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INTRODUCTION

This paper deals with numerical problems arising when performing maximum likelihood parameter estimation in speckled im-
agery using small samples. The noise that appears in images obtained with coherent illumination, as is the case of sonar, laser,
ultrasound-B, and synthetic aperture radar, is called speckle, and it can be assumed neither Gaussian nor additive. The proper-
ties of speckle noise are well described by the multiplicative model, a statistical framework from which stem several important
distributions. Amongst these distributions, one is regarded as the universal model for speckled data, namely, the §° law. This
paper deals with amplitude data, so the ¢4 distribution will be used. The literature reports that techniques for obtaining estimates
(maximum likelihood, based on moments and on order statistics) of the parameters of the 4§ distribution require samples of
hundreds, even thousands, of observations in order to obtain sensible values. This is verified for maximum likelihood estimation,
and a proposal based on alternate optimization is made to alleviate this situation. The proposal is assessed with real and simulated
data, showing that the convergence problems are no longer present. A Monte Carlo experiment is devised to estimate the quality
of maximum likelihood estimators in small samples, and real data is successfully analyzed with the proposed alternated procedure.
Stylized empirical influence functions are computed and used to choose a strategy for computing maximum likelihood estimates
that is resistant to outliers.

Keywords and phrases: image analysis, inference, likelihood, computation, optimization.

These images are formed by active sensors (since they
carry their own source of illumination) that send and retrieve

Remote sensing by microwaves can be used to obtain in-
formation about inaccessible and/or unobservable scenes.
The surface of Venus, remote and invisible due to constant
cloud cover, was mapped using radar sensors. Similar sen-
sors, namely, synthetic aperture radars (SARs) are used to
monitor inaccessible earth regions, such as the Amazon, the
poles, and so forth. Ultrasound-B imagery is employed to di-
agnose without invading the body. Sonar images are used to
map the bottom of the sea, lakes, and deep or dark rivers, and
laser illumination can be used to trace profiles of microscopic
entities.

signals whose phase is recorded. The imagery is formed de-
tecting the echo from the target, and in this process a noise
is introduced due to interference phenomena. This noise,
called speckle, departs from classical hypotheses: it is not
Gaussian in most cases, and it is not added to the true signal.
Classical techniques derived from the assumption of addi-
tive noise with Gaussian distribution may lead to suboptimal
procedures, or to the complete failure of the processing and
analysis of the data [1].

Several models have been proposed in the literature to
cope with this departure from classical hypothesis, the K
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and g4 distributions being the more successful ones. These
are parametric models, so inference takes on a central role.
In many applications inference based on sample moments
is used but, whenever possible, maximum likelihood (ML)
estimators are preferred due to their optimal asymptotic
properties. The reader is referred to [1] for an introduc-
tion to the subject of SAR image processing and analysis,
and to [2] for applications of parameter estimation to image
classification.

Since the family of §9 laws is regarded as a universal
model for speckled imagery, this work concentrates on ML
inference of the parameters of this distribution. The liter-
ature reports severe numerical problems when estimating
these parameters, and the solution proposed consists of us-
ing large samples, in spite of small samples being desirable
for minute feature analysis and for techniques that do not
introduce unacceptable blurring.

This paper evaluates the performance of several classical
techniques for ML parameter estimation in the 4% model,
showing that none of them is reliable for practical applica-
tions with small samples. A proposal based on alternate opti-
mization of the reduced log-likelihood is made and assessed
with real and simulated data. ML estimation for an other
model for SAR data was treated in [3].

Dependable implementations of classical algorithms fail
to converge in almost 9000 out of 80000 samples (around
11% of failure) when performing ML estimation for the §%
model. With the same samples, the proposed algorithm does
not fail in any situation. When using data extracted from an
SAR image with squared windows of size 3 (samples of size
9), classical approaches fail to produce sensible results in up
t0 69.2% of the samples, while our proposal always yields es-
timates. When the sample size increases, the number of sit-
uations for which classical approaches fail is reduced, as ex-
pected. Numerical issues of the estimation for the KX model
were treated by [4].

The considerable rates of nonconvergence associated
with classical numerical optimization algorithms stem from
the occurence of flat regions in the reduced log-likelihood
function. It could be argued that, in such situations, the
accuracy of the ML estimator has to be poor. Nonethe-
less, in order to evaluate the precision of ML estimates,
either by constructing confidence intervals or by evaluat-
ing Fisher’s information matrix at them, one first needs to
have a point estimate. Our algorithm provides sensible es-
timates in a wide variety of situations, thus allowing the
one to evaluate their precision and to construct confidence
intervals.

The rest of the paper unfolds as follows. Section 2
presents the main properties of the 45 model, our main
object of interest. Section 3 recalls the main algorithms in-
volved in ML inference for the 4% model, with special em-
phasis on their availability in the Ox platform. Once ver-
ified that these algorithms fail to produce acceptable esti-
mators, Section 4 describes and assesses the proposal that
overcomes this problem, and applications are discussed in
Section 5. Conclusions and future research directions are
listed in Section 6.

2. THE UNIVERSAL MODEL

As proposed and assessed in [5, 6], §° distributions can
be successfully used to describe the data contaminated by
speckle noise. This family of distributions stems from mak-
ing the following assumptions about the signal formation in
every image coordinate.

(1) The observed data (return) can be described by the
random variable Z = XY, where the independent
random variables X and Y describe the (unobserved)
ground truth and the speckle noise, respectively. The
ground truth is related to the scattering properties of
the Earth’s surface including, among other character-
istics, the complex reflectivity of the soil [1] and the
system point spread function.

(2) The random variable X: Q — R, follows the square
root of reciprocal of y law, characterized by the density

2a+1

fx(x) = mxm*l exp ( - Z—L)Unh(x), (1)

where (a,y) € (R- X Ry), [4 denotes the indicator
function of the set A, and I' is the gamma function.

(3) When linear detection is used, the random variable Y
obeys the square root of gamma distribution, whose
density is

L
Fy) = ﬁy ep(~L)le () (@)

where L > 1 is the (equivalent) number of looks, a pa-
rameter that can be controlled in the image generation
process and, therefore, will be considered known. This
parameter is related to the signal-to-noise ratio and to
the spatial accuracy of the image.

The distribution characterized by (1) describes proper-
ties of the terrain, while the one in (2) models the speckle
noise.

Under these assumptions, the density of Z is given by

2LLT(L — @) ZH-1
Y T(DT(=a) (y+ Lz2)

fz(2) = = Ik, (2), (3)

where —a, y are the (unknown) parameters. The main prop-
erties of this distribution, denoted g,g(oc, y, L), are presented
in [5, 6]. In particular, moments of order r will be useful in
this work. They are given by

X)’/Z T(—a = r/2)T(L +1/2) @

E(Z") =

(') (L I'(—a)I'(L)
if @ < —r/2, and are not finite otherwise. The mean and
variance of a §%(a, y, L) distributed random variable can be
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FIGURE 1: Densities of the §%(a, 10,1) distribution, with a €
{-5,-2,—1}.

computed using (4), yielding

_ [FIL+1/2)T(—a - 1/2)
Wz =N T(L)T(—a) :
,  YLTA(L)(—a— DI (—a—1)-T?(L+1/2)I*(~a—1/2)]

9z = LI2(L)(—a) ( )
5

provided that « < —1/2 and a < —1, respectively. As pre-
viously said, in many applications estimators for («, y) are
derived using moment equations. When the first and second
moments are used, besides the severe numerical instabilities
that often appear, only samples from laws with &« < —1 can
be analyzed.

The dependence of this distribution on the parameter
a < 0 can be seen in Figure 1. It is noticeable that the larger
the value of «, the more asymmetric and the heavier-tailed
the density; relationships between the parameters of the
law and the skewness and kurtosis of the distribution are pre-
sented in [2].

If Z follows the g,%(oc, y, L) distribution, then its cumula-
tive distribution function is given by

LIT(L — )zt
yI(L)I'(~«a)

_ 2
Fy(z) = H(L,L—oc;L+1; iz ) (6)

with z > 0, where

I'(c) i T(a+k)T(b+k)tk

Hab;6t) = 50rm T(c+ k)kl

(7)

k=0

is the hypergeometric function. Equation (6) can also be
written as

2
F;(z) = Y2L,2¢x( (;Z >> (8)

where Y1 5, is the cumulative distribution function of the
Snedecor’s ¥ law with 2L and —2a degrees of freedom. This
form is useful for the following reasons.

(1) The cumulative distribution function of a §5(a,y,L)
random variable, needed to perform the Kolmogorov-
Smirnov test and to work with order statistics, can
be computed using relation (8) and the Y. function,
available in most statistical software platforms.

(2) Since the function Y_! is also available in most sta-
tistical platforms, the outcomes of Z ~ g,OA(oc, y,L)
can be obtained using this inverse function and
returning outcomes of the random variable Z =
(=YY} 5, (U)/a)V2, with U uniformly distributed on
(0, 1). This was the method employed in the forthcom-
ing Monte Carlo simulation.

A crucial feature of the distribution characterized by (3)
is that its parameters are interpretable: y is a scale parame-
ter, while « is related to the roughness of the target. Small
values of a (say &« < —10) describe smooth regions, for
instance, crops and burnt fields. When « is close to zero
(say « > —5), the observed target is extremely rough, as
is the case of urban spots. Intermediate situations (—10 <
a < —5) are usually related to rough areas, for instance,
forests. The equivalent number of looks L is known be-
forehand or is estimated for the whole image using ex-
tended targets, that is, very large samples. This parame-
ter can be related to the number of (ideally independent
and identically distributed) samples of the return that are
used to form the image. Note that estimating («, y) amounts
to making inference about the unobservable ground truth
X.

Figure 2 shows the densities of two distributions with the
same mean and variance: the §%(—2.5,7.0686/7, 1) and the
Gaussian distribution N (1,4(1.1781 — n/4)/m) in semiloga-
rithmic scale, along with their mean value (in dashed dotted
line). The different decays of their tails are evident: the for-
mer decays logarithmically, while the latter decays quadrati-
cally. This behavior ensures the ability of the 4} distribution
to model data with extreme variability but, at the same time,
the slow decay is prone to producing problems when per-
forming parameter estimation.

Systems that employ coherent illumination are used to
survey inaccessible and/or unobservable regions (the sur-
face of Venus, the interior of the human body, the bottom
of the sea, areas under cloud cover, etc.). It is, therefore, of
paramount importance to be able to make reliable inference
about the kind of target under analysis, since visual informa-
tion is seldom available.

This inference can be performed through the estima-
tion of the parameter (a,y) € ® = (R_ X R;) from sam-
ples z = (zi,...,2,) taken from homogenous areas in or-
der to grant that the observations come from identically dis-
tributed populations. The larger the sample size, in princi-
ple, the more accurate the estimation but, also, the bigger the
chance of including spurious observations. Also, if the goal is
to perform some kind of image processing or enhancement
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FIGURE 2: Densities of the §5(-2.5,7.0686/m,1) and the
N (1,4(1.1781 — 7/4)/m) distributions in semilogarithmic scale.

[7, 8], as is the case of filtering based on distributional prop-
erties, large samples obtained with large windows usually
cause heavy blurring. Inference with small samples is gain-
ing attention in the specialized literature [9], and reliable in-
ference using small samples is the core contribution of this
work.

2.1. Inference techniques

Usual inference techniques include methods based on the
analogy principle (moment and order statistics estima-
tors being the most popular members of this class) and
on ML [10]. Moment estimators are favored in applica-
tions, since they are easy to derive and are, usually, com-
putationally attractive. An estimator based on the median
and on the first moment was successfully used in [7] as
the starting point for computing ML estimates. ML esti-
mators will be considered in this work since they exhibit
well-known optimal properties (consistency, asymptotic ef-
ficiency, asymptotic normality, etc.). These estimators were
used for the analysis of SAR imagery under the K model
(3, 11].

Given the sample z = (z,...,2,), and assuming that
these observations are outcomes of independent and iden-
tically distributed random variables with common distribu-
tion D(O), with @ € ® C R?, p = 1, an ML estimator of 0 is
given by

~

0 = argmax L(6;z), 9)
0O

where £ is the likelihood of the sample z under the pa-
rameter 6. Under very mild conditions it is equivalent (and
many times easier) to work with the reduced log-likelihood
£(0;z) o< In L(0;z), where all the terms that do not depend
on 6 are ignored.
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F1GURE 3: Log-likelihood function of a sample of size n = 9 of the
9,%(—8, p*,3) law.

Though direct maximization of (9) is possible (either an-
alytically or using numerical tools), and oftentimes desirable,
one quite often finds ML estimates by solving the system of
(usually nonlinear) p equations given by

ved) = o, (10)

where V denotes the gradient. This system is referred
to as likelihood equations. The choice between solving ei-
ther (9) or (10) heavily relies on computational issues:
availability of reliable algorithms, computational effort re-
quired to implement and/or to obtain the solution, and so
forth. These equations, in general, have no explicit solu-
tion.

In our case, the likelihood function is L((a,y);z) =
[T, fz(z), with fz given in (3). Therefore, the reduced log-
likelihood can be written as

I'(L - ) 3 L-—«a
yoT(—a) n

2((a,y);2,L) =In iln (y+Lz}). (11)
i=1

The system given by (10) is, in our case,

n PN 2
n[¥(-a@) —¥(L-a)]+> In (y ng" ) =0, (12)
i=1
- L3 G+Ld) =0, (3)
i=1

where ¥(7) = dInT(7)/d7 is the digamma function. No
explicit solution for this system is available in general and,
therefore, numerical routines have to be used. The single-
look case (L = 1) is an important special situation for which
a deeper analytical analysis is performed and presented in
Section 2.2.

Figure 3 shows a typical situation. A sample from the
9,%(—8,)/*,3) of size n = 9 was generated, and the log-
likelihood function of this sample is shown. The parameter
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y* is chosen such that the expected value is one:

. L(L)T(~a) ’
Ve Ty r(—a—-172) )

(14)

It is noticeable that finding the maximum of this function
(provided it exists) is not an easy task due to the almost flat
area it presents around the candidates. The ML estimates for
this sample were (@,y) = (—1.84,1.44). The same sample is
revisited in Section 4, when analyzing the proposed estima-
tion procedure.

2.2. Stylized empirical influence functions

Two sets of solutions can be obtained from the system
formed by (12) and (13). The choice between them will be
made studying the behavior of estimates of « when a single
observation varies in R,. In order to perform an analytical
analysis, the single-look case, that is, the situation L = 1, will
be discussed.

As presented in [9], under very general conditions, a con-
venient tool for assessing the robustness of an estimator 9
based on n independent samples is its empirical influence
function (EIF). This quantity describes the behavior of the
estimator when a single observation varies freely. For the uni-
variate sample z = (z1,...,2,-1), the EIF of the estimator 0is
given by

ElF(z;2) = 0(z, 2), (15)

where z ranges over the whole support of the underlying dis-
tribution.

In order to avoid the dependence of (15) on the n — 1
observations z, an artificial and “typical” sample can be
formed with the n — 1 quantiles of the distribution of in-
terest. The sample z; will be then replaced by the quantile
zf = F ((i—1/3)/(n—2/3)) for every 1 <i < n— 1, where
F~(t) = inf{x € R: F(x) > t} is the generalized inverse
cumulative distribution function. This yields the stylised em-
pirical influence function (SEIF). Denoting the vector of n—1
quantiles as z* = (z]*)1<i<n—1, one has

SEIF (z;2*) = 0(z%, 2), (16)

with z ranging over the whole support of the underlying dis-
tribution. If the random variable is continuous, F~ is re-
placed by F~1, the inverse cumulative distribution function.

For the single-look case, the cumulative distribution
function of a 9,% (a, y, 1)-distributed random variable reduces
to Fz(t) = 1 — (1+ £2/y)* (see (6)), with inverse F,'(t) =
()/((1 _ t)l/a _ 1))1/2‘

The likelihood equations for a sample of size 1, assuming
6% (a,y,1) independent and identically distributed random
variables, are

n(lnf/+%) = S (5+2), (17)
i=1

”—5‘ —@-nS> G+ " (18)
i=1

We can form two systems of estimation equations. The
first is obtained taking & out of (18),

~ 1
a) = 1>
L-n/pSi, (G+2) "

(19)

and plugging (19) into (17) to obtain ;. The second system
is built by taking a out of (17):

o 1
T WU S n(G+22) +1ng (20)

and plugging (20) in (18) to obtain J,. Since the estimation
of the roughness parameter is of paramount importance, in
what follows only results regarding inference on « will be as-
sessed.

The SEIF will be computed for the estimators given in
(19) and (20), assuming y = 1. As previously stated, the esti-
mation of « is of paramount importance, and hence we chose
to fix the value of y and assess the behavior of two forms of
the ML estimator for . These stylized empirical influence
functions will be referred to as “SEIF1” and “SEIF2,” respec-
tively. They are given by

SEIF1(z)
_ 1
1=n/(S1 N (n-2/3)/(n—i—1/3)) " +1/(1+22))
SEIF2(z2)
1
C Wn)[/a) X In (n—i—1/3)/(n—2/3)) +1n (1+22)]’

(21)

in both cases z € R..

Figure 4 shows the functions SEIF1 and SEIF2 (first and
second columns, respectively) for « = —1 with varying sam-
ple size (first row) and for samples of size 9 and varying «
(second row). In the first row n = 9 is seen in solid line,
n = 25 in dashes and n = 49 in dots. The second row depicts
the situations « = —1 in solid line, « = —3 in dashes and
a = =5 in dots. It is readily seen that SEIF1 is less sensitive
than SEIF2 to variations of the observation z € R,.

This behavior is consistent when both « and the sample
size n vary, and it was also observed with other values of L
and of y. Figure 5, for instance, shows the SEIFs for the same
aforementioned situations and y = 1/2. It is noteworthy that,
for presentation purposes, the vertical axes in this figure are
not adjusted to the same interval.

It was then chosen to work with the system of equations
formed by taking & out of (13), and then plugging this into
(12) to compute .

This procedure can be employed whenever there are al-
ternatives for implementing ML estimators, and reduced
sensitivity to influent observations is desired.

3. ALGORITHMS FOR INFERENCE

The routines here reported were used as provided by the (Ox)
platform, a robust, fast, free, and reliable matrix-oriented
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FiGure 4: Functions SEIF1 (left) and SEIF2 (right) for y = 1 and n € {9,25,49} with &« = —1 (first row), and for « € {—1, -3, -5} with

n =9 (second row).

language with excellent numerical capabilities. This platform
is available for a variety of operational systems at [12].

Two categories of routines were tested: those de-
voted to direct maximization (or minimization), referred
to as optimization procedures, and those that look for
the solution of systems of equations. In the first cate-
gory, the Simplex Downhill, the Newton-Raphson, and the
Broyden-Fletcher-Goldfarb-Shanno (generally referred to as
“the BFGS method”) algorithms were used to maximize
(11). In the second category, the Broyden algorithm was
used to find the roots of the system given in (12) and
(13).

These routines impose different requirements for their
use. The Newton-Raphson algorithm uses first and second
derivatives, the BEGS method only uses first derivatives, and
the Simplex method is derivative-free. Numerical results not
presented here showed that the BEGS method outperformed
the Newton-Raphson and Simplex method, especially when
the initial values of the iterative scheme were not close to the

true parameter values. In what follows, we report results ob-
tained using the BFGS (with analytical first derivatives) and
Simplex methods.

Since the main goal of this work is to find suitable solu-
tions, all routines were tested following the guidelines pro-
vided with the Ox platform: a variety of tuning parame-
ters, starting points, steps, and convergence criteria were em-
ployed. The results confirmed what is commented in the
literature, namely, that inference for the §9 law requires
huge samples in order to converge and deliver sensible esti-
mates.

The analysis was performed using samples of size n € {9,
25,49,81,121}, roughness parameters « € {—1,-3,-5,
—15},and looks L € {1,2,3,8} with y = y* (see (14)).

The sample sizes considered reflect the fact that most im-
age processing techniques employ estimation in squared win-
dows of side s, even integer, and, therefore, samples are of size
n = s?. Windows of sides 3, 5, 7, 9, and 11 are commonly
used.
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In our simulations, the roughness parameter describes
regions with a wide range of smoothness, as discussed in
Section 2. The number of looks also reflects situations of
practical interest, ranging from raw images (L = 1) to
smoothed out data with L = 8. It is convenient to note here
that the bigger the number of looks the smoother the image,
at the expense of less spatial resolution. The target roughness
is measured by «, independently of the number of looks L, as
can be seen in [1].

One thousand replications were performed for each of
these eighty situations, generating samples with the specified
parameters and, then, applying the four algorithms for esti-
mating both « and y. Success (convergence to a point and
numerical evidence of convergence to either a maximum or
aroot) or failure to converge was recorded, and specific situ-
ations of both outcomes were traced out.

Table 1 shows the percentage of times (in 1000
independent trials) that the BFGS and Simplex algorithms
failed to converge in each of the eighty aforementioned

situations. The larger the sample size the better the perfor-
mance, and the smoother the target the worse the conver-
gence rate. In an overall of almost 9000 out of 80000 situa-
tions, the algorithms did not converge, and in the worst case
(n=9,a=-15,and L = 1), about sixty percent of the sam-
ples were left unanalyzed, that is, no sensible estimate was
obtained. Similar (mostly worse) behavior is observed using
the other algorithms, and it is noteworthy that all of them
were fine-tuned for the problem at hand.

The overall behaviour of these algorithms falls into one
of three situations, namely,

(1) all of them converge to the same (sensible) estimate,
(2) all of them converge, but not to the same value,
(3) atleast one algorithm fails to converge.

In order to illustrate this behavior, two 45 samples were
chosen, one leading to situation (1) above (denoted z, ), and
the other to situation (2) (denoted z,). For each sample, the
likelihood function was computed and, in order to visualize
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TABLE 1: Percentage of situations for which BFGS and Simplex fail to converge in 1000 replications.
BFGS Simplex
L o n n
9 25 49 81 121 9 25 49 81 121
-15 59.9 48.2 36.2 27.8 25.2 65.2 54.0 42.1 35.2 33.3
] -5 52.6 30.1 14.5 8.6 3.9 56.9 34.9 19.1 12.5 6.1
-3 42.3 19.1 6.1 1.5 0.4 47.8 22.9 7.9 1.8 0.4
-1 17.6 1.0 0.1 0.0 0.0 17.8 0.9 0.0 0.0 0.0
-15 51.9 35.4 25.8 16.2 11.4 57.6 41.2 31.2 21.2 15.8
) -5 37.7 13.5 5.4 1.7 0.2 40.6 17.0 7.2 1.9 0.3
-3 25.0 5.4 0.4 0.0 0.0 28.1 6.3 0.9 0.0 0.0
-1 4.6 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0
-15 46.5 28.7 16.6 9.9 7.1 50.6 34.5 19.6 12.5 8.4
3 -5 28.1 7.9 1.4 0.1 0.0 29.8 10.0 1.5 0.1 0.0
-3 17.4 2.3 0.0 0.0 0.0 18.9 2.6 0.0 0.0 0.0
-1 2.1 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0
-15 31.2 9.1 2.3 0.8 0.2 34.9 10.9 2.9 1.4 0.3
3 -5 8.2 0.3 0.0 0.0 0.0 9.6 0.5 0.0 0.0 0.0
-3 2.9 0.0 0.0 0.0 0.0 2.9 0.0 0.0 0.0 0.0
-1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
105
104
Y 7 103
102 4 S
101

Contour plots
—===0l/da
ol/dy

FIGURE 6: Log-likelihood function for z;.

and analyze the behavior of the algorithms, level curves of
the likelihood and of the ML equations were studied.
Situation (1) is illustrated in Figure 6, where it is notice-
able that the point of convergence of the Broyden algorithm
(denoted as “*”) is in the interior of the highest level curve.

Contour plots
———= 0l/oa
dl/dy

FIGURE 7: Log-likelihood function for z,.

This point coincides with the intersection of the curves corre-
sponding to 0¢/0a = 0¢/0y = 0 and, regardless the precision
of the estimation procedure, is an acceptable estimate.
Similarly, situation (2) is illustrated in Figure 7. In this
case, the point to which the Broyden algorithm converges
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FiGURre 8: Functions ¢, and &, with y € {1,3,5,10} and —« € {1, 3,5,10} (dash-dotted, dashed, dotted, and solid lines, resp.).

is outside the highest level curve and, thus, does not corre-
spond to the maximum of the likelihood function.

The Broyden algorithm seemed to have the best perfor-
mance, since it often reported convergence. But when at least
two of the other algorithms converged, most of the time they
did it to the same point, whereas Broyden frequently stopped
very far from it. When checking the value of the likelihood
in the solutions, the one computed by Broyden was orders
of times smaller than the one found by maximization tech-
niques. In a typical situation, for instance, the value of re-
duced likelihood at the estimates produced by Broyden was
—152.64, whereas the other algorithms converged to a solu-
tion that yields —86.05. For this reason, though Broyden al-
legedly outperformed optimization procedures in terms of
convergence, it was considered unreliable for the application
at hand.

This behavior motivated the proposal of an algorithm
able to converge to sensible estimates. This will be done in
the next section.

4. PROPOSAL: ALTERNATE OPTIMIZATION

Simultaneous optimization was found undependable since
the usual optimization algorithms tend to not converge when
they enter a flat region of the log-likelihood function. An
analysis of the marginal functions showed that they can be
easily maximized even when the reduced log-likelihood con-
tains flat regions. This fact motivated the proposal of an al-
ternated algorithm that consists of writing two equations out
of (11): one depending on «, given y fixed, and the other de-
pending on y, given a fixed a. Provided a starting point for y,
say 9(0), one maximizes the first equation on « to find @(0).

One can now use this crude estimate of a, solve again the first
equation on y, and continue until evidence of convergence is
achieved. The equations to be maximized are

01 (o5 9(j),2)

F(L*OC) a n ‘ i
=ln—F——+-)1 122),
M )T ) L)

& (y;alj),z)

(22)

=—a(j)lny - Li_:(j) iln (y+Lz?). (23)
i1

In practice, (22) always showed excellent behaviour,
while (23) presented flat areas in a few situations (in 6 out of
the 80000 samples analyzed in Table 1). In these situations,
though, varying the value of a(j) led to well-behaved and
easy-to-optimize functions. Figure 8 shows the functions ¢,
and ¢, for the same three sample looks used in Figure 3, and
a variety of values of y and « ((a) and (b), respectively).

Algorithm 1. Alternate optimization for parameter estima-
tion.

(1) Fix the smallest acceptable variation to proceed (typ-
ically € = 107*) and the maximum number of itera-
tions (typically M = 10%).

(2) Compute an initial estimate of y, for example,

2
(. TW)
$(0) = L<m1r(L+ 1/2)) ’ (24)

where m; = n~! 31| z; is the first sample moment.
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FIGURE 9: Function evaluation at iterations of the alternated algorithm.

(3) Set the values needed to execute step (4)(c) for the first
time ¢ = 10% and @(0) = —10°, and start the counter
ji=1

(4) While ¢ = € and j < M do the following.

(a) Find a(j) = argmaxger &1(a5y(j — 1),2) given
in (22).

(b) Find y(j) = argmaxyerf2(y;a(j),z) given in
(23), with R € Ry a compact set, typically R =
[1072,10%] - $(0).

(c) Compute

Y+ 1) =5()
y(j+1)

; (25)

a(j +1) —a(j) |
a(j+1)

the absolute value of the relative interiteration
variation.
(d) Update the counter j — j + 1.

(5) If € > €, return anything with a message of error, else
return the estimate (@(j — 1),9(j — 1)) and a message
of success.

Equation (24) is derived using r = 1 and discarding the
dependence of a on (4). In this manner, it is a crude estima-
tor of y based on the first sample moment ;. Other start-
ing points, even the true parameter values, were checked, and
their effect on the algorithm convergence was negligible.

Step (4)(b) seeks the estimate of y in a compact set rather
than in R, due to the aforementioned behavior of the func-
tion ¢,. This restriction is seldom needed in practice. If there
is no attainable maximum in R, a new value of a(j) will be
used in the next iteration and, ultimately, convergence will be
achieved.

It was chosen to work with the BFGS algorithm in steps
(4)(a) and (4)(b) since, for the considered univariate equa-
tions, it outperformed the other methods in terms of speed
and convergence. The BFGS is generally regarded as the best
performing method [13] for multivariate nonlinear opti-
mization. In our case, the explicit analytical derivatives of

the objective function were provided, a desirable informa-
tion whenever available.

This alternated algorithm can be easily generalized to ob-
tain parameters with as many components as desired, and its
implementation in any computational platform is immedi-
ate, provided reliable univariate optimization routines exist.

Using this algorithm, there was convergence in all the
80000 samples analyzed in Table 1, while classical procedures
failed in about 9000 situations. This represents a noteworthy
improvement with respect to classical algorithms since they
failed in about 11% of the samples (considering both good
and bad situations). With real data, where most of the sam-
ples are “bad,” our proposal also outperforms classical algo-
rithms, as will be seen in the next section.

Figure 9 shows a sequence of 37 values of the reduced
log-likelihood function evaluated at the points provided by
the alternated algorithm in a typical situation. It is clear that
these estimates provide an increasing sequence of function
values. The sample used to compute these values is the same
one considered in Section 2.1.

5. APPLICATION

Using Algorithm 1, it was possible to conduct a Monte Carlo
simulation in order to evaluate the bias and mean square er-
ror of the ML estimator in a variety of situations that re-
mained unexplored when using classical procedures. These
results on the bias of & are shown in Figure 10, assuming
y = p*, so the expected value equals one for every «. The
bias can be huge, confirming previous results [2, 6, 14]. Ef-
forts to reduce this undesirable behavior of ML estimators
are reported in [14].

Two applications were devised to show the applicability
of the alternated algorithm: one with simulated data and the
other with a real SAR image. The former consists of generat-
ing samples from the ¢ (e, y*, 1) law.

Two hundred and fifty samples of size n = 121 were
generated, being fifty from the 44 (-5, y*, 1), fifty from the
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TaBLE 2: Situations where BFGS failed to converge. . x
n 121 81 49 25 9 3 o x
% 1.6 4.8 10.8 19.2 41.2 s
g
g% (-1, y*, 1), fifty from the 60 (-15, y*,1), and the remain- 4
ing 100 samples from the 9,%(aj,y*,1),whereaj =0.14j-15 o
and 1 < j < 100 is the integer index. For each of these sam- —
ples, two algorithms were employed to obtain the ML esti- o
mates, namely, the BFGS and alternated algorithms. The pro- + S
cedure was repeated for each sample, but using 81, 49, 25, —
and 9 observations out of the complete dataset.
In every situation, the alternated algorithm achieved con- S
vergence, and the same did not hold for the BFGS algorithm. A
The percentage of situations for which BFGS did not con- - w w w w w
verge is presented in Table 2. Again, the classical procedure is 0 >0 100 150 200 250
unreliable. j

Figure 11 shows, for n = 25, the true value of —a (in
semilogarithmic scale) along with the estimates “x” for the
alternated algorithm and “o” for the one obtained with the
BFGS procedure. Note that there are many situations for
which only a cross is plotted; the missing circles correspond
to situations where BFGS failed to converge (roughly 20%
of the samples). It can be checked that when both of them
converge, they converge to similar values, and that there are
many situations for which the BFGS was unable to return
an estimate. Similar behaviour is exhibited for other sample
sizes, the smaller the sample the less reliable the BFGS.

Figure 12 shows an SAR image obtained by the sensor E-
SAR, managed by the German Aerospace Center DLR. This
is an airborne sensor with polarimetric and high spatial res-
olution capabilities. The scene was taken over the surround-
ings of Miinchen, Germany, and typical classes are marked

FiGuURe 11: Estimates of a withn = 25and L = 1.

as “U” (Urban), “F” (Forest), and “C” (Crops). A hypoth-
esized flight track is marked with the NW-SE white arrow,
where small samples are being collected at every passage
point.

One thousand samples were collected, and they were di-
vided into four groups of the same size for the sake of sim-
plicity. The analysis of these on-flight samples was performed
with both the BFGS and the alternated algorithms. The latter
always returned estimates, while the number of samples for
which the former failed to converge is reported in Table 3.
Even with windows of size 11, almost a third of the coordi-
nates would be left unanalyzed by the classical algorithm.
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TaBLE 3: Percentage of samples for which BFGS failed to converge
in the four groups of real data using samples of size .

; Group
Gl G2 G3 G4
121 20.8 21.2 39.2 32.0
81 22,4 28.8 42.8 36.4
49 324 34.8 53.6 48.0
25 42.0 46.4 55.6 54.0
9 52.4 65.4 69.2 65.6

Figures 13, 14, 15, and 16 show the values of & in two
hundred and fifty sites using n = 121,49, 25, and 9 obser-
vations, corresponding to groups 1, 2, 3, and 4, respectively.

It can be seen that the larger the window the smoother the
analysis, leading to the conclusion that most sites correspond
to heterogeneous or extremely heterogeneous spots (since
@ > —7). When the window is small, more heterogeneous
areas appear (& < —10). The sensed area is suburban, and
typical spots consist of scattered houses and small buildings
(extremely heterogeneous return) with trees and gardens in
between, where SAR will return heterogeneous and homo-
geneous clutters, respectively. The only exception is group 3
(Figure 15), for which the estimated roughness at all window
sizes is consistent.

The ground resolution of this sensor can be of less than
one meter, so minute features of about two meters of side can
be detected with the use of the alternated algorithm and the
g% model.
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6. CONCLUSIONS AND FUTURE WORK

Different numerical approaches for obtaining ML estimates
of the parameters that index the universal model of speckled
imagery were analyzed by means of stylized empirical influ-
ence functions.

The numerical problems that arise when estimating the
parameters of the universal model for speckled data using
ML are alleviated by the use of an alternate optimization pro-
cedure.

The small sample performance of ML estimates for the
69 distribution computed using different numerical ap-
proaches was analyzed. Conventional techniques failed to
converge and/or to provide sensible estimates in as many as

60% of the situations, whereas the alternated algorithm al-
ways produced sensible results.

The proposed algorithm was employed in the analysis of
both simulated and real data. In the latter case, sound in-
formation about minute ground features was retrieved in an
SAR image.

As for future work, ML estimation of the parameters of
polarimetric distributions for SAR data based on the alter-
nated algorithm proposed here will be considered and evalu-
ated. Polarimetric distributions are indexed by matrices of
complex values, and their computation is prone to severe
numerical instabilities. The alternated algorithm may prove
useful.
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