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ABSTRACT

We present an analysis and model for evaluation of color shifts in halftone printing caused by inter-separation
misregistration for periodic clustered dot halftones. Using a lattice framework, we present intuitive analysis
that demonstrates conditions under which the average color is asymptotically invariant under inter-separation
misregistration. Combining the framework with an analytic representation for the halftone dots, we develop
a hybrid analytical-numerical model for quantitatively estimating color shifts as a function of inter-separation
misregistration. The model is compared against experimental data for a xerographic printer.

Keywords: Misregistration in color printing, clustered dot halftoning, halftone lattice analysis, average color
shift

1. INTRODUCTION

Color halftoning is commonly employed in hardcopy printing, wherein a continuous tone (contone) color image
is reproduced with an overlay of bi-level (on/off) colorant images such that at normal viewing distances, the
perception of the halftone image closely approximates that of the contone image. In typical color printing,
Cyan (C), Magenta (M), Yellow (Y) and Black (K) colorants are used and each colorant channel is halftoned
independently of the other channels. The printed image is then produced by sequentially printing the individual
separation halftones in overlay on the paper substrate.

For ideal block-dye CMY colorants,1, 2 one could design the halftones for the individual colorants indepen-
dently because the colorants act on different regions of the spectrum and do not interact with one another. In
actual practice, however, the colorants are always non-ideal and therefore interact. The interactions among col-
orants are best understood physically by considering each individual wavelength in the spatial Fourier domain∗.
To a first order of approximation, the subtractive overlay of separations combines their spectral transmittances
multiplicatively. For any wavelength that is absorbed by more than one colorant, this multiplicative combination
of the spatial halftone patterns produces Fourier spectrum components at sum and difference combinations of
the frequency components in the individual halftones†. In the choice of CMYK separation halftones, we must
therefore avoid choices that are good for the individual separations but result in undesirable (i.e. visible) low
frequency components in overlay.

Most color halftone methods and systems are based on the aforementioned general principle of avoiding
halftone combinations that produce undesirable low frequency interactions. A component at zero spatial fre-
quency (commonly referred to as the “d.c. component”) has, however, often not been considered undesirable.
One reason for this apparent anomaly is that the color control of the printer in fact eliminates the impact of
a fixed d.c. component through the process used to map desired color values to printer CMYK combinations.
However, the response at d.c. (and in fact any frequency) depends not only on the frequency components in the
individual separation halftones, but also on their phase. Spatial misregistration between the color separations,
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corresponds to a change in relative phase and can therefore alter the value of the d.c. term if present, which
is manifested as a color shift. Due to the mechanical paper transport involved in the printing process, some
misregistration between the separations is unavoidable. In the present work, we focus on this misregistration
induced color shift by examining the zero spatial frequency component produced in the overlay. Our goal is to
examine the impact of misregistration both analytically and by means of a suitable simulation framework.

The preceding discussion is applicable to almost all methods that halftone color separations independently.
Several techniques have been proposed for the halftoning of individual separations (or equivalently monochrome
images) that fall under one of the following three categories3: (1) point processes, (2) neighborhood algorithms
and (3) iterative methods. The characteristics of the printing technology, specific application requirements, and
computational complexity are some of the common factors that impact the choice of a halftoning technique.
Due to their stability and predictability clustered-dot halftones, which belong to the class of point processes and
mimic Talbot’s original photographic screening process,4 are commonly used in the two primary methods in high
volume printing: lithography and xerography. Conventional clustered dot halftones are amplitude modulated
(AM) signals in the sense that different gray levels are reproduced by varying the dot sizes while keeping the
periodicity of dots constant. In this work we restrict our attention to xerographic printers, thus consider only
clustered-dot periodic halftones in our analysis of color variation with misregistration.

The remainder of this paper is organized as follows. We first present related work in Sec. 2 where we present
a summary of the literature on this problem and make connections with our development. Then in Sec. 3
we develop our lattice framework and notation. In Sec. 3.2, we present asymptotic (infinite area) analysis of
halftones to determine the conditions for misregistration sensitivity/insensitivity. Based on the development, we
also propose an intuitive metric for estimation of misregistration insensitivity. Next, in Sec. 3.3 we incorporate
an analytic model for the halftone threshold function in our lattice framework to develop a numerical model
for quantitative estimation of color shifts due to misregistration in color halftones. We present results from the
model along with comparisons against experimental data in Sec. 4. Finally, in Sec. 5 we present conclusions and
a discussion.

2. RELATED WORK

The average spectrum of the halftone image may be modeled (to a first order) using the Neugebauer equa-
tions.5, 6 Using these equations, we can readily see that if the areas of overlap between the separations can be
modeled as statistically random, i.e., satisfy the Demichel equations,7 the average spectrum is independent of the
inter-separation alignment. Randomization of the inter-separation overlaps therefore eliminates the problem of
misregistration induced color shift in color halftones. With this motivation, rotated halftone screens in which the
halftones for different separations are rotated relative to each other are commonly utilized in practice. Though,
alternatives to the Demichel equations have been proposed for non-rotated halftone configurations,8 the validity
of the Demichel equations for the common rotated screen configurations has not received much attention until
relatively recently.

Rogers9 examined the validity of Demichel equations for the superposition of two orthogonal circular dot
halftones having the same frequency and demonstrated that the equations hold only for certain angular sepa-
rations between the screens. Rogers achieved this result by exploiting the circular symmetry of the dots and
deriving an expression for the neighbor distribution of halftone dots.

Amidror et al.10 extend the work to the superposition of an arbitrary number screens. They present a
general proposition that characterizes (in necessary and sufficient form) the failure of the Demichel equations
in the Fourier domain by a singular configuration of frequency vectors‡ Using computer simulations on a high
resolution pixel grid, they numerically demonstrate the validity of the proposition.10 In particular, they establish
that the conventional equi-frequency, 30◦ angular separation, C, M, K halftone configuration used in lithographic
printing1 is not invariant to color misregistration. In related work,11 they also consider the stability of the
rosette micro-structure resulting from the overlap of multiple screens and demonstrate that the micro-structure
is periodic for singular configurations and aperiodic for non-singular configurations.

‡We provide a precise mathematical definition of the term singular in the next section.
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In the first part of our work, we build on the foundation of Rogers9 and Amidror et al.10, 11 We cast the
general K-screen superposition problem in a lattice framework, that has previously been used for the frequency
analysis of halftone superpositions. Each halftone separation is modeled as a periodic function with periodicity
determined by a two-dimensional lattice. We show that under suitable constraints on the individual lattices
(which always hold for a finite resolution device), the inter-separation dot-distances are also distributed on a
two-dimensional lattice. Using the distribution, we obtain histograms for inter-separation dot distances analogous
to Rogers. We then demonstrate that the Demichel equations apply under suitable constraints in the lattice
framework that are in agreement with proposition of Amidror et al. We present the results using 1-dimensional
illustrative examples that provide an intuitive insight in the lattice methodology. Based on the insight, we also
propose a metric for the evaluation of misregistration sensitivity.

In the second part of our work, we develop a quantitative model for the estimation of color shift due to
color misregistration. Prior work in this area has utilized computer simulations on a high resolution digital
grid with pixel counting methods to estimate individual colorant and overlap areas. In addition to the work by
Amidror et al10 mentioned earlier, this approach has been used by Daels et al.12 to show the color shift between
dot-centered and hole-centered rosettes for the conventional 3-screen rotated configuration and by Oztan et
al.13 for quantitative estimates of color shifts due to misregistration for 2 colorant dot-on-dot, dot-off-dot and
conventional rotated screens. The approach however has a limitation in accuracy due to the finite grid utilized
and can also be very memory intensive for certain configurations. Instead, we develop a model that utilizes an
analytic description of the halftone dot and allows direct numerical computation of the area of overlap between
the dots. This allows the model to operate without the computationally expensive high resolution simulation
allowing both faster computations and for more screen configurations.

3. A FRAMEWORK FOR ANALYSIS OF COLOR HALFTONE MISREGISTRATION

For the analysis of average color shift with misregistration, we use the system model illustrated in Fig. 1. We
begin with a spatially invariant contone image consisting of K colorant planes and model the color of the print
resulting from a halftone obtained from this image. Though we adopt a generalized notation of K colorants,
throughout we consider only the common case of CMYK colorants, for which K = 4. We assume the scenario
mentioned in Section 1, wherein the K colorant planes are independently halftoned using periodic clustered dot
screens and printed in overlay. In general, the 2-D periodicity of the ith separation may be represented using a
planar lattice Λi in R

2, mathematically defined as 14

Λi = {Vin | n ∈ Z
2}, (1)

where Vi =
[

vi
1|v

i
2

]

is the matrix of the linearly independent vectors vi
1 =

[

vi
x1

vi
y1

]

, vi
2 =

[

vi
x2

vi
y2

]

and Z

denotes the set of integers. Thus Λi is the (discrete) set of all integer linear combinations of the vectors vi
1 and

vi
2 in R

2. The vectors vi
1 and vi

2 are said to form a basis for the lattice Λi and for any point Vin in the lattice,

the vector n =

[

n1

n2

]

is the representation of the point in the lattice with respect to the basis Vi.

The halftone for each colorant plane can now be modeled as the convolution of a halftone dot function with
the corresponding periodic lattice in the spatial domain.15, 16 To incorporate misregistration of separation i the
halftone dot function may be displaced by a displacement d = [∆xi,∆yi]. In the print, these multiple halftone
layers are overlaid producing all possible 2K super-positions of the K colorants, which are referred to as the
Neugebauer primaries. Using the Neugebauer model,5, 6 the average spectrum of the printed halftone is

Ravg(λ) =

(

1
∑

c1=0

· · ·

1
∑

c1=0

ac1...cK
R

1
γ
c1...cK (λ)

)γ

, (2)

where the K-bit binary index string c1 . . . cK with cj ∈ {0, 1},∀j = 1, 2, . . . K represents one of the 2K Neugebauer
primaries in a convenient notation: cl indicates the presence of the lth colorant, i.e. the Neugebauer primary
c1 . . . cl . . . cK includes the lth colorant in the overlap that constitutes it if and only if cl = 1. Rc1...cK

(λ) is then
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Figure 1. Overview of the analysis

the reflectance of the Neugebauer primary corresponding to the binary index c1 . . . cK , ac1...cK
represents the

area covered by the corresponding primary as a fraction of the total area and γ is the empirical Yule-Nielsen
correction factor.

Now if we denote by βj the fraction of the total area covered by the jth colorant (which is possibly covered
by additional colorants and therefore distinct from the area for the corresponding primary), we have

βj =
∑

{c1...cK | cj=1}

ac1...cK
(3)

We extend this notation and use βj1...jm
to represent the fractional area covered by colorants j1 . . . jm, where

j1 . . . jm is a set of distinct colorant indices in ascending order, i.e., j1 . . . jm ∈ {1, . . . K} and j1 > j2 > · · · > jm.
Then, clearly

βj1...jm
=

∑

{c1...cK | cj1
=1,...cjm=1}

ac1...cK
(4)

The above system of equations can be inverted to obtain expression for the fractional areas for the primaries
ac1...cK

in terms of the fractional areas βj1...jm
for the colorant combinations. The same relation can also be

obtained by the physical relation between these quantities based on their definitions. One can trivially see that
a1...1 = β1...K and

ac1...cK
= βj(c) −

∑

j∈I+(c)

βj (5)

where c denotes c1 . . . cK , the notation j(c) = j1 . . . jm denotes the string of indices {jl}
m
l=1 for which cjl

is
non-zero, arranged in ascending order, and I+(c) is the set of all m+1 indices (in increasing order) that include
the indices j1 . . . jm in j(c) and one additional (distinct) index§.

§Note that each element of I+(c) denotes a combination of m + 1 colorant combinations that include the m colorants
indicated by c as a subset. Thus the summation in (5) represents the fractional area coverage of all distinct m+1 colorant
combinations that include the m colorants indicated by c as a subset.
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We saw above that the fractional areas ac1...cK
in the Neugebauer model of (2) can be computed in terms of

the areas of the type βj, which corresponds to the fractional area that is common to (or covered by) the colorants
indicated by the indices j. The areas β1, β2, . . . βK represent the fractional area covered by each of the individual
colorants. These depend on the periodicity lattices for the colorants and the halftone dot functions, the latter
also capture the dependence on the contone value for the colorant. The areas β1, β2, . . . βK are independent of
any amount of misregistration in any of the separations. However, the βj terms corresponding to areas common
to more than one colorant, in general, depend on the individual lattices, the corresponding spot functions, as
well as the inter-separation mis-alignment. A simple illustrative example is the case of two separations with a
spot function that corresponds to half a lattice cell and identical lattices for the two separations. In this case in
the absence of misregistration β12 = β1 = β2 however in the presence of a displacement corresponding to half the
lattice period, β12 = 0 �= β1 = β2. Thus the βj terms corresponding to areas common to more than one colorant,
in general may vary with change in misregistration and may correspondingly produce a variation in the average
spectrum for the halftone in (2).

If the terms βj are invariant to inter-separation misregistration, we see from (2) that the average spectrum (and
therefore the color) predicted by the model will also be invariant to inter-separation misregistration. Note that
this is a sufficient but not necessary condition, i.e., invariance of the terms βj’s to inter-separation misregistration
ensures that the spectrum modeled in (2) is also invariant to misregistration. However, if the βj’s show variation
with registration, the average spectrum may still be invariant to misregistration errors- for example if the
colorants display ideal behavior and have no unwanted absorptions. Given this nature of the interactions, we
follow a two-fold approach to model misregistration sensitivity of a halftone configuration:

• First, in Sections 3.1 and 3.2 we examine the sensitivity of the terms βj to registration. In general, the
variation or lack thereof in the terms βj with misregistration is determined by the halftone spot functions
for the corresponding colorants (which also incorporates the area coverages for these colorants) as well
as the periodicity lattices for the individual separations. However, for certain lattice configurations for
the colorants, the terms are invariant to misregistration irrespective of the halftone spot function. We
characterize these configurations in our asymptotic analysis.

• Next, in Section 3.3 we develop the complete model illustrated in Fig. 1 for the quantitative estimation
of color shift due to misregistration. For this purpose, we utilize analytic forms of the spot function that
allow simple (numerical) determination of the overlap areas βj for any combination of separations.

3.1. Lattice Analysis of Color Halftones

The color halftone is obtained by superposing individual halftone screens whose individual periodicity is rep-
resented by the lattices {Λi}

K
i=1. If the intersection of the resulting lattices Γ = Λ1 ∩ . . . ∩ ΛK is also a two

dimensional lattice, then one can see that a period of Γ includes a period of each of the constituent lattices.
Therefore the resulting superposition is also periodic with periodicity determined by the lattice Γ. It can be shown
that Γ is a two-dimensional lattice if and only if V−1

j Vk is a matrix of rational numbers for each j, k ∈ {1, . . . K}.

This condition on the lattices is termed commensurability by Amidror et al..17

In practice for typical digital printing devices, the addressable device locations are confined to a rectilinear
grid, and the x and y coordinates of the vectors vi

1,v
i
2 are constrained to take values that are multiples of the

corresponding grid spacing along these two directions. Consequently, it can be seen that the aforementioned
condition is always satisfied. We therefore assume that this condition holds in our discussion and consider
situations of interest where the condition may not be applicable as limiting cases.

We illustrate the above statements by means of an example in Fig. 2 for the case of K = 2 halftones

that are periodic on two orthogonal lattices Λ1 and Λ2 with basis matrices V1 =

[

2 −4
4 2

]

and V2 =
[

4 −2
2 4

]

, respectively. For this configuration, since V−1
1 V2 =

[

0.6 0.8
−0.8 0.6

]

is a matrix of rational numbers,

the intersection of Λ1 and Λ2 is a two-dimensional lattice . The black circles in Fig. 2.c shows where the two
lattices intersect. The union of the two lattices is the complete set of points indicated in Fig. 2.c where the colors
of the points represent the lattices they originate from. From this the periodicity of the overlay is apparent.
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Figure 2. Example of lattice intersection. (a) & (b) shows some portion of Λ1 and Λ2 respectively, the intersection of
the lattices Γ = Λ1 ∩ Λ2 shown with the black circles in in (c)

3.2. Asymptotic Analysis of Misregistration Errors

In Sec. 3 we pointed out the average color of the color halftone is a function of the fractional area coverage of each
Neugebauer primary. Computing these terms requires calculating the overlap area of each possible halftone spot
function overlay. As we pointed out in Sec. 3.1 under suitable constraints on the halftone periodicity lattices,
the superposition of halftones is also periodic and computing the overlap areas of separations in a single period
of the color halftone would be enough to characterize the overlap areas in the entire color halftone.

In order to simplify the discussion, we consider the superposition of two halftones that are periodic on
lattices Λ1 and Λ2, respectively. As indicated earlier, the halftones may be represented by the convolution of
the halftone dot function with the corresponding lattices. Without loss of generality, we assume that the halftone
spot functions for the colorants are zero outside the confines of a unit cell and associate each replica of the halftone
spot in a separation with a corresponding lattice point and therefore refer to halftone dot locations and lattice
points interchangeably in the following discussion. Now, the halftone dot locations for the first halftone are the
points u1 ∈ Λ1 and the halftone dot locations for the second halftone are the points u2 ∈ Λ2. The set of all
possible displacements between a dot location in the first halftone and a dot location in the second halftone is
therefore the set

{u1 − u2 | u1 ∈ Λ1,u2 ∈ Λ2} = {u1 + u2 | u1 ∈ Λ1,u2 ∈ Λ2} = Λ1 + Λ2 (6)

where the second step follows from the fact that for every u2 ∈ Λ2 we have −u2 ∈ Λ2. Under our assumption
that Γ is a two-dimensional lattice, the set Λ1 + Λ2 is also a two-dimensional lattice. Since only these discrete
displacements are observed between the two lattices, we can determine the area β12 which is common to the
two halftones in terms of these displacements and the intersection area for dot shapes at these displacements.
Denoting by α(ν ) the area common between a halftone spot of the first halftone and a halftone spot of the
second halftone with a displacement ν between them. Now consider a basis v1,v2 for Γ and a corresponding
unit cell defined as

Ξ = {αv1 + βv2 | −0.5 ≤ α ≤ 0.5,−0.5 ≤ β ≤ 0.5} (7)

Then the fraction of area common to the two screens is

β12 =
∑

ν ∈(Λ1+Λ2)∩Ξ

α(ν ) =

∫

ν ∈Ξ

α(ν )p(ν )dν (8)

where p(ν ) =
∑

ν ∈(Λ1+Λ2)
δ(ν ), with δ() denoting the Heaviside delta function.
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Let βd
12 represent the overlap area of the screen displaced by a displacement vector d. In this case, (8) can

be modified such that p(ν ) is shifted by an amount d as:

βd
12 =

∫

ν

α(ν )p(ν − d)dν . (9)

From the above equation, we see that if
∫

ν
α(ν )p(ν −d)dν is independent of d the overlap area for the two

halftones is independent of the misregistration. Under the restrictions adopted in the analysis above, we see this
does not hold for arbitrary α(ν ) because p(ν) is in fact a finite discrete distribution. For illustrative purposes,
we calculate and depict the term p(ν) for the superposition of two one-dimensional lattices. Fig. 3 illustrates
an example for the intersection of two one-dimensional lattices at different displacements. The distributions
p(ν ) and p(ν − d) are clearly not equal to each other and this difference makes the superposition sensitive to
misregistration.

1.5

7654320 1-1-2-3-4-5-6-7

d = 0.25

p(ν)

10.5 ν0

Unit cell of Λ2Unit cell of Λ1

Unit cell of Λ1 + Λ2

Λ1 + Λ2

7654320 1-1-2-3-4-5-6-7

76543210-1-2-3-4-5-6-7

d = 0
Unit cell of Λ1 ∩ Λ2

ν0 0.5 1

p(ν − d)

-0.5-1-1.5 1.5 -1.5 -1 -0.5

Figure 3. Example of superposition of two one-dimensional lattices at different displacements

Note that if α(ν ) is a continuous function (which will commonly be the case) and p(ν) =
∑

ν ∈(Λ1+Λ2)
δ(ν )

is dense in the (two-dimensional) set Ξ, then we see that
∫

ν
α(ν )p(ν − d)dν is independent of d and the

superposition of the two halftones becomes invariant to registration. From an engineering perspective, allowing
for some jitter in position of the individual halftones this mathematical condition may be approximated by a
sufficient 2-D denseness requirement.

Note that mathematically, the halftones exhibit sensitivity to registration provided there exist non-zero
n1 ∈ Z

2 and n2 ∈ Z
2 such that V1n1 + V2n2 = 0, a condition referred to as singular state.10 If no such integer

values exist then Γ is aperiodic (along all directions), the distribution p(ν) is dense and the halftone overlaps are
invariant to registration.

3.3. Color Halftone Model

Clustered dot halftones are generated by comparing the image values τ(x, y) against a periodic halftone threshold
array KT (x, y). This threshold array was conventionally defined as a discrete array of thresholds but alternatively
it can be represented by an analytic threshold function. Pellar18, 19 defined such a threshold function as:

KT (x, y) =
cos (2πfxx) + cos (2πfyy) + 2

4
, (10)

where fx and fy are the screen frequencies, x and y are the spatial positions.
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This function can be modified such that it incorporates screen orientation and displacement as:

KT (x, y;φ,∆x,∆y) =
cos (2πfx′) + cos (2πfy′) + 2

4
, (11)

where
[

x′

y′

]

=

[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

×

[

x − ∆x

y − ∆y

]

(12)

φ = tan−1
(

vy

vx

)

is the rotation angle of the screen and ∆x and ∆y are the registration errors along horizontal

and vertical directions respectively, and the other terms are defined before.

Computing the fractional dot area coverage involves integrating the function in (11). Although numerical
approximations to the integral can be found, it is hard to represent it in an exact analytic form. Moreover, com-
putation of inter-separation overlap areas is further complicated by finding the intersection points of multiple
functions of this type. To simplify this, we observe the dot growth sequence the halftone obtained by thresh-
olding (11) in Fig. 4. While the transition from highlights to midtones can be characterized as growing black
dots, after the fractional area coverage reaches 0.5 the transition from midtones to shadows can be represented
as shrinking white holes. Furthermore, these dots and holes can be generated by thresholding an analytical
function of the form

|x|k + |y|k = rk, (13)

where k ∈ R and k ≥ 1. Although the integral of this function can be found using integral tables, in this paper
we further simplify this computation by choosing two special forms of (13). At highlights and shadows we choose
k = 2 yielding circular dots and holes, and at midtones we use k = 1 generating square dots and holes.

Figure 4. Dot growth with threshold function defined by (11)

A visual closeness metric is employed to determine the optimal value for the fractional area coverage of the
screen bounding the midtone gray levels denoted by µ. Since the dots and holes are of same size for the fractional
area coverages β and 1 − β respectively, we carry on to find this optimum value in the range β ∈ [0, 0.5]. For a
given β, let Dβ

cos denote the dot obtained by thresholding (11). The size of the square or circle that approximates
Dβ

cos visually varies between the size of the square or circle that is circumscribed by Dβ
cos and that circumscribes

Dβ
cos. Using computer simulations on a high resolution grid, a large sample of square and circular dots having

sizes within the specified range are generated and overlapped with Dβ
cos. An error metric namely fractional area

coverage error is formulated as the non-overlapping area between Dβ
cos and the other dots. The dot having the

least error is chosen to represent Dβ
cos. Fig. 5 shows the fractional area coverage error versus β for both square

and circular dots.

As expected from Fig. 4, at highlights and shadows circular dots have less error than square dots, and at
midtones square dots have less error than circular dots. At approximately µ = 0.413 the error curves for the
square and circular dots intersect. This value corresponds to the optimal value of β determining the dot shape
representing Dβ

cos.

3.4. Dot Overlap Model of Color Halftones

As it is known from (2), the fractional area coverage of each Neugebauer primary is needed to exercise the
Neugebauer equations to find the average spectrum of the color halftone.. In Sec. 3.2 we discuss the total
fractional overlap area can be obtained by averaging the overlap areas of each possible inter-separation dot
intersection weighted by the displacement distribution function obtained by lattice analysis of color halftones.
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Figure 5. Fractional area coverage error between best square and circle approximation to Dβ
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In Sec. 3.3, circle and square dots are shown to be appropriate to approximate the dot shapes obtained from
a known analytic threshold function. In the current study, we assume each colorant has the same fractional
area coverage. Thus, only the intersections of circles or squares are assumed in this analysis. Rogers9 showed
how to find the intersection area of two circular dots analytically as a function of the distance between their
centers and their radii. That work can be extended to the intersection of K circular dots by keeping track of the
coordinates of the intersection points of pairs of circles. For the intersection of square dots, Sutherland-Hodgman
polygon clipping method20 is useful to find the vertices of the intersection polygon. An example of finding the
intersection polygon of two squares is shown in Fig. 6. To find the intersection polygon, one of the squares is
clipped with the edges of the other square sequentially. Convex polygon triangulation method is then used to
find the intersection area of the polygon. The total area is simply the sum of the individual areas of the triangles
that form the polygon and the areas of the triangles can easily be computed since the coordinates of the vertices
are known.

(a) (b) (c) (d)

Figure 6. Example of Sutherland - Hodgman polygon clipping. (a) shows two squares before clipping, (b) and (c) shows
the intermediate steps, (d) shows the intersection polygon

3.5. Calculation of the Average Color Shift

After the fractional areas, ac1...cK
’s, are determined by the method described in Sec. 3.3, we find the average

spectrum of the color halftone by using (2). Next, we calculate the XYZ value using the average spectrum and
then Lab value of to color halftone is determined by using the XYZ value.2

The same computation is repeated for the estimation of the average color of the reference color halftone and
another Lab value is obtained. Finally, we calculate the average color change in ∆E∗

ab units by computing the
Euclidean distance between the Lab pairs.
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4. EXPERIMENTAL RESULTS

We carried out several experiments to validate our misregistration analysis model. Several test targets were
generated with different amounts of misregistration deliberately introduced in the halftone separations and
measurements of these were compared against predictions from the model. Since inter-separation misregistration
is unavoidable even in experimental prints and often locally varying, the precise determine the amount of actual
inter-separation misregistration in the prints is unknown. Therefore we estimate the maximum, mean and the
minimum average color shift among all average color shifts between the target pairs in ∆E∗

ab units and compare
these values with our model’s maximum average color shift estimate for that orientation.

Since midtones were found to be the most sensitive among two colorant configurations13 and the halftones
are well approximated by square dots in these regions (see Section 3.4) we utilize a square dot shape for both our
experimental prints as well as our model that is obtained by a separable combination of two saw-tooth threshold
functions. The test targets are generated using halftone lattices on the 4800×600 dpi printer addressability grid.

For our prints and simulations we utilize the a halftone configuration with orthogonal CMYK screens whose
lattice bases (upto scale factor) are listed in Table 1. These are oriented as C at tan−1(3) ≃ 71.565◦, M at
tan−1( 1

3 ) ≃ 18.435◦, Y at tan−1(0) = 0◦, and K at tan−1(1) = 45◦. These angles are chosen to approximate the
conventional 30◦ difference between C, M and K screens. Using this set of screens, we test the misregistration
sensitivity of superposition of all two colorant pairs and also the average color shift between the 3-color CMK
dot-centered and hole-centered rosettes. For each of the two colorant cases, the print included samples in
which the inter-separation misregistration that was electronically introduced ranged over a cell. For the 3-
color configuration, since the number of possible inter-separation misregistrations is rather large only these
two configurations are utilized and no additional misregistration is introduced in the printed targets. For each
colorant, we aimed for a fractional area coverage of 0.5 in the test target (and used the same for our simulations).
This is accomplished by estimating the area coverages for the colorants and pre-compensating for variation
in the printer physical response.13 Finally, each test target is printed multiple times and measured using a
spectrophotometer.

VC VM VY VK

[

2 −6
6 2

] [

6 −2
2 6

] [

4 0
0 4

] [

4 −4
4 4

]

Table 1. Lattice Bases for the CMYK color halftone configuration.

For our simulations, we also print the 24 = 16 Neugebauer primaries using the same printer we printed the
test targets and measured their spectrum. The Yule-Nielesen parameter was estimated as γ = 2.513 and utilized
throughout the simulations. The fractional area coverages of the screens are taken equal to each other and we
run our simulations for β equal to 0.4, 0.5 and 0.6. For each orientation, we determine the maximum attainable
∆E∗

ab running the simulations over a large sample of displacements. However, only for the dot-centered rosettes
versus hole-centered rosettes comparison, we did not consider any registration errors on the screens and compute
the ∆E∗

ab for the given β’s. The results are shown in Table 2.

From the table one can see that the model estimates are in qualitative agreement with the experimental
results. However, quantitatively the simulation results do not match the experimental measurements. There are
several reasons for these discrepancies. Firstly, observe that at β = 0.5 the model estimate of the color shift
for all colorant combinations except for the CM colorant pair is zero. This arises due to the specific halftone
periodicities combined with the halftone dot shape that ensure invariance of the overlap areas despite the discrete
distribution of dot displacements. In practice however, the dot shapes will deviate from the exact squares used
in our simulation and additionally will be affected by the pre-compensation process. For this reason, the color
shifts for values of β = 0.4 and 0.6 are also included in Table 2. Secondly, the unknown misregistration in the
experiments also leads to uncertainty regarding the relation between the measurements and simulations.
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Colorants Measured ∆E∗
ab Model Estimate Max.

Max Mean Min ∆E∗
ab

β = 0.4 β = 0.5 β = 0.6
CM 2.9676 0.8858 0.0334 1.2512 1.5676 1.2713

CY 2.5314 0.9331 0.0711 0.2329 0 0.2310

CK 3.9262 1.5065 0.0257 0.2010 0 0.2057

MY 3.7051 1.1597 0.0373 0.8659 0 0.9167

MK 4.2289 0.9829 0.0289 0.2481 0 0.2574

YK 7.0910 2.5172 0.0652 7.5346 0 7.8895

CMK 3.4559 1.1349 0.0339 0.2307 0 0.2389

Table 2. Measured ∆E
∗
ab values and model estimate for the given colorant pairs

As it can be seen that the model predicts misregistration insensititivity for fractional area coverages β = 0.5
but fractional area coverages of 0.4 and 0.5 show significant registration sensitivity. The magnitude of predicted
shifts in color (in ∆E∗

ab) are consistent with the corresponding ranges obtained in experiments.

The results illustrate the complicated nature of the inter-separation misregistration problem. For any given
configuration, the sensitivity is dependent on: a) spectral colorant interactions and b) spatial halftone separation
interactions. The latter in turn depend in a complicated fashion on both the halftone periodicities as well as
the specific geometrical size and shape of the dots. The model developed here provides a method for probing
these dependencies. The preliminary results presented here are qualititively consistent with the experimental
meaurements. In our continuing work we are exploring further validation of the model both in qualitative and
quantitative aspects.

5. CONCLUSIONS

In this paper, we examined the effect of inter-separation misregistration on the average color obtained from
the superposition of periodic halftone screens. We indicate that a complete understanding of the impact of
misregistration requires analysis of both spatial and spectral interactions between the separations. We developed
a framework for quantitative estimation of misregistration induced color shifts using a lattice representation.
The lattice representation allows an intuitive development of existing results on misregistration sensitivity for
the spatial interactions and also provides a computationally efficient model for the quantitative estimation of
color shifts. We demonstrate that the model provides qualitative agreement with experimental measurements.

REFERENCES

1. J. A. C. Yule, Principles of color reproduction, applied to photomechanical reproduction, color photography,

and the ink, paper, and other related Industries, Wiley, New York, 1967.

2. G. Sharma, “Color fundamentals for digital imaging,” in Digital Color Imaging Handbook, G. Sharma, ed.,
CRC Press, Boca Raton, FL, 2003. Chapter 1.

3. F. A. Baqai, J.-H. Lee, A. U. Agar, and J. P. Allebach, “Digital color halftoning,” IEEE Sig. Proc. Mag. 22,
pp. 87–96, Jan. 2005.

4. W. H. F. Talbot, “Improvements in the art of engraving.” British Patent Specification No. 565, 29 Oct. 1852.

5. H. E. J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbenbuchdrucks,” Zeitschrift für wis-

senschaftliche Photographie Photophysik und Photochemie 36, pp. 73–89, Apr. 1937. reprinted in.21

SPIE-IS&T/ Vol. 6058  60580X-11



6. J. A. S. Viggiano, “Modeling the color of multi-colored halftones,” TAGA Proc. , pp. 44–62, 1990.
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