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Analysis of Mixed Finite Element Methods
for the Stokes Problem: A Unified Approach

By Rolf Stenberg

Abstract. We develop a method for the analysis of mixed finite element methods for the
Stokes problem in the velocity-pressure formulation. A technical "macroelement condition",
which is sufficient for the classical Babuska-Brezzi inequality to be valid, is introduced. Using
this condition,we are able to verify the stability, and optimal order of convergence, of several
known mixed finite element methods.

1. Introduction. The mixed finite element method, based on the velocity-pressure
formulation, is being increasingly used for the numerical solution of the Navier-Stokes
equations. In this paper we will discuss the mixed finite element method for the
linear Stokes problem. Under suitable existence and uniqueness conditions the
results can be extended to the nonlinear Navier-Stokes equations; cf. [11].

The analysis of mixed methods for the Stokes problem can be based on the
general theory of saddle point problems developed by BabuSka [1] and Brezzi [5].
The main difficulty in the analysis is the verification of the basic stability inequality,
usually referred to as the BabuSka-Brezzi inequality. In Crouzeix and Raviart [9] a
rather general analysis technique, for triangular finite element subspaces, is devel-
oped. Recently a variant of the classical stability inequality has been introduced by
Bercovier and Pironneau [4] for the analysis of methods where the pressure is
approximated by continuous functions. It should also be mentioned that some
methods, which are used in practice (cf. [13], [21]), do not fulfill the classical
BabuSka-Brezzi stability inequality. It is, however, possible to analyze these methods
using certain weaker stability inequalities, cf. Johnson and Pitkäranta [15] and
Pitkäranta [19], where error estimates for some methods have been derived.

In this paper we develop a general method for the analysis of mixed finite element
methods for the Stokes problem. We introduce a technical "macroelement condition"
which is easy to check and sufficient for the stability inequality (in its classical form)
to be valid. A similar condition is used in [20] in the analysis of mixed methods for
two-dimensional elasticity equations. Our method of analysis seems to both gener-
alize and, above all, simplify the previous methods.

In order to avoid unnecessary technical details we have restricted ourselves to a
two-dimensional, polygonal domain and to straight-sided triangular, or quadrilateral,
elements. The method can easily be generalized to more general situations. In some
of the examples we also treat general isoparametric elements.
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10 ROLF STENBERG

The plan of the paper is as follows: In Section 2 we state the problem and its finite
element discretization and give some preliminary results. The next section is devoted
to the stability inequality. We introduce the macroelement condition and show how
it implies the stability inequality. In Section 4 we apply our method of analysis to
four mixed methods.

2. Preliminaries. Let ß be a polygonal domain in R2 with boundary T. We
consider the stationary Stokes problem: Find functions u = (ux,u2) and p defined
on ß such that

-¡>Au + vp = f    in ß,
(2.1) divu = 0 inß,

u = 0 on r,
where u is the fluid velocity, p is the pressure, / is the body force and v > 0 is the
kinematic viscosity.

We denote by | • \sT and || • \\sT, respectively, the seminorm and norm of the
Sobolev space [Hs(T)]a, where s and a are integers. For noninteger s, s ^ 0,
[Hs(T)]a and || • \\sT are defined as usual by interpolation. H(\(T) denotes the
subspace of HX(T) of functions vanishing on 37". We will also use the space

L2(T)=l{p<=L2(T)\JTpdx = 0J.

By (•. )t we denote the inner product in [L2(T)]a, where a is an integer. The
subscript T is omitted if T = ß.

Throughout the paper, C and C will stand for a positive constant, possibly
different at different occurrences, which is independent of the mesh parameter h, but
may depend on ß, v and some other parameters introduced in the text.

Using the above notations, (2.1) allows the following weak formulation: Find
u e [//0'(ß)]2 and/? e L„(ß) such that

(2.2) v(vu,vv)- (di\v,p) = (/, t>)    Vt> e [//¿(Ö)]2,

(divu,/i) = 0   V<xeLu(ß).

In the finite element discretization of (2.2) we introduce the finite-dimensional
subspaces Vh c [//0'(ß)]2 and Ph c Ll(2) and formulate the approximate problem
as: Find uh e Vh and ph e Ph such that

(2.3) v(vuh,vv)-(dxyv,ph) = (f,v)   Vu e Vh,
(divu„,M) = 0   VMe/V

In order to define the finite element spaces we introduce a partitioning l2h of ß
into subdomains which are assumed to be either triangles or convex quadrilaterals
whose diameters are bounded by h. Given an element K g (iA, we denote by hK the
diameter of K, by pK the maximum diameter of all circles contained in K and by 6lK,
1 < i < 4, the angles of AT if A" is a quadrilateral. We suppose that the family Qh is
regular in the sense that there exist two constants a > 1 and 0 < y < 1 independent
of h such that
(2.4) hK^apK   Vtfeß,,

(2.5) |cos 0lK\ < y,       1 < < < 4, for all quadrilaterals K e Qh.
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MIXED FINITE ELEMENT METHODS FOR THE STOKES PROBLEM 11

Now, for each integer m>Owe denote by Pm(K) the space of polynomials of
degree < m on A and by Qm(A ) the space

(2.6) Qm(K) = {p=poFKx\p^Qm(k)),

where Â is the unit sphere, Qm(K) is the space of polynomials of the form

p(x)=     £    a¡jx\x{,      fl,7eR,
0<i',y<m

and FK is a bilinear transformation which maps A onto A. Setting

Pm{K)     if Ais a triangle,
(2 71 R   ( K ) =

' mK    '     \Qm(K)    if A" is a quadrilateral,

the space Vh is defined as

(2.8)    Vh = {v = {vx,v2)e [Hx(íl)]2\v¡lK<BRk(K),i=\,2,VKeeh}.

Since the pressure does not need to be continuous, we have various possibilities of
choosing Ph. A continuous pressure is obtained by defining

(2.9a) Ph = {p e L0(ß) n C(ß)|/>,* e Ä,(A) VA g ß„}.

We will also consider the following alternatives for a discontinuous pressure

(2.9b) P„ = {p s L2(ß)|P^ g Ä,( A) VA g ß,},

(2.9c) Pt-{pe lg(Q)||>|JC E />,(*) VA E S,}.

Remark. (2.9c) defines/?^ g P¡(K) also for quadrilaterals. This can occasionally
be a good choice; cf. Example 4 in Section 4.

The spaces KA and Ph have the following well-known (cf. [6], [7]) approximation
properties.

Lemma 2.1. If u e [Hr(Q) n H¿(ti)]2, r > I, then there exist ù g Vh such that
\\u - Mj|, < CAí,"1||m||(7i, where qx = min{/\ k + 1}.

Lemma 2.2. If p ^ HS(Q) n Ll(Q), s > 0, then there exist p G Ph such that
\\P - ño < CA*MI/»II,2, wAere <72 = min{i, / + 1}.

The BabuSka-Brezzi stabihty condition [5], [ 11 ] for the approximate problem (2.3)
is satisfied if there is a constant C > 0 such that

(2.10) sup {dlWZ'P) > Q\p\\0   Vp G Ph.
vev,       \v\\
v»Q

This condition is fundamental for the analysis of the mixed method since it,
together with Lemmas 2.1 and 2.2, implies the following error estimates (cf. [11]).

Theorem 2.1. Suppose that the solution of (2.1) satisfies u g [//r(ß)]2, r > 1, and
p G HS(Q), s > 0, and let (uh, ph) be the solution of (2.3). Then if the condition (2.10)
is satisfied, we have the error estimate

I« - u»li + \\p - Ph\\0 < cfA"-1!!«!!,, + A"||/>||J,
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12 ROLF STENBERG

where qx = min{r, k + 1} and q2 — min{i, / + 1}. Moreover, if the region ß is convex,
we have the additional estimate

\\u - uh\\0 ̂ c(h«\\u\\q¡ + h<> + VlU-

In the next section we will show how the stability condition (2.10) can be verified
in practice.

3. The Stability Inequality. Let us start by introducing some additional notation.
By a macroelement we mean the union of one or more neighboring triangles or
quadrilaterals satisfying the regularity assumptions (2.4) and (2.5). A macroelement
M is said to be equivalent to a reference macroelement M if there is a mapping
FM: M -» M satisfying the conditions:

(i) FM is continuous and one-to-one.
(Ü) FM(M) = M.

(iii) If  M = xj"kj,   where   Ây, j= 1,2.m,   are   the   triangles   or
quadrilaterals in M, then Kj = FM(kj), j = 1,2,..., m, are the tri-
angles or quadrilaterals in M.

(iv) FM- = FK ° F % , j = 1,2,..., m, where FK and FK are the affine or
bilinear mappings from the reference triangle (with vertices (0,0), (0,1) and
(1,0)) or unit square onto Ay and Ay, respectively.

The family of macroelements equivalent with M will be denoted by &^.
For a macroelement M we define the space V0 M as

(3.1) V0M={v& [Hx(M)]2\v,iK<ERk(K),,= 1,2, VA CM}.

Depending on which of the alternatives (2.9abc) is chosen to define Ph, we define the
space PM respectively as

(3.2a) PM = {p g L2(M) n C(M)\piK g R,(K)VK c M),

(3.2b) PM = {pe L2(M)\p^ g Ä,(A)VAc M)

or

(3.2c) PM = {pe L2(M)\plK G P,(K)VK c A/}.

We will further define

(3.3) P0M = P„nL2(M)

and

(3-4) ^ = (pe ^|(div», /7)w = 0 Vt; g ^0 M}.

Let us now prove the following
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Lemma 3.1. Let &A be a class of equivalent macroelements. Suppose that for every
M g &M, the space NM is one-dimensional, consisting of functions that are constant on
M. Then there is a positive constant ß^ = ß(M,a,y) such that the condition

(3.5) sup   {dl™'P)">ßu\\p\\o.M   V/>GP0
v<£Vnu       \V".M

Mi
rn.M

t)*0

holds for every M G S^.

Proof. Consider a fixed M G &A. Define the constant ßM as

ßM=     inf        sup   (di\v,p)M.
Pg>o.m     v<=V0M

IIPllo.M-'     \V\ÍM=\

Since NM consists of functions that are constant on M, and P0 M and V0M are finite
dimensional, it follows that ßM > 0.

Let us now prove that there is a constant ßA such that ßM > ßA > 0 for every
M G &A.

Let xx, x2,..., Xa be the vertices of the triangles or quadrilaterals in M. Every
M G &ú is now uniquely defined by its vertices x' = FM(x'), i = 1,2,..., d, and so
we may write ßM = ß(xx, x2,..., xd). We will now consider the vertices as a point
X = (xx,x2,..., xu) in R2J, and ßM = ß(X) as a function of X. Let hM =
maxKlzM(hK). We may assume that hM = 1 and that xx coincides with the origin in
R2, since the general case can be handled by a scaling argument using the mapping
G(x) = h~u(x - xx). Sincexx is chosen as the origin, every vertex xx, x2,..., xd lies
within a given distance from the origin. Further, every A c M has a diameter less
than or equal to unity and satisfies the regularity assumptions (2.4) and (2.5). This
means that the point X belongs to a compact set, denoted by D, in R2d. It can now
easily be proved that the function ß is continuous, and since ß(X) > 0 for every
X g D, we conclude that there is a constant ßM > 0 such that ß( X) > ßM for every
X g D. We have thus proved the condition

inf        sup   (divü, p)M > ßu > 0   VA/g Sj¿,
IIPllo.M=l   M,M=1

which is equivalent to (3.5).    D

We are now ready to introduce a " macroelement condition" which is sufficient for
the stability inequality (2.10) to be valid. Let us assume that there is a fixed set of
classes $A, i = 1,..., n, n > 1, such that

,_ ,s For each M G Ê^, / = I,..., n, the space NM is one-dimen-
sional, consisting of functions that are constant on M.

Let us further assume that for each A the triangles or quadrilaterals in Qh can be
grouped together to form macroelements such that the so obtained macroelement
partitioning 'DIL^ of ß satisfies the following condition:

Each M g 91t  belongs to some of the classes Sc ,(3.7) * & M>
i = 1,2.n.
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14 Rolf stenberc;

In the case when linear and bilinear elements are used for the velocities we will need
one additional condition:

If k = 1 in (2.8) and T is the common part of the boundaries
of two macroelements in k^Lh, then T is connected and
contains at least two edges of the triangles or quadrilaterals in

We can now state the main result of this section.

Theorem 3.1. If the above conditions are satisfied, then (2.10) holds.

Let us postpone the proof of the theorem and first prove two lemmas.
Below we will denote by I1h the L2-projection from Ph onto the space

(3.9) Qh = {p. g L2(ß)|ii|M is constant VA/ g ^Slh).

Lemma 3.2. Suppose that the conditions (3.6) and (3.7) are valid. Then there is a
constant C, > 0 such that for every p G Ph there is a v G Vh satisfying

(divo, p) = (d¡vt>,(/ - nh)p) > c,||(/ - nj^lo
and

\v\x <n(/- njp||0.

Proof. For every p G Ph we have

(/-nA)/>e/>0JW va/e9ka.
Since every M G fltA belongs to some of the classes &A , i = 1,2.n. Lemma 3.1
implies that for every M there exists vM g V0 m such that

(3.10) (divt^.u - nh)p)„ > cx\\(i- nh)p\\lM
and

(3.11) It-M|,.M<||(/- nh)p\\i)Xi.

where Cx = min{/}A}. i = 1.n) and the positive constants ß^ are as in Lemma
3.1. Let us now define v through

Vo*    VA/G^lt,.

Since ü = 0 on 3A/ for every A/ G 9R. A we conclude that u g Vh and

(3.12) (divü,nA/7) = 0   V/»EPA,

and the assertion of the lemma now follows from (3.10) through (3.12).   D

Lemma 3.3. Suppose that the condition (3.8) is valid. Then there is a constant C2 > 0
such that for every p G Ph there ¡sage Vh satisfying

(divg,Tlhp)=\\nhp\\l   and   |g|, < c2||n^||0-

Proof.  Let p G Ph be arbitrary.  Since  II»; e L¿(U),  there exists (cf.  [11])
z g [//(j(ß)]2 such that

(3.13) divz = nA/»
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and

(3.14) |z|, < qin^iio.
We will now combine some ideas from [8] and [9] in order to construct an operator
Ih:[H0x(Q))2 -» Vh such that

(3.15) (divlhz,p) = (divz,p)   V^Ö,
and
(3.16) |/Az|, < C|z|,.

The assertion then follows from (3.13) through (3.16).
In order to define Ih we introduce some additional notation. As the degrees of

freedom ofaoE Vh we choose the values v¡ = v(x'), / = 1,2,..., q, at the Lagrange
nodes x', i = 1,2,..., q (cf. [6], [7]). Let w¡, i = 1,2,..., q, be the corresponding
basis functions defined by w¡(xJ) — 8¡¡. The support of the basis function wt will be
denoted by S¡, and \S,\ will stand for the area of 5,. The inter-element boundaries of
the macroelements in <DltA will be denoted by T¡, i = 1,..., k (i.e. each 7] is the
common part of the boundaries of two neighboring macroelements). We will assume
that "DltA consists of at least two macroelements so that 1 < k < q.

Due to the assumption (3.8) we may assume that for / = 1,_k the node x' g T,
and that supp wt c A/, U A/, , where A/, and A/, are the macroelements in GJ\Lh such
that 7] = A/, n M^ (when k > 2 in (2.8) x', i = 1,..., k, is taken as one of the
interior nodes on an edge, of a triangle or quadrilateral, common to A/, and A/, ).
Since fT w¡ ds * 0, we can uniquely define Ih z by requiring

I z dx
(i) (Ihz)(x') = ^y-    (ori = K+\,...,m,

and

(ii) / Ihz ds = I z ds    for / = 1_, k.
T JT,

Since Qh consists of functions that are constant on each A/ G 9ltA, an integration by
parts shows that condition (ii) implies (3.15). The estimate (3.16) is easily proved
using a scaling argument.

The lemma is thus proved.   D
We close this section by giving the
Proof of Theorem 3.1. Let/? g Ph be arbitrary, and let v g Vh, g g Vh, Cx and C2

be as in Lemma 3.2 and Lemma 3.3. Set z = d + 8g, where S = 2(7,(1 + C2)'x.
Then we have

(3.17) (divz, p) - (divu, p) + ô(divg, p)

> cx\\(i - uh)p\\2 + s(divg, nhP) + ô{divg,(i - uh)p)

> cx\\(i - nh)p\\2 + 8\\nhP\\2 - fi|g|,n(/ - uh)phJPWO

I 8C2\ ñ
>[C>--2L)ll(/-n*)^lo+2llI1*^lo

= C,(l + C22)"'|^||S
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16 ROI.FSTENBERC;

and

(3.18) ¡--i, < n(/- nh)p\\{) + «c2nnA/J||0 < c\\p\\0.
The inequalities (3.17) and (3.18) are just an alternative way of stating the condition
(2.10),and the theorem is thus proved.    D

4. Applications. In this section we apply the theory developed in Section 3 to some
mixed methods. Let us first note that all the conforming methods discussed in [4], [9]
and [18] can also be analyzed using the technique of Section 3. In fact, the essence of
the analysis of [9], [18] consists of verifying the condition (3.6) for macroelements
consisting of only one element. Using the present technique, we obtain optimal
convergence rates for both the velocity and the pressure in the examples studied in
[4], [9] and [18]. Thus, our analysis shows that the assumption of [4], [9] and [18] that
the mesh is quasiuniform (i.e. hK ^ Ch for every K E (iA) can be dropped and that
the suboptimal estimates for the pressure proved in [4] can be improved to optimal
ones. Improvements of some of the results of [4] are also obtained in [23], but still
under the quasiuniformity assumption.

The simplest method of approximation would be a piecewise linear or bilinear
approximation for the velocities and a piecewise constant approximation for the
pressure. It is, however, well known (cf. [15], [21]) that the corresponding mixed
method in general does not satisfy (2.10). In particular, when the region ß is
rectangular and lrA consists of rectangular elements it is well known (cf. [15].
[21]... ) that there is a nonconstant, "checkerboard" function ju g Ph such that
(div v. p.) = 0 for every v G Vh. In our first example below we propose an alternative
of this method, using bilinear quadrilateral approximations for the velocities and a
piecewise constant approximation for the pressure, which satisfies the stability
inequality (2.10).

9

Figure 1

Example 1. Consider the reference macroelement M and an arbitrary A/ g &m as
shown in Figure 1. Define the spaces V0 M and PM as

K.m= {»e [Hr\(M)]2\v,lK^Qx(K),i= 1,2, VAC A/},
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and

PM = (pe L2( M)\p\K is constant VA c A/}.

Let  us  now check  the condition (3.6).  Choose v g Vn M such  that ü(jc') = 0,
i = 1,2.10, ; * 5, and vt(x5) = 1, ü2(x5) = 0, respectively, vx(x5) = 0, u2(x5)
= 1. The condition (divu, p)M = 0 then gives the equations

lpx(x2 - *?)+/>,(*? - x2)+p,(xt - xl) = 0,
\px(x¡ - x¡) +p3{x92- x\) + pA(x4- x\) = 0,

where we have written x' = (x\, x2), i = 1,2,..., 10, and pi = p,K, i = 1,2,..., 5.
The equations are easily seen to be linearly independent with the only solution
P\ = Ps = Pi- ln tne same way we conclude that the condition (divu, p)M = 0,
where v is chosen such that v(x') = 0, i= 1,2,..., 10, / *= 6, and vx(x6) = 1,
v2(xb) = 0, respectively, vx(xb) = 0, v2(xb) = 1, implies that p2 = p¿ = p5. The
condition (3.6) is thus satisfied. Let us now define

Vh = {v g [^(ß)]2]^ G ß,(A) VA G eA}

and

Ph = {/> g L^ß)!^ is constant VA g 6a).

Suppose that for every A there is a macroelement partitioning G31tA such that every
M g 91tA belongs to &¿, where M is as in Figure 1. Since the conditions (3.6) and
(3.8) are satisfied, Theorem 3.1 shows that the stability inequality (2.10) is valid.
Suppose ß is convex. We then have u g [//2(ß)]2 and p g //'(ß) if/g [L2(ß)]2
(cf. [11]), and Theorem 2.1 implies the estimates

(4.1) l|«-«*lli+ll/»-/»*llo<Cfc(lMl2 + IIPlli)
and

(4.2) ||M-Ua||0<CA2(||M||2 + ||/>||,).

Remark. The method proposed by Le Tallec [16] can also be analyzed with the
present technique, and the estimates (4.1) and (4.2) hold also for this method.

In the following examples we consider three mixed methods for which we have not
found detailed error analysis in the literature.

Example 2. The Hood-Taylor method [12]. In this method the elements A g Qh
are quadrilaterals and the approximating spaces are defined as

(4.3) Vh = {v G [//¿(ß)]2^ G Q2(K), i = 1,2, VA G ßh)

and

(4.4) Ph = {p G L2(ß) n C(Ü)\pÍK g QX(K) VA G eh).

The method has previously been analyzed in [4] in the case of rectangular elements.
We will now derive error estimates for the general quadrilateral case.
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18 ROLF- STENBERG

Figure 2
Degrees of freedom for V0 M (•) and PM (o)

To check the validity of the condition (3.6). let M = A, U A2 be a macroelement
consisting of two neighboring quadrilaterals (see Figure 2). The degrees of freedom
for PSI are the values/», = p(x') at the nodes x'. i' = 1,2.6, and for V0 M they are
the values v(x') at x', i = 7.8,9. Let A/ = Â, U A2 be the reference macroelement
and assume that A, and A2 are squares. Using the Green's formula we have

(divu. p)M = ~(v.Vp)M = - £ (v,Vp)k,,
/-i

for v g V0 M and p g Pm. Let FM be the piecewise bilinear mapping from A/ to M
and define, for v g Vom and /? g Pm. v and ^ in M through v(x) = v(FM(x)) and
p(x) = p( Fm(.x)). We can then write

(4.5 ) ( v. Vp ) k, = /. t3( x)JfJ Vp( x)\JFJ dx,       j = 1,2,

where 7F is the Jacobian matrix of FM, \JF I is the determinant of J. and Je T is the
transpose of JF]. Now, an inspection shows that

ô(x)JF-JvP(x)\JFjBQ,(kj),

and the integral in (4.5) can thus be exactly evaluated using the composite Simpson's
rule. Further, we have \JF^ (x)\ =*= 0 for every x g k. Using these facts we conclude
that the condition (v, Vp)M = 0, where v G V0 M is chosen such that i5(jc') = 0,
; = 8,9, and t5,(i7) = 1, t52(i7) = 0, respectively, t3,(x7) = 0, t52(x7) = 1 (x' =
FMx(x'),i = 7,8,9), gives the equations

(46) /ft-A+A-P.-O.
I ft - P\ + ft * ft = °-
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In the same way we get (taking v(x') = 0, i = 7,8, and vx(x9) = 1, t32(x9) = 0,
respectively, vx(x9) = 0, v2(x9) = 1)

'ft "ft +ft "ft = °.
(4.7) \ft "ft +ft-ft = 0-
The equations in (4.6) and (4.7) are linearly independent with the solution
(4.8) <P>-P,-H-a.
V \ ft  = ft  = ft   =  D'

where a and b are arbitrary real constants. Now, choose v g K0 w such that
t3(x') = 0, / = 7,9, and u,(i8) = 1, v2(x%) = 0, respectively, t5,(j£8) = 0, t52(x8) = 1.
If p G PM satisfies (4.8), then the condition (v, Vp)M = 0 gives the equations

i(a-b){x\ + x4-x\-x2) = 0,

\{a - b){x52 + x42 - x2 - x2) = 0.

Now, we cannot simultaneously have xx + x4 - x\ - x2 = 0 and x\ + x2 - x\ -
x\ = 0, since it would imply that the midpoint of the side x4 - x5 coincides with the
midpoint of the side xx - x2. Therefore we conclude that a = b and (3.6) is thus
valid for A/. In the same way one can show that (3.6) is also satisfied for a
macroelement consisting of more than two quadrilaterals. The quadrilaterals in (?A
can always be grouped together to macroelements consisting of two or three
quadrilaterals. There is only a finite number of different classes of such macroele-
ments and (3.7) is thus satisfied. Theorem 3.1 and Theorem 2.1 then imply the
estimates

(4.10) |« - 11,1, + \\p- Ph\\0 < CA2(||M||3 + \\p\\2)
and

(4.11) II« " Mû < CA3(||«||3 + ||/>||2),
provided that u G [//3(ß)]2,/> G //2(ß) and ß is convex.

Remark. If the boundary of ß is curved, then the velocities are usually (cf. [12])
approximated with isoparametric biquadratic elements whereas the pressure is
approximated with "superparametric" bilinear elements, i.e., (3,(A), ; = 1,2, in
(4.3), (4.4) are defined as

e,(A)= {a-j^'Ia *&(*)},
where Q,(k) is defined in (2.6) and FK: A -» A is a regular biquadratic mapping as
defined in [7]. For each A g Qh let a¡ K, i = 1,2,..., 9, be the usual Lagrange nodes
such that aiK, i = 1,2,3,4, are the vertices of A. Let â, ¿, / = 1,2,..., 9, be the
nodes for the corresponding straightsided quadrilateral Â with a¡ j¿ = a, K for
i = 1,2,3,4. One can now easily show that the stability inequality (2.10) still holds if
we have

(4.12) ||fl/fjr - äik || < ChK,       / = 5,6,...,9,VAGeA,

where C stands for a sufficiently small positive constant. In the definition of the
regular mapping FK one has the condition \\a¡ K - äi ¿|| = 0(h\), / = 5,6,..., 9,
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and (4.12) thus holds provided that the mesh parameter A is sufficiently small. Since
the approximation properties of Vh and Ph are as in Lemmas 2.1 and 2.2, Theorem
2.1 holds. The estimates (4.10) and (4.11) are thus also valid for the general
isoparametric Hood-Taylor method.

Example 3. In this example we treat a modifaction of the previous Hood-Taylor
method (cf. [14]). We assume that ß is a rectangle (or the union of rectangles) and
that the elements A g c\ are rectangles. The space Ph is defined as in (4.4) and Vh as

Vh = {ve [//(!(ß)]2|iVG(22(A),,= 1,2,VAgca}.

where Q'-,(K) is the reduced space of biquadratic polynomials defined in [6, p. 63].

Q-

G-

Ô-

Q-

&

■0

&

&

&

12€>

V,

114)
K,

10é

Figure 3
Degrees of freedom for K0 M (•) and for ft, (o)

Let us now check the validity of the crucial condition (3.6). Consider a macroele-
ment M consisting of six rectangles arranged as in Figure 3. Consider first the
macroelement A/, = U ,4=l A,. The condition (divt;, p)M¡ = 0, for every v G Vnu¡,
gives a system of ten equations for the nine pressures p¡ = p(x'). i = 1,2.9. The
system (which we omit to write out explicitly) is easily seen to have a rank of seven
and the nontrivial solution

(4.13)
•P\ =ft = ft = Pi = a-
Pi = ft = ft = Pu = b>

yPs = \{a + b).

where a and b are arbitrary real constants. Repeating this argument for the
macroelement A/2 = U *_3 K,, we conclude similarly that

(Pa =ft = fto =ft2 = c<
^ft = Pi =ft =^11 = ¿.

,-i(c + i/).

Now, if /» satisfies (divo, /))M = 0 for every v g V0m, then it has to satisfy both
(4.13) and (4.14), which is possible only if a — b — c = d, i.e. p is a constant in M.
The condition (3.6) is thus satisfied. In the same way we conclude that if a
macroelement contains another macroelement which is equivalent to the macroele-
ment in Figure 3, then (3.6) is satisfied. There is now a finite number of classes of
macroelements, consisting of less than or equal to 24 rectangles, which satisfies (3.6).
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Since for each A there is an 91tA where each A/ G 91tA belongs to one of the above
classes, Theorem 3.1 holds and the error estimates (4.10) and (4.11) are valid.

Example 4. In this method, which is being increasingly used in practice (cf. [10]),
the space Vh is defined as in (4.3), whereas one uses a discontinuous approximation
for the pressure,

(4.15) Ph = (p g L2(ß)|^ G />,( A) VA G eh) .

Let us now show that the condition (3.6) is valid for macroelements consisting of
only one quadrilateral. On an arbitrary quadrilateral A g Qh, p g Ph can be written
as

P\K ~ a0,K + a\,Kx\  + a2,KX2-

Let x° be the interior node in A, and let w0 be the corresponding basis function of
Vh. Choose t> g V0 K such that vx(x°) = 1 and v2(x°) = 0. We then obtain

(divv,p)K= _(o,v/>)jf = -aXKfw0dx.
JK

Since fKw0dx > 0, the condition (divu, p)K = 0 implies that ax K = 0. In the same
way, choosing v G V0 K such that vx(x°) = 0 and v2(x°) = 1, we conclude that the
condition (divu, p)K = 0 gives a2K = 0. The condition (3.6) is thus satisfied for an
arbitrary A/ = A g Qh. We may then choose 91tA = 6A in (3.7) and (3.8), and so we,
once again, obtain the estimates (4.10) and (4.11).

Remarks. (1) As in the remark following Example 2 we can conclude that the
stated error estimates remain valid for the general isoparametric method.

(2) Of the methods treated in Examples 2, 3 and 4 the last one seems superior, due
to the fact that the discrete system can in this case be solved effectively using the
penalty method, cf. [2], [10], [17].

(3) A method which is also often used in practice (cf. [3], [13], [17]) consists of the
following choices for Vh and ft:

KA = {üG[//(J(ß)]2|ü,|i,G02(A),i=l,2,VAGeA},

ft = {p G L2(Sl)\p}K G Ô,(A) VAG ßh).

The method has originally been introduced in the engineering literature as a penalty
method with "reduced selective integration", cf. [3], [13], [17].

The method does not satisfy the condition (3.6), so we cannot apply the theory
developed in this paper. For rectangular elements it is, however, possible to analyze
the method using the technique developed in [15]. The error estimates one obtains in
this way are [22]

\u-uh\x <Ch2(\u\3 + \u\Aq + \p\2),

\\u-uh\\0<Ch'{\u\3 + \u\^ + \p\2)

and

H/»-/»Jlo<Cfc(|«l3 + M4..+ l/»l2).
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where q > 1 and | • |4 stands for the usual seminorm in the Sobolev space W/4</(ß).
From the estimates one sees that the pressure does not converge with the optimal
rate, a fact also observed in practical computations [21]. In [21] it is also noted that
one can get a good approximation for the pressure by simply omitting the jci*^com-
ponent in each element in the computed ph, and this can also be proved theoretically
[22]. The resulting smoothed pressure then converges with the optimal 0(A2)-rate. In
view of this analysis, the role of the X|X2-component is mainly disturbing and it is
therefore natural to drop it from Ph¡K. This leads back to (4.10).
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