and the

vector sa:

ŵk =





Q
∑

q=1,q 6=k

AT
q Aq





−1



Q
∑

q=1,q 6=k

AT
q sa,q



 . (4)

This procedure reduces or eliminates the need for regular-

ization if sufficient data is available in the training set, or

equivalently, if the number of rows in A is large enough [22].

Once the decoder ŵk is obtained, an estimate of the

attended speech envelope in trial k is constructed using:

ŝa = Akŵk. (5)

The attended speech envelope reconstruction is followed by

the Pearson correlation coefficient computation between the

reconstructed envelope ŝa and the two speakers’ speech en-

velopes. Therefore two correlation coefficients, ra and ru
are calculated for each trial, where ra is the correlation

between the reconstructed speech envelope ŝa and the attended

speech envelope and ru is the correlation between ŝa and the

unattended speech envelope. A trial is correctly decoded if

ra > ru and the percentage of trials successfully decoded is

used as the AAD performance parameter.

C. WESN Emulation

The aim of this paper is to understand the effect of using

short inter-electrode distances between the electrodes in order

to emulate a WESN with the different nodes representing

different mini-EEG devices. This emulation is achieved by

re-referencing 64 cap-EEG channels towards nearby reference

electrodes generating a set of candidate node locations and

orientations.

First, we emulated a WESN in which each node consists

of two electrodes separated by a short distance. Since each

node then corresponds to a single electrode-pair, we refer to

them as single-channel nodes. These nodes are selected from

a set of candidate nodes created by pairing each electrode of

the 64-electrode cap with each of its nearby electrodes that

are at a distance of at most 5 cm. The distance was selected

to ensure that a large number of candidate node locations and

orientations are generated but at the same time the electrodes

of each node have a reasonably short distance between them to

emulate a miniaturized EEG-sensor node. Using this criteria,

a set of P = 209 candidate single-channel node locations and

orientations were generated from the original 64 electrodes

with an average inter-electrode distance of 3.7 cm. We will

refer this set as S1ch. It is noted that P > 64, hence these P
EEG channels form a redundant (linearly independent) set.

Second, we emulated a WESN with nodes containing three

electrodes with one of them acting as a reference electrode,

resulting in two EEG channels per node. In [17], it was shown

for behind-the-ear electrodes that a smaller angle between

two electrode pairs leads to a higher correlation between the

recorded signals at both pairs. Therefore, we ensured that the

two corresponding electrode pairs in the three-electrode node

have a near-orthogonal orientation, based on the following

procedure. For each electrode k = 1, ..., 64, we again select

all the electrodes that are within 5 cm distance of electrode

k, forming a set of candidate electrode pairs denoted by

Pk. For each electrode pair p ∈ Pk, we select all the pairs

q ∈ Pk\{p} for which the angle between pair p and pair q
is between 60 and 120 degrees in the 3-D coordinate space.

All these combined pairs {p, q} form a new set Ck containing

all candidate 2-channel nodes which have electrode k as the

reference, where the duplicates are removed. The total pool

∪kCk contains P = 203 candidate 2-channel nodes. This set

of 2-channel nodes will be referred as S2ch. Note that P refers

to the number of nodes, and since each node can have more

than one channel, the total number of channels is larger or

equal to P . Let the total number of EEG channels across all

candidate nodes be P ′ (channels that belong to multiple nodes

are also counted more than once). For S1ch, P ′ = P and for

S2ch, P ′ = 2P .

D. Long-distance EEG measurement benchmark

To study the impact of short-distance EEG measurements,

we created two long-distance benchmark EEG measurement

sets. First is the original EEG measurement where each

electrode is referenced to the Cz electrode. We refer to this

set as the ‘Orig (Cz-ref)’ set of EEG measurements. However,

although the Orig (Cz-ref) case allows recordings over larger

distances than the emulated WESN, it may also be penalized

in the sense that each of the N selected channels should use

the same reference electrode, thereby reducing the choice of

the orientation of the electrode pair. Therefore, we created a

second benchmark set consisting of all possible electrode-pairs

from the original EEG data without any constraints on the

distance. This creates a total of P = 2016 candidate pairs. We

refer to this set as the ‘Any-Pair’ set of EEG measurements.

E. Decoder magnitude-based (DMB) node selection

To construct a WESN, the main objective is to select the N
best nodes from P node candidates (we will consider the case

of single-channel nodes (S1ch) in Section III-B1 and the case

of two-channel nodes (S2ch) in Section III-B2). To this end,

we replace A in Eq. (1), with AP which now contains the

P ′ EEG channels across all P candidate nodes. Note that the

same channel can appear multiple times in AP if that channel

is included in more than one node. Therefore the optimization

problem in Eq. (1) changes to:

min
w

1

2
||APw − sa||

2

2
. (6)
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where w is now a (P ′ ·M)-dimensional vector variable. It is

noted that the matrix AP is rank deficient as P ′ > 64, i.e.,

there are many linear dependencies between the channels of

different nodes in the candidate sets S1ch and S2ch, which

means that there are infinitely many solutions for Eq. (6).

This problem is typically solved by selecting the solution with

minimal l2-norm, which is known to be beneficial to reduce

overfitting effects [26]. The minimum-norm solution of Eq. (6)

is given by

ŵ = A
†
P sa (7)

where A
†
P denotes the Moore-Penrose pseudo-inverse of AP ,

which can be computed as

A
†
P = VΣ†UT ,

where

AP = UΣVT

is the singular value decomposition of AP , and where Σ† is

formed by taking the reciprocal of each non-zero element on

the diagonal of Σ, and then transposing the matrix [28].

In [20] and [29], an iterative channel selection heuristic

was used for EEG-based AAD, in which the channel with the

lowest corresponding entry in the decoder ŵ was removed in

each iteration. We will refer to this channel selection method

as the decoder magnitude-based (DMB) method, which is here

applied to the minimum-norm solution given in Eq. (7).

F. Greedy utility-based node selection

In general, the weights in an LS or a linear minimum

mean squared error (MMSE) decoder do not necessarily reflect

the importance of the corresponding channels to minimize

the squared error cost1 [26]. As such, the metric used in

the DMB node selection process does not truly capture the

contribution of each channel to the least squares envelope

reconstruction. Therefore, we propose the use of the so-called

‘utility’ metric instead to perform a greedy channel selection,

which we benchmark against the DMB method and another

commonly used variable selection algorithm known as LASSO

(see Section II-G).

For the sake of an easy exposition, we will first explain how

to use the utility metric to greedily select N columns of A

or AP . We will later explain how this can be extended to the

selection of nodes, i.e., at the granularity of pre-defined groups

of columns rather than individual columns. To select the subset

with the N ‘best’ columns of A, we use an iterative greedy

method based on the utility metric to eliminate columns one by

one. In the context of an LS problem like Eq. (1), the utility

of a column is defined as the increase in the squared error

when the column would be removed, and the decoder w would

be re-optimized for the remaining set of columns [25],[26].

Remarkably, the utility of each column can be monitored in

an efficient way without the explicit recomputation of the

optimal decoder for each column removal, which would imply

1For example, scaling a channel with a factor x will scale the corresponding
LS decoder weight with a factor 1/x, while the information provided by the
signal remains the same.

a strong computational burden. By defining the inverted auto-

correlation matrix

R−1 =

(

1

L
ATA

)−1

where L is the number of rows in A, the utility of the k-th

column can be computed as [25],[26]:

Uk = |wk|
2/qk (8)

where qk is the k-th diagonal element of R−1, and wk is the

k-th decoder weight of ŵ as defined in Eq. (2). Note that R−1

is immediately available from the calculation of Eq. (2), hence

the utility of each column can be computed as a by-product

of the calculation of Eq. (2).

However, the matrix AP in Eq. (6) is rank deficient and

therefore contains redundant columns that are linear combina-

tions of the other columns. Therefore, removal of a redundant

column from AP will not lead to an increase in LS cost of

Eq. (6). As all columns in the initial set are redundant, all

columns would have zero utility by definition. Furthermore,

R−1 will not exist in this case as the matrix AP is rank

deficient. To overcome this problem, we use the definition

of utility generalized to a minimum l2-norm selection [26]

which eliminates the redundant column yielding the smallest

increase in the l2-norm of the decoder when that column were

to be removed and the decoder would be re-optimized. As

mentioned in Section II-E, minimizing the l2-norm of the

decoder reduces the risk for overfitting. This generalization is

achieved by first adding an l2-norm penalty to the cost function

that is minimized in Eq. (6):

min
w

1

2
||APw − sa||

2

2
+ λ||w||2

2
(9)

where 0 < λ << ǫ with ǫ equal to the smallest non-zero

squared singular value of AP . The minimizer of Eq. (9) is:

ŵ = R−1

λ r = (R+ λI)−1r (10)

where R = 1

L
AT

PAP and r = 1

L
AT

P sa, are referred to as

the autocorrelation matrix and cross-correlation vector respec-

tively. The utility Uk of the k-th column in AP based on

Eq. (9) is [26]:

Uk =
(

||AP
−k

ŵ−k − sa||
2

2
− ||AP ŵ − sa||

2

2

)

+ λ
(

||ŵ−k||
2

2
− ||ŵ||2

2

) (11)

where AP
−k

denotes the matrix AP with the k-th column

removed and ŵ−k is the LS solution corresponding to AP
−k

.

From Eq. (11), we see that, if the increase in LS cost is

non-zero (i.e., column k is linearly independent from the

other columns), then the first term dominates the second term,

yielding the original definition of utility. However, if column

k is linearly dependent, the first term vanishes and the second

term will dominate. In this case, the utility quantifies the

increase in l2-norm after removing the k-th column. Therefore,

by iteratively removing the column with the lowest utility Uk,

we greedily reduce the number of columns while keeping both

the squared error and the l2 norm small.

The greedy method of removing columns iteratively by

computing their utility using Eq. (11) requires considerable
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computation time since we need to recompute the optimal

decoder using Eq. (10) a number of times equal to the

remaining number of columns in each iteration. This has an

asymptotic computational complexity of O(P ′4) [26], which

is practically impossible for such large values of P ′ as those

targeted in our experiments. However, similar to Eq. (8), it

has been shown in [26] that Uk as defined in Eq. (11) again

can be efficiently computed using Eq. (8). where qk is now

the k-th diagonal element of R−1

λ and wk is the k-th element

of ŵ as defined in Eq. (10). The use of Eq. (8) removes the

need of multiple re-computations of optimal decoders in every

iteration resulting in a reduction of computational complexity

by three orders of magnitude.

As mentioned in Section II-E, AP was constructed out of

the EEG data from P nodes and their M−1 delayed versions.

Hence, the utility of a node would not just be the utility of a

single column in AP but of a group of columns, viz. a node’s

channel(s) and its (their) delayed versions. To this end, we

use the extension towards group-utility described in [26] and

[30] which finds the utility of a group of columns. Consider,

without loss of generality (w.l.o.g.), that AP is formed using

the set S1ch. Assume also w.l.o.g. that the node for which

we calculate the utility, say node p, corresponds to the last

M columns of AP , the node’s channel as well as its M − 1
delayed versions. Define the block-partitioning of R−1

λ :

R−1

λ =

[

X Y

YT Q

]

(12)

where, Q is an M ×M matrix. Then, the group-utility of the

columns of AP corresponding to node p can be efficiently

computed as [26]:

Up = wT
p Q

−1wp (13)

where wp contains the last M entries of ŵ. Note that Eq. (13)

reduces to the single-column utility of Eq. (8) if M = 1.

The computation of group-utility using Eq. (13) is much

faster than removing M columns of AP and recomputing

the optimal decoder. If the utility of all channels has to be

computed multiple times, e.g., in a greedy selection procedure

as described below, this allows to reduce the computation time

from a few hours to a few seconds on a laptop with Intel Core

i7-6820HQ clocked at 2.70GHz running Matlab R2015b.

To select N (out of P ) nodes, we greedily remove the

nodes with the lowest utility one by one as follows. First,

the group-utility of each node’s channels (and their M − 1
delayed copies) are computed using Eq. (13) followed by the

removal of the node with the least utility. After this removal,

Eq. (10) is recomputed for the remaining set of nodes, after

which the utility is again re-computed. This step is repeated

until N nodes are left.

Finally, it is noted that the utility-based and the DMB greedy

methods become equivalent in the case where the different

channels are uncorrelated and have equal variance, in which

case R−1

λ reduces to a scaled identity matrix. However, this

is usually not the case in (high-density) EEG data.

G. Group-LASSO based node selection

Another candidate algorithm which we have included in our

channel selection benchmark is the commonly used LASSO-

based variable selection method. LASSO adds an l1 norm

penalty term to an LS regression problem like Eq. (6) to obtain

a sparse solution for ŵ, i.e. a vector with few non-zero entries

[31], where the non-zero entries in ŵ then correspond to the

selected columns. However, our objective is to select groups of

variables in ŵ that correspond to a particular node consisting

of a set of channels and their delayed versions. Yuan and Lin

[32] have proposed the group-LASSO (gLASSO) criterion to

solve the aforementioned problem. gLASSO is a modification

of LASSO for linear regression which introduces a sparse

selection of pre-defined groups of variables without imposing

sparsity within the individual groups. Applying the gLASSO

criterion, Eq. (6) is modified as:

ŵ = argmin
w

1

2
||APw − sa||

2

2
+ λ′

P
∑

p=1

||wp||
2

2
(14)

where w = [wT
1
wT

2
..wT

P ]
T , with wp the sub-vector of length

M of the decoder which contains the weights corresponding

to the channels of node p and their M − 1 delayed versions,

and where λ′ is a tuning parameter which controls the sparsity

of ŵ. Note that Eq. (14) has an l1-norm penalization across

groups (represented by the summation sign), whereas each

group is represented by the l2-norm over its coefficients. The

optimal set of N channels can be found by increasing the

parameter λ′ until the gLASSO procedure selects exactly N
channels.

H. Subject-dependent vs subject-independent (universal) node

selection

In our experiments, we performed a subject-dependent as

well as a subject-independent channel selection or node selec-

tion. In the subject-dependent selection, AP contains the P ′

EEG channels and their M − 1 delayed copies of subject i
where i = 1, 2, · · ·K and K is the total number of subjects

(K = 16 in this work). This results in a different decoder

per subject, and hence a different selection of channels per

subject. In the subject-independent selection, we use the data

from all subjects, resulting in the stacked matrix:

ÃP =

















AP1

...

APi

...

APK

















.

Here, APi
contains the P ′−channel EEG data and their

M − 1 delayed copies of subject i. By also replacing sa in

Eq. (6) with

s̃a =







sa
...

sa






,
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Fig. 1: Comparison of three channel selection methods on the Orig (Cz-ref) dataset for subject-dependent channel selection.

Median AAD decoding accuracies are plotted as bold lines; The boundaries of the shaded regions form the 25th and 75th

percentile accuracies. (a) For number of channels N ∈ {1, · · · , 62} (b) A zoomed plot focusing on N < 25.

we can solve Eq. (6) to find a universal decoder that fits the

data of all subjects.

Applying channel selection on this problem will then also

result in a subject-independent selection of the best node

locations. In the sequel, we will use the terms ‘universal

decoder’ and ‘universal node selection’ to refer to the subject-

independent decoding and subject-independent node selection,

respectively.

Note that, after making a universal node selection, we have

the option to either train a subject-dependent decoder or a

universal decoder on the selected nodes. Both will be analyzed

in the sequel, with leave-one-trial-out and leave-one-trial-and-

subject-out cross-validation, respectively. In both cases, the

prior node selection excludes the data from the subject under

test. However, due to excessively large computation times,

channel selection was not carried out in a leave-one-trial-

out basis (although the trial is excluded when testing AAD

performance).

III. RESULTS

A. Benchmark of channel selection methods

Before investigating the miniaturization effects, we verified

the suitability of the proposed utility-based greedy channel

selection method on the problem of channel selection for the

original EEG-cap data by comparing the proposed method

with the DMB method used in [20] and the gLASSO method

used in [1].

The three methods were used to select the N = 1, 2, 3...62
best (subject-dependent) channels on the original EEG data2.

The AAD performance was computed for the channels se-

lected for each value of N . The results are plotted in Fig.

1. When N > 25, the median AAD decoding accuracy

remains more or less equal to the accuracy obtained with all

channels, for all three channel selection methods. However,

for N < 20 the median utility-based channel selection

2Since the original 64 channel EEG data was rereferenced to the Cz
electrode, the total effective number of channels reduce to 63.

performance remains closer than the other methods to the

baseline performance. Fig. 1 (b), which zooms in on AAD

performances for N < 25, shows that the drop in performance

occurs only at N < 10 for the utility-based method, while, for

the DMB and gLASSO based method, this drop occurs earlier

at N = 15. In addition, for small values of N the utility-

based channel selection method is significantly better, than

both the other methods. This was confirmed by performing a

paired t-test and Wilcoxon signrank test between the decoding

accuracies of the utility-based and DMB method on the one

hand, and the utility-based and gLASSO method on the other

hand.

The p-values of the statistical tests are given in Table I (p-

values are not corrected for multiple comparisons). It can be

Utility vs gLASSO Utility vs DMB

N t-test Wilcoxon t-test Wilcoxon

4 0.04 0.06 0.04 0.04
5 0.03 0.002 0.01 0.01
6 0.003 0.005 0.06 0.06
7 0.003 0.002 0.1 0.12
8 0.001 < 0.001 0.04 0.06
9 0.001 0.003 0.02 0.03
10 0.007 0.004 0.01 0.01
11 0.02 0.02 0.08 0.09
12 0.005 0.003 0.01 0.01
13 0.001 0.001 0.15 0.13
14 0.004 0.001 0.03 0.04
15 0.025 0.01 0.08 0.08

TABLE I: Significance tests comparing channel selection

methods: p−values obtained using statistical tests comparing

utility-based method and both DMB and gLASSO methods

for 4 ≤ N ≤ 15.

observed from Table I, in the case of the utility-based method

compared to gLASSO, p-values are < 0.05 for 4 ≤ N ≤ 15
for both the tests. While comparing the utility-based method
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with DMB, in six out of the eleven values of N , p− values

are < 0.05. For N < 4 no significant differences were found.

From both Fig. 1 and Table I, a clear trend is observed that the

utility-based method outperforms the other methods for small

vales of N . Therefore, only the utility-based method is used

for the optimal node selection problem in the sequel in order

to reduce the exploration space.
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Fig. 2: Utility-based subject-dependent node selection: Perfor-

mance of the N best short-distance nodes from S1ch compared

with the N best Orig (Cz-ref) and Any-Pair channels. The

stars represent outliers which are greater than 1.5 times the

interquartile range away from the top or bottom of a box.

B. Short-distance node selection

1) Single-channel node selection: In the next experiment,

the effect of short-distance EEG measurements is investigated

by first applying the utility-based channel selection strategies

described in Section II-F to select N = 2, 3, ...8 single-channel

short-distance nodes from the set S1ch of all candidate node

positions/orientations. Note that the selection of a node in this

case corresponds to the selection of a single electrode pair.

The AAD performance using these selected nodes is compared

with the AAD performance when using the same number of

channels from two different long-distance EEG measurement

configurations described in Section II-D, viz. Orig (Cz-ref)

and Any-Pair.

Fig. 2 shows the result for a subject-dependent node selec-

tion. The distribution of the corresponding short-distance node

locations is shown in Fig. 3, with Fig. 3a plotting the locations

and configurations of the best N = 2, 4, 6, 8 nodes and Fig. 3b

showing the distribution of electrodes among the selected

nodes across all subjects. A paired t-test and a Wilcoxon

signed-rank test between the performances using the best

short-distance nodes and the best long-distance configurations

were carried out and the p-values were found to be > 0.5 for

all N in the Cz-ref case, and > 0.1 for all N (except N = 4)

in the ‘Any-Pair’ case. For N = 4, p = 0.04 in the Any-Pair

case.

The best universal single-channel node locations obtained

using the utility-based channel selection are shown in Fig. 4.

The AAD performance using the universal node selection is

compared between short-distance and long-distance recordings

in Fig. 5a for a subject-dependent decoder training and in

Fig. 5b for a universal decoder training. However, note that

in both cases the node selection was done in a subject-

independent fashion.

Both the t-test and Wilcoxon signed-rank test between

universal short-distance node selection and both Cz-ref and

Any-pair channel selections, followed by subject-dependent

decoding, yielded p-values > 0.3 for all values of N . When

followed by universal decoding, p-values were > 0.1 while

comparing short-distance nodes and both Cz-ref and Any-

pair channels for N = 4, 5, 6, 7, 8. Meanwhile, p-values were

< 0.05 for N = 3 when comparing with Cz-ref channels

and for N = 2, 3 when comparing with Any-ref channels.

For these few cases where p < 0.05, short-distance nodes

are in fact observed to outperform long-distance measurement

configurations (also visible in Fig. 5b).

A linear mixed effect model was used to model the rela-

tionship between the decoding accuracy using short-distance

nodes, the number of nodes and the three scenarios, viz.

subject-dependent node selection and decoding, universal node

selection followed by subject-dependent decoding and uni-

versal node selection followed by universal decoding. In the

model, subjects were considered as a random factor. The

results showed that the decoding accuracies increase signif-

icantly with the number of nodes in all the three scenarios

(p < 0.001).

2) Two-channel node selection: Next, we investigate the

effect of using 2-channel sensor nodes from the set S2ch

instead of single-channel sensor nodes from the set S1ch. The

corresponding AAD accuracy is illustrated in Fig. 6 (a) for

the subject-dependent node selection. A signed-rank Wilcoxon

test and a paired t-test between two-channel and single-channel

decoding accuracies resulted in p-values < 0.05 for all values

of N = 1, 2, · · · 8 for subject-dependent node selection. The

results for a universal node selection are shown in Fig. 6(b)

and Fig. 6(c) for a subject-dependent decoding and a universal

decoding, respectively. Both a signed-rank Wilcoxon test and a

paired t-test between two-channel and single-channel decoding

accuracies resulted in p-values < 0.05 for all values of N
while using a subject-dependent decoder. However while using

a universal decoder, the p-values were < 0.05 for only two

values of N .

The locations and orientations of the best N subject-

dependent two-channel nodes are shown in Fig. 7. Similar

to the earlier case of single-channel nodes, Fig. 8 shows

distribution of the electrodes present in the best N two-channel

nodes. The locations and orientations of universal two-channel

nodes are illustrated in Fig. 9. Note that some of the nodes

appear to have electrode pairs that apparently make angles

closer to 180 degrees than to 90 degrees. However, this is due

to the fact that the electrode positions are mapped from 3D

coordinates (on a head) to a 2D plane to visualize them in a

topoplot, thereby not preserving the angles.
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Fig. 3: (a) The locations of the best set of short-distance nodes for N = 2, 4, 6, 8. The gray-scale of a node indicates the

number of subjects which selected that node. (b) Electrodes which are required for the best N nodes: Colors of the electrodes

indicate the percentage of subjects having a particular electrode in its best N nodes. The size of the point representing an

electrode is also proportional to the number of times an electrode is present in the best N selected nodes.

N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8

Fig. 4: Utility-based universal node selection: Locations of the best universal set of short-distance nodes for N = 2, 3, · · · 8.

IV. DISCUSSION

In Fig. 1, the advantage of the proposed greedy utility-

based channel selection over a DMB greedy channel selection

strategy [20], [29] and a gLASSO based method [1] was

verified, as explained in Section III-A. The figure illustrates

the AAD performance using DMB greedy channel selection to

be consistent with the results reported in [20] (on a different

dataset), where it was concluded that the performance begins

to drop significantly when number of channels are reduced

to 15 or lower. However, when using a utility-based channel

selection strategy, this drop in performance is observed only

when the number of channels is lower than 10. Moreover,

the figure shows that in general, the utility-based selection

selects fewer channels compared to the other two methods

to achieve a pre-defined accuracy. The AAD performances

using the EEG measurements from the best short-distance

nodes were compared to two different long-distance bench-

mark sets, viz. the Orig (Cz-ref) and Any-Pair channels as

described in Section II-D. The results in Fig. 2 suggest that

the performances using the best short-distance single-channel

nodes were similar to long-distance configurations. Firstly,

no significant differences between performance using the best

short-distance nodes and the best Cz-referenced channels were

found which can be inferred from the p-values of the statistical

tests detailed in Section III-B1. Secondly, comparing the

optimal short-distance measurements with the best Any-Pair

channels, no significant differences can be found for all but

one value of N . In principle, these results only imply that there

is not sufficient evidence to reject the null-hypothesis that the

performance is the same between all cases, which does not

necessarily mean that the null-hypothesis is true. However, all

but one p-value are far from the α = 0.05 significance level,

despite the relatively large number of subjects and number

of comparisons. As such, there are at least strong indications

that the impact of miniaturization is negligible if an equal

number of channels are used and if optimal node locations

are selected in both cases. This observation is encouraging

for the use of concealable and wireless mini-EEG devices and

WESNs, where short inter-electrode distances are unavoidable

to allow for a sufficient miniaturization of the devices.

In Fig. 3a, the nodes selected by the subjects for N =
2, 3, · · · 8 are predominantly located near the left and the right

temporal lobe, where also the auditory cortex is located. This

can also be observed in Fig. 3b, where the electrodes located
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Fig. 5: Utility-based universal selection of the N = 1, · · · , 8 best short-distance nodes from S1ch compared with the N best

Orig (Cz-ref) and Any-Pair channels: (a) AAD performance for a subject-dependent decoding. (b) AAD performance for a

universal decoding. The stars represent outliers which are greater than 1.5 times the interquartile range away from the top or

bottom of a box.

near the same regions are shown to be used most in the node

selection. A similar pattern has been reported in the literature

for long-distance recordings with a common reference [20].

The optimal universal single-channel node locations plotted

in Fig. 4 show a similar trend as the corresponding subject-

dependent locations, where also the majority of the nodes

are located in the area of the temporal lobe. Note that a

few of the nodes in this figure and Fig. 3a share electrodes.

In practice mini-EEG devices could instead be placed close

to each other with positions close to the selected ‘common’

electrode position on the scalp. If necessary, it can be avoided

to obtain a selection where some of the nodes share electrodes

by applying a restart procedure for such collisions as in

[1]. However, it was demonstrated in [1] that this does not

significantly affect AAD performance, while it can lead to

excessively long computation times.

Two different approaches were used to obtain the AAD

decoding accuracies with universal locations, which are shown

in Fig. 5a and Fig. 5b. The results again demonstrate that short-

distance nodes do not yield a significantly lower AAD perfor-

mance compared to using the same number of long-distance

EEG measurements. Indeed, no statistically significant im-

provement were found for long-distance configurations over

short-distance nodes with both a paired t-test and Wilcoxon

signed-rank test as detailed in Section III-B1. The Fig. 5b,

which plots decoding accuracies obtained using a universal de-

coder, also indicate that short-distance measurements deliver at

least the same performance as long-distance measurements. A

linear mixed effects modeling of the performance with respect

to the number of nodes, which is detailed in Section III-B1,

showed that there is a significant effect of the number of short-

distance nodes N on the decoding accuracies , i.e., increasing

the number of mini-EEG devices leads to an improvement in

AAD performance. For both subject-dependent and universal

node selection.

We also investigated the effect of adding a third electrode

in each node, yielding two EEG channels. Since both of these

channels are recorded by electrodes that are very close to

each other (within the same node), it is a-priori not obvious

whether the extra channel is useful or whether it is mostly

redundant. Fig. 6 suggests that, adding this additional channel

does have a clear benefit. In Fig. 6 (a), two-channel nodes can

be observed to perform better than the same number of single-

channel nodes in the case of subject-dependent node selection

and decoding. This observation can also be noted in Fig. 6

(b) for universal node selection followed by subject-dependent

decoding. The p-values of the statistical tests comparing the

two performances reported in Section III-B2 support this

observation in the two cases. These results show that even

at short inter-electrode distances, the extra channel can cause

significant improvement in performance despite the fact that

all three electrode are close to each other. This may be due to

the almost-orthogonal orientation of the two electrode pairs,

which provides two orthogonal axes (instead of only one) to

capture dipoles in all directions parallel to the plane spanned

by the electrode pair, as opposed to a single direction in the

case of 1-channel nodes. It should be noted that a dipole

orthogonal to the plane spanned by the electrode pair will

still not be captured, although it may be captured by another

node on a different scalp position that better aligns with this

orientation. In the case of a universal decoder (see Fig. 6

(c)), the beneficial effect of adding this extra channel to each

node is less clear, which implies that the extra orientation can

only be properly exploited by a subject-dependent decoder.
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Fig. 7: Utility-based two-channel nodes selection: Locations

and configurations of the best subject-dependent two-channel

nodes.

Statistical tests performed between the two cases do not

confirm a significant benefit for two-channel nodes in this

case. This could be explained by the fact that the relevant

dipole orientations may differ from subject to subject, such

that the extra degree of freedom added by the extra channel

to tune the decoder to particular dipole orientations cannot be

exploited by a universal decoder, as it cannot adapt its weights

to the individual subject.

The orientations of the best two-channel nodes and the

distribution of electrodes in these nodes are shown in Fig. 7

and Fig. 8 respectively for subject-dependent node selection.

Fig. 9 shows the location and orientations of universal node

selection. It should be noted here that the best two-channel

nodes are selected from a candidate set of two-channel nodes

N = 2 N = 4

N = 6 N = 8
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0

% subjects 

requiring

an electrode

Fig. 8: Utility-based two-channel nodes selection: Electrodes

which are required for the best N nodes.

as explained in Section II-C and that they are not derived from

best single-channel nodes. Nevertheless, it can be observed

from Fig. 7, Fig. 8 and Fig. 9 that the best two-channel nodes

are again mostly located close to the auditory cortex within

the temporal lobe.

V. CONCLUSION

Miniaturized EEG (mini-EEG) sensor devices are becoming

increasingly prevalent in the field of neural signal processing

and pave the way towards chronic neuromonitoring appli-

cations. Hence, it is essential to understand the effects of

this miniaturization on EEG signal processing methods which

have been tested with traditional EEG equipment. In this

work, the effect of short-distance EEG measurements that arise

with miniaturization of EEG sensor devices was investigated

within the context of an AAD task, which may be used in
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Fig. 9: Utility-based selection of two-channel nodes: Locations and configurations of the best universal two-channel nodes.

future-generation neuro-steered auditory prostheses, e.g., for

the cognitive control of hearing aids or cochlear implants [23],

[24].

We have shown that short-distance referencing in a mini-

EEG device has little impact on AAD performance when

compared to the commonly used Cz-referencing and an any-

reference long-distance referencing configuration, provided

the electrodes of the mini-EEG devices are placed at ideal

locations. These results are encouraging for the use of multiple

mini-EEG devices as nodes in a WESN to perform chronic

neuromonitoring for AAD. We have also proposed a utility-

based greedy channel selection strategy for the (redundant)

channel selection problem in AAD, which outperforms two

other channel selection methods, and which was used to select

the ideal locations for placing mini-EEG devices. We have

found that these locations are close to the auditory cortex

within the temporal lobe, which is consistent with previous

results found in the literature. We have also shown that having

two-electrode pairs in a mini-EEG node results in a significant

improvement in AAD performance over single-channel nodes

even at short inter-electrode distances, but only when a subject-

dependent decoder can be trained, in order to exploit the

additional degree of freedom to capture relevant dipoles with

any orientation within each subject.
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