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Analysis of Mixed Methods Using
Mesh Dependent Norms*

By L. Babuska, J. Osborn and J. Pitkiranta

Abstract. This paper analyzes mixed methods for the biharmonic problem by means
of new families of mesh dependent norms which are introduced and studied. More
specifically, several mixed methods are shown to be stable with respect to these norms

and, as a consequence, error estimates are obtained in a simple and direct manner.

1. Introduction. In [5] Brezzi studied Ritz-Galerkin approximation of saddle-
point problems arising in connection with Lagrange multipliers. These problems have
the form:

Given f€ V'and g€ W', find (u, ¥) € V x W satisfying
a(u, v) + b(v, ¥) = (fv) YveEV,
b(u, 0) = (& ¥) Vv €U,

where |/ and ({f are real Hilbert spaces and a(-, -} and b(:, ‘) are bounded bilinear
formson V x V and V x W, respectively.

Given finite-dimensional spaces ¥, C V and W, C (, indexed by the parameter
0 < h <1, the Ritz-Galerkin approximation (u,,, ¥,) to (u, ¥) is defined as the solu-
tion of the problem:

Find (u,, ¥,) €V, x W, satisfying

a(uy, v) + b, ¥,) = f,v) YwEV,,
b(uh, ‘p) = (gr ‘p) W’e wh'

The major assumptions in Brezzi’s results are

la(u, v)!

(1.1)

(1.2)

(1.3) sup

= yollull, Yu € Z, and Vh,
ez, Il

where v, > 0 is independent of &, and Z, = {v € V,: b(v, v) =0 Vo € W, }, and

|b(v, )|
(1.4) sup M? k, |I¢|Iw Vo € W,, and Vh,

fvl
vEVh (")
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1040 I. BABUSKA, J. OSBORN AND J. PITKARANTA

where k, > 0 is independent of A. Using (1.3) and (1.4), Brezzi proves the following
error estimate for the approximation method determined by (1.2):

ﬂﬂﬂu—%M4W¢—wﬂw<C<hﬂ"u*ﬂw+ mfnw—wo v,

xEV, nEW,

where C is independent of A.

In [1], [2] Babuska studied Ritz-Galerkin approximation of general, variation-
ally posed problems. The main result of [1], {2], as applied to (1.1) and (1.2), is
that (1.5) holds provided

la(u, v) + b(v, ¥) + b(n, )l

sup ) + b, ¥) @O0 S o aly, + 1yl)
lol, + gl ol Ty w

(v pIEV, XW, vl + gp|w

(1.6)
Y(u, Y)EV, x W, and Vh,

where 7, > 0 is independent of 4. It is clear from [1], [2] that (1.3) and (1.4) hold
if and only if (1.6) holds. (1.3)—(1.4) or, equivalently, (1.6) is referred to as the
stability condition for this approximation method.

The results of [1], [2], [5] can be viewed as a strategy for analyzing such ap-
proximation methods: the approximation method is characterized by certain bilin-
ear forms, norms (spaces), and families of finite-dimensional approximation spaces,
and if the method can be shown to be stable with respect to the chosen norms, then
the error estimates in these norms follow directly, provided the bilinear forms are
bounded and the approximation properties of ¥, and W, are known in these norms.
These results can be used to analyze, for example, certain hybrid methods for the
biharmonic problem [S], [6]. The results of [1], [2] have also been used to ana-
lyze a variety of variationally posed problems that do not have the form (1.1).

There are other problems of a similar nature, however, where attempts at using
the results of [1], [2], [5] were not entirely successful since not all of the hypoth-
eses were satisfied: specifically, the Brezzi condition (1.3) or, equivalently, the
Babuska condition (1.6), is not satisfied with the usual choice of norms, i.e., the ap-
proximation methods for these problems are not stable with respect to the usual
choice of norms. This is the case, for example, in the analysis {7] of the Herrmann-
Miyoshi [15], [16], [20] mixed method for the biharmonic problem. In the analy-
sis of this method, a natural choice for both |- IIV and Il is the 1st order Sobolev
norm; however, this method is not stable with respect to this choice of norms. As a
result of this difficulty, the error estimates obtained in [5] are not optimal. A simi-
lar difficulty arises in the analysis of the Herrmann-Johnson [15], [16], [17] and
Ciarlet-Raviart [9] mixed methods for the biharmonic problem. In later work of
Scholz [23] and Rannacher [22], optimal error estimates were obtained for the
mixed methods of Ciarlet-Raviart and Herrmann-Miyoshi. In a forthcoming paper,
Falk-Osborn [12] develop abstract results from which optimal error estimates for
these and other problems can be derived. However, in neither the work of Scholz
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MIXED METHODS USING MESH DEPENDENT NORMS 1041

[23], Rannacher [22], nor Falk-Osborn [12] is the systematic approach of Brezzi and
Babuska used.

It is the purpose of this paper to analyze mixed methods for the biharmonic
problem by means of the results of Brezzi and Babuska. This is done by introducing
a new family of (mesh dependent) norms with respect to which the above-mentioned
mixed methods (Ciarlet-Raviart, Herrmann-Miyoshi, Herrmann-Johnson) are stable.
Once the stability condition has been checked and the approximation properties of the
subspaces ¥, and W, have been determined in these new norms, the error estimates
in these norms follow immediately from the abstract results of Brezzi and Babuska.
Error estimates in the more standard norms are then obtained by using the usual
duality argument. The results of this paper were announced in [21]. We also note
that the methods employed in this paper have been applied to two-point boundary
value problems in [3].

Section 2 contains a review of the convergence results of Brezzi and Babuska.
In Section 3 we introduce and study the mesh dependent norms and spaces used in
the analysis in this paper. In Section 4 we treat three examples previously analyzed
in the literature and show how error estimates can be derived from the abstract re-
sults in Section 2, used in conjunction with the mesh dependent norms introduced in
Section 3. These examples are all mixed methods for the biharmonic problem. The
error estimates in the standard norms that are obtained in the present paper and those
obtained in [12], using different techniques, are the same.

Throughout this paper we will use the Sobolev spaces H™ = H™(2), where Q
is a convex polygon in the plane and m is a nonnegative integer. On these spaces we
have the seminorms and norms

1/2
lol,, = lol,, o = < > |D°‘V|2dx> ,
|

al=m

and

1/2
hol,, = ol ¢ = < > ID°‘V|2dx>

lal<m

H{'(2) denotes the subspace of H™(Q) of functions vanishing together with their
first m — 1 normal derivatives on ' = 9§2. We also use the spaces H~"(2) =
(HZ () (the dual space of Hy'(2)) with the norm on H™™(£2) taken to be the
usual dual norm.

2. Abstract Convergence Results. In this section we review certain results on
the approximate solution of saddle-point problems.

Let V,, and W, be real Hilbert spaces (indexed by the parameter h, where 0 <
h < 1) with norms I "Vh and II- II(,,h, respectively, and let @, (, *) and b, (", *) be
bilinear forms on /,, x V, and V, x W,, respectively. We suppose

2.1) lay(u, )l <K Nully,Iolly,  VYu, ve U,
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1042 1. BABUSKA, J. OSBORN AND J. PITKARANTA

(2.2) 1, ) <Ky luly Vol Yu€ Vy, Vo€ Wy,

where K| and K, are constants that do not depend on A.
We consider the following problem, referred to as problem P:
Given f € /), and g € W,,, find (u, ¥) € V,, x W, satisfying

(233) ah(u’ U) + bh(v’ l//) = (f; U) vv € Vh’
where (-, -) denotes the pairing between |/, and its dual space V},, or between W,
and W),

We shall consider this problem for a subclass of data, i.e., for (f, g) € D, where
D is a subclass of V/}, x W,,. We assume that P has a unique solution for all (f, g) € D.

We are interested in the approximate solution of P. Toward this end we suppose
we are given finite-dimensional spaces ¥, C V, and W, C W, 0 <k < 1,2and consider
the following problem. referred to as problem P, :

Given (f, ) € D, find (u,, ¥,,) € V,, x W, satisfying

(2.4a) a,(u,,v) + b, ¥,)=(f,v) WEV,,

(2.4b) by(u,, ©) = (8 ¢) Yo EW,.

We now regard u,, as an approximation to « and ¥, as an approximation to .
Regarding problem P,, we suppose
la, (u, v)l

(2.5) sup ———— >, llull Yu € Z, and Vh,
o3 ot > Tolkly, h

where v, > 0 is independent of A, and Z, = {vE V,: b, (v, p) =0 Yy € W, 1}, and

|bh(v5 ‘p)l
(2.6) Sup —p >k, Il«pllwh Yo € W, and Vh,
ve Vh Vh
where k; > 0 is independent of #. We now state the fundamental estimate for the

errors 4 —u, and Y — ¢, .

THEOREM 1 (BREzzZI [5]). Suppose (2.1), (2.2), (2.5), and (2.6) are satisfied.
Then problem P, has a unique solution (u,,, V,) for each h, and there is a constant
C, independent of h, such that

Q) We=uyly, + W= ¥yly, <C((inf =y, + 6 B -nly,) Y

(2.5)—(2.6) is referred to as the stability condition for this approximation method.

In many applications of Theorem 1 the spaces V, and ,, and the forms g, and
b, do not depend on A, ie., I/, = V and W, = W are fixed Hilbert spaces and a, =a
and by, = b are fixed bilinear forms and V x V and {/ x (. The space ¥V}, and W,,
typically, are spaces of piecewise polynomials with respect to a triangulation T, of
some domain by triangles of size less than or equal to & and, of course, depend on A.
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MIXED METHODS USING MESH DEPENDENT NORMS 1043

In the applications in this paper, both the spaces /,,, W, and V,,, W, depend on k, i..,
are mesh dependent; the constants K|, K, 74, and k,, however, will be independent of
h;cf. [2, Chapter 7]. In these applications the solution (u, ¥) of (2.3) is independent
of handliesin V, x W, for all A. Thus the estimate(2.7) yields convergence estimates
for u —uy, and Y — ¥, provided the families {¥}, }and {W, } satisfy an approximability
assumption. For typical finite element applications this would involve the assumption
that inf, o v, flu — x| v, and inf, W, ly ~ nllwh tend to zero as h tends to zero.

3. Mesh Dependent Norms and Spaces. In this section we describe the mesh de-
pendent norms and spaces we shall use in the paper. Let  be a convex polygon in the
plane. For 0 <h <1, welet T, be a triangulation of by triangles T of diameter less
than or equal to 2. We assume the family of triangulations {T,} satisfies the minimal
angle condition, i.e., there is a constant ¢ such that

hy
3.1) max — <o Vh,
reT1, PT

where A is the diameter of T and p is the diameter of the largest circle contained in
T, and is quasi-uniform, i.e., there is a constant 7 > 0 such that

3.2) Eh— <7 VTET, and Vh
T

Let T, =Ure ThaT. We define

H} = {u € H'(Q): ul, € H¥(T) VTE€ T,}

and on H} define the norm

qu?

Jﬁl ds,

2 _ 2 -—lf
el = 20 Wl +n7t )
TET, h

where, if T'=03T! N dT? is an interior edge of the triangulation T, , we set

ou au ou
== 4
e A WS S
where v/ is the unit normal to T" exterior to 7, and if T is a boundary edge of T,
we set
u| _ou
Tov|r = o

On H'(R) we define

k2, = i dx + hfrh ul? ds

and then define HY to be the completion of H'(2) with respect to Il e H} can
be identified with L,(Q) @ L,(T},).

We note that norms similar to II-l, , and II-l, , have been used in a different
manner in Douglas-Dupont [11] and Thomas [26].
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1044 1. BABUSKA, J. OSBORN AND J. PITKARANTA

For k > 1 a fixed integer, we define

(3.3) S, = WECOQ): vip EP VTET,}
where P, is the space of polynomials of degree k or less in the variable x, and x,. It
is clear that §, is contained in H,? and H,f.

We now prove several lemmas that are fundamental to the analysis of this paper.
These proofs are all closely related to the ideas used in the proof of the Bramble-
Hilbert lemma [4]. Prior to stating the first of these lemmas, we describe the notation
we will use and state some well-known results that will be used in the proofs.

Let T be an arbitrary triangle and let T be the reference triangle with vertices
(0,0),(1,0),and (0, 1). Then there is an invertible affine mapping F(X) = Byx + by
= F(x) = BX + b such that T = FT(T ). This mapping leads to the correspondence
XET«>x=F T(fc) € T between points in T and points in T and the correspondence
(B T— R <> @=0o F7': T — R) between functions defined on T and functions
defined on T. Note that i(X) = v(x).

It is easily seen that

(34) (V,0)) = (B~ (V:0)(F ' (x))-

If v = »(x) denotes the outward unit normal to 9T at x and » = »(X) is the outward
unit normal to 37 and X, then

(3.5) w(x) = (B~1)'(X) B u(x)|,

where ¢ denotes transpose. Let the sides of T be denoted by T}, i = 1, 2, 3. |T| de-
notes the area of T and |T]| denotes the length of T;. The seminorms vl - and If)ll 2
are related by '

(3.6) lbl; 3 < idet BI™* /2 IBW vl 7
and
(3.7 lol, < Idet BI'/2IB7! ol 7,

where Bl is the norm of B induced by the Fuclidean vector norm; cf. [8, Theorem
3.1.2]. We will also use the estimates

h ha
(3.8) BI<-L, 1B <<
Pr Pr

cf. [8, Theorem 3.1.3]. We also note that |det B| = |T|/|T]. Finally we remark that
there is a constant C = C(T) such that

(.9) inf 13+ ply,, 7 <Clile,, 7 Ya€HT'(T);
pEPk

cf. [8, Theorem 3.1.1].

LeEMMA 1. There is a constant C such that

lully , < Cllull, Vu €S,
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MIXED METHODS USING MESH DEPENDENT NORMS 1045

Proof. 1t is sufficient to show that

hfrhlulz ds <Clull VYues,.

Now (/7 lal? dx)'/? and (5 lal? dx + 7 lal? ds)'/? are both norms on the finite-
dimensional space Pk(f" ) = {pl3: p € P} and hence there is a constant C(T) such
that

Jo it as < o [ a% Vi € P

Let T € T, and suppose T is the image of T under the mapping F(x) = B% + b. Then,
using (3.1), (3.2), and (3.6), we see that for any u € P, we have

3
Jypwitds = 3 f i ds < X [, 1l
=1 1 i

< C(F) max T}) [ 181 &% < C(T) max|T}|Idet I
i i

- vy CD4ATI (Fr\, 1
< C(T) max [T Mul? . < —=——[—}lul
( ) ; T 0,T T pT2 0,T

~ ~ h 2 ~
<CDAT P\ L e < oot ulf
m Pr hT ’ ,

T —1
< C(T)oth Ilullg,T .

Therefore
R wlds<h Y lul? ds
frh éT, faT
<C(Mor L Mul} ;< CTorhull
TET,
forallues,.

LEMMA 2. There is a constant C such that
lal, , < cn 'l o Vu €P,.

Proof. Since {T,} is quasi-uniform, it is well known that

T Wl o <Chlul} o Yu€EP.
TET,

Thus it is sufficient to show that
—1
i

Uplal?dx + [y |V;ul? ds)! /% and Ilftlllj are both norms on the finite-dimen-
sional space Pk(f") and hence there is a constant C(T) such that

Jou

2
™ ds<Ch?'ul} o VYu€Py.

h
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1046 I. BABUSKA, J. OSBORN AND I. PITKARANTA

EG) = [, 710z d§ < CDaIR 5 Vi € P(D).
Clearly, E(i + p) = E(u) Vp € P,. Thus

E@)=E@ + p) C(T)lu + p|| Vp EP,
and hence, using (3.9), we have

E@) < C(T) inf lu + pl, 7 7 < C(T)Iu|l -
PEP
Now let T € T, and assume T is the image of T under the mapping F (x) = Bx
+ b. Then, using (3.1), (3.2), (3.4), (3.6), and (3.8), we see that for any u € P, we

have
fa T :

—\ ds—ZI [T, 00 )P ds

<[, B @E ) ds
i i
< B! max|T}| faflv,;l?|2d§< C(T)1B™ 12 max|Tjl ful? 7
i

< C(T)IB~ 12 max|Tj| Idet B 1812 uf? .

. (N (hp BT
<C(T)<p—T> <p >hT 7t

Therefore, we obtain

I,

du
w

<X unf,

du
/ oy TE
Th

<C@o*r Y miu? < C(Tyorh2ul? .
TET,

This completes the proof.
LEMMA 3. There is a constant C such that

inf M = xly , < Chlul, g
XESy

forallu € H'(QY) and all h, where 1 <rand 1 <1< min(r, k + 1).

Proof. We define two interpolation operators that will be used in the proof.
For u € H*(T), let I,u € P, be defined by
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MIXED METHODS USING MESH DEPENDENT NORMS 1047

[ w-Tuyd=0 VfEP_,,

[ = Tgu)dc=0 Vf€P, ,andV sidesT of T,

and
u(@) — (I u)a)=0 Vverticesa of T.
Then, for u € H*(82), we let T,u € S, be defined by
(I ulp = IT(U|T)'
For u € H'(Q), we define the interpolant in a different manner. Here we con-
sider only the case k = 1. Let the vertices of Th be denoted by z,, ..., z,, and

let wy, ..., w,, be the basis for §, defined by w(z;) = 8. Set S; = (supp w) N Q
and let |S;| be the area of S;. Now, following Clément [10], we define I,u by

fsiudx
w;.

S

Thu=2

j=1

We first consider the case r > 2 and [ > 2. In this case we obtain the desired
result by estimating lu — T,ull, ,. By the standard approximability results for S,
we have

Jolu = Tl ax < onluaid,.
Thus it is sufficient to show that
fr,,‘“ — Tyul? ds < CR*lul? .
Suppose u € H’(f”) and set E(u) = [yl - Ifitl2 ds. By the trace theorem
and the Sobolev imbedding theorem we have
E@) < c(Dlak 3,
and since E(u + p) = E(u) Vp € P,_,, we thus have

E@)<C(T) inf I+ pl2;<C(@ul;-
PEP_, ’

Now let T € T, be the image of T under the mapping F(x) = Bx + b. Then
J, = 1y s < % fi; - 1P T as
< m;ixlTi'I srla—Tsual*ds < m?xlT,-'IC(f")Iﬁlzf
< max |TJIC(T)| det Bl 1BI?*[u)?
: ,

" . 4k, [k \21
<C(T)|T|—2T<—T> lul?

2 \Pp) AT

< C(D)ITl40* 2

-1, 12
2 T Ul
oG
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1048 I BABU§KA, J. OSBORN AND J. PITKARANTA

Therefore
- 2 _ 2
fr,,'“ Tulds< 2 f lu = Tpul® ds

TET,

<CMEnt Y lulEp = @) h¥ ik,
TeTh '

This completes the proof for the case 7, I =
For the case r=>2and [ = 1 or r = I = 1, we estimate lu — Ih““o,h' Clément
[10] has shown that

b = T,ully < Chlul,.
By a slight modification of the proof in [9], we obtain

1/2
<h frhlu - 1,uf? ds> < Chlul,.

The desired result now follows.

LEMMA 4. There is a constant C such that

. 1-2
inf = xl, , <CH"*lul, o
1
XES,NH,

for all u € H'(Q) N H}(Y) and all h, where 2 <rand 2 <1< min(, k + 1).

Proof. let 1, be defined as in the proof of Lemma 3. Note that T,u €S, N
Hé ifu€H N H(}. Since, by standard approximability results, we have

Dl = T,uld o <Rl
T
it is sufficient to show that

Je

We next observe that
[ 519 - TP ds < (DN, Vi € HAT).
Now let T € T, be the image of T under the mapping F(x) = Bx + b. Then

faT

ou-1 2
7 (u hu)

o ds < Ch*7 3wt

h

= (u - T u) ds_Zf [V, — T 70)] 'o(x)I2 ds

=% [/ IB7YV;@ - T7i) ds
<T [ 1B Y@ - Tr)EPIT a8

<IB7'P max [T} |, - V(@ = 138) d§ < O(DIB™'I? max|T; | laf} 7
il

. (h3? 2 |T| C(T)|T|4hT PR3
<C(T)<_> <_A> ITI I IIT T < ﬂp;l_ h I II,T'
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MIXED METHODS USING MESH DEPENDENT NORMS 1049

Therefore

ou —ur)
ov

2
ds

2ds< Z LT

TET),

INE

% (u—T15u)

< C(TM)o*h?3ul} g,
which completes the proof.

4. Applications. In this section we analyze three mixed methods.
(a) Ciarlet-Raviart Method. Consider the biharmonic problem
Ay =g inQ,
4.1)
Yy=0y/ov=0 onI =23Q,
where £ is a convex polygon in the plane and g is a given function. If g € H2(Q),
then there is a unique solution ¢ € HS(Q) of (4.1). In addition, the following regular-
ity result is known for this problem: If g € H™1(2), then ¥ € H>(Q) N HZ(S2) and
there is a constant C such that

(4.2) Iyl <Clgl_, VgEH ().

Using the well-known correspondence between the biharmonic problem and the Stokes
problem, this regularity result can be deduced from the regularity result for the Stokes
problem proved in [18]. We assume g € H~!(Q) throughout this section.

We now seek an approximation to the solution ¢ of (4.1) by a mixed method,
i.e., we introduce an auxiliary variable, (4 = — Ay for the method of this subsection),
write (4.1) as a second-order system, cast this sytem into variational form, and then
consider the Ritz-Galerkin method corresponding to this variational formulation.

Thus we let u = — Ay and write (4.1) as

Au =—g,
(4.3) Ay +u=0 in§,

y=0y/ovr=0 onT.
The desired variational formulation of (4.3) is obtained by multiplying the 1st equa-
tion in (4.3) by v € H} N H,, the 2nd equation by v € H, integrating the resulting
equations over £2, and integrating the first one by parts over each T € T,. By means

of this process we arrive at the following problem:
Given g € H(Q), find (u, ¥) € HY x (H? N H}) satisfying

_ ) o _ 0
fnuvdx—TZ [, vayax frhv<.lav>ds—0 Vo€ HY,
€T
@.4)

_ 26 4y - o
TEZT:thuAtpdx fphll(-/ap ds = fngnpdx Ve EHXNH}.
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1050 I BABUéKA, J. OSBORN AND J. PITKARANTA

Using the regularity result (4.2), one can easily show that if ¢ is the solution of (4.1)
and u =— Ay, then (¥, ¥) is a solution of (4.4), and if (, ¥) is a solution of (4.4),
then  is the solution of (4.1) and u = —Ay. (4.4) is an example of problem P in
Section 2 with V, = Hy, I- Iy, = 1-lg ,, W, = Hy 0 Hg, -1y, =11, ,, a,(, v)
= [q uvdx, and

b, 9) = Zf ubpdx - J <J—9> ds

(and with g replaced by —g). Here the subclass of data for which (4.4) is uniquely
solvable is D = 0 x H™1(Q).

As pointed out above, HY can be identified with L,(2) ® L,(T",). Under this
identification, H!(f) is considered a linear manifold in HY through the mapping

H' Q)2 u— (@ ulp ) ELy(Q) & L,([T)) = HY.

Thus an element u = (E, 7) €L,(82) ® L,(T,) is considered to be in H Y if u€E
H'(Q) and ulp h = u. To be completely precise, b, should be defined by

by, 0y = X [ uspdx - f (J%f> ds,

TET,

for u = (u, u) EHY = L,(Q) ® L,(T',) and ¢ € H?. Note that

(4.5) byt 0) =~ | Vu - Vpax

for u € H'(Q) and ¢ € H}. We further note that it is immediate that (2.1) and (2.2)
are satisfied with constants that do not depend on A.

For finite-dimensional spaces we choose ¥, = S, and W, =S, N H(} (2), where
S, is defined in (3.3). Problem P, thus has the form:

Given g € H™'(Q), find (u,, ¥,,) € V,, x W, satisfying

[ upvax + qump,,dx f < ll/)dx 0 Yvev,,

4.6)

= [rmbdods = [ u < >ds——f godx Vo€ W,.

ETh

Using (4.5), one easily sees that the approximation procedure determined by (4.6) is
the same as that considered by Glowinski [14] and Mercier [19] and further devel-
oped by Ciarlet-Raviart [9]. Note that this method yields direct approximations to
Y and to u = — Ay (the stream function and vorticity in hydrodynamical problems).

We have already observed that (2.1) and (2.2) are satisfied. In order to apply
Theorem 1, we must check the stability condition (2.5)—(2.6).
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THEOREM 2. There is a constant vy, > 0, independent of h, such that
‘ f QWY dxl
~— =Y lul,, Yuez,

ie., (2.5) is satisfied.

Proof. Using Lemma 1, we have

lfnuvdx| S

> sup
ol , e

fnuvdx’

SP Cllvll,

vGZh
=CMuly > c? huly , Yue€Z,

where C is independent of 4. Thus (2.5) holds with vy, = c2.
Now we consider (2.6). LetS, ={v€E€S,: [ vdx =0}

LEMMA 5. There is a constant C, > 0, independent of h, such that

fn Vv - Vpdx
inf sup ——————— >C, Vh.
~ P Ilvllo nlel, . 1
quSh UESh s s
Proof. We first note that
‘v dx’ | . l
C5) N J - v o J v Vpax
¢€§h v€§'h "leO,h "‘p"2 h veﬁ'h 9ES, "v"o,h “80"2 A

This is a consequence of the fact that an operator and its adjoint have equal norms.
Given v € §,, we choose ¢ to satisfy

¢€§h»

[ove-VEax= [ viar vies,.
Letting £ = v and using Lemma 1, we obtain
(4.8) J v Vpar= ] v ax> B,

where C, > 0 is independent of A.
Now let ¢ be defined by

Toef’?‘(n)z{u en' @ [ u dx:()},
[ Ve vide= [ utax vieH'(®).
Then 3y/0v = 0 on I' and, since & is convex,

4.9) lll, < Clwlly.
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¢ is the Neumann projection of y into Eh and it is well known that

(4.10) o —wl, <Chligl,.

Let o be the piecewise linear interpolant of .
Since ¢ € H*(R) and 3p/dv = 0 on T, we see from the definition of - [Py
and from (4.9) that

4.11) el , = lgl, < Clivll,.
From Lemma 4, with £ = 1 and r = 2, and (4.10), we have

(4.12) lp—wl, , < Cligh, < Clol,.

Using Lemma 2, (4.9), (4.10), and standard approximability results, we find that

_= —1 _= -1 = =
@13 T eha <Ol <Gy ol + o -l

< Ch™' (hligl, + Rllgly) < Clivll,.
Now, using (4.11)—(4.13), we have
4.19) gl < llp - 5"2,,, + II«Z—EIIz,h + IIEIIZ,h <G, lvlly < ¢ ol 5,

where C, is independent of A.
Combining (4.8) and (4.14), we get

(4.15) .fnvv ' del

inf  sup
o < Il ol
VES, ¢ES, Vlo,n 1912 1

The desired result now follows from (4.7) and (4.15).

C2
> = :
g, =Ci>0

THEOREM 3. There is a constant k, > 0, independent of h, such that

|bh(vr ‘P)l
4.16) sup —j > kollol, , Vo €W, and Vh,
0,h

veE Vh
ie., (2.6) is satisfied.

Proof. Let ¢ € W, and set e = (1/IQ21)f ¢dx. Then le| < Cllgll, and 9=
¢—e€S§,. By Lemma 5 there is a v, €S, such that

@17) by(vy, ) = by, #) = = [ Vv, VG dx > IGE , > Igl3 , — C, ol
and
(4.18) lolly, < Cligll, ,, < Cslgl, .

We also know that

(4.19) ~bu(e, 0) = Jq (Vl? dx > Cgllpl?
and
(4.20) loly ,, < C, ol 4.
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Now let v = v, — C4C6_1go. Then, using (4.17)—(4.20), we have

(4.21) b, )= lpl? ,
and
(4.22) Wolly , <(Cs + C,C,Co Mgl 4.

Combining (4.21) and (4.22), we have (4.16) with C = (C; + C,C,C. ') L.
We are now ready to apply Theorem 1 to analyze the Ciarlet-Raviart method.

We obtain
Nu ~w,lly , + W =Y,y , <C[ inf lu—xly, + inf Y —nl,,).
’ ’ XE Vh new,

Suppose ¢ € H'(2), r = 3, and suppose kK > 2. Using Lemmas 3 and 4, we obtain
(4.23) hu = up g, + 0 = Y b, , < CHE2IYN,
where s = min(r, kK + 1). From (4.23) we get
(4.24) lu —u, Iy < CH2 1Y,

In addition, (4.23) yields the estimates

4.25 e

(4.252) <fr,,|“ ~u,l? ds> < a2y,

1/2
(4.25b) = W=y, ) <car iyl
TET,
and
ay,|? )1/2
i —r < s—3/2
(4.25¢) <f1‘h J 5 ds Ch Iyl

We now derive an estimate for Iy — ¢, I, by means of the well-known duality
argument. Given d € H™ (), let 6 be the solution of

A%0 =d in £,
{0 =06/o0v =0 onT.
If we let w = — A8, then from (4.2) we have
(4.26) o, + Iwl, <Cldl_,.
Also, from the discussion following Eqs. (4.4), we know that the pair (w, 6) satisfies
@, ¢)g = —a,(v W)~ bW, 9) = b,(v, 0) (v, v) EHY x (HE N Hy).

Setting v = u —u,, and ¢ = Y — ¥, using the exact equations (4.4) and the Ritz-
Galerkin equations (4.6), we get

@ v- ‘l/h)o = —ah(“ Uy, w) — bh(W’ V- %,) - bh(u —u,, 9
=-a,u-u,w-—2)-b,(w-z v=y,)—b(u—u,, 0 —w

Viz, ) EV, x W,.
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Thus, using (2.1), (2.2), (4.26), and Lemmas 3 and 4, we get

d ¥ = )l < Clu =yl + W=,y ) inf Iw =zl ,
zEVh

4.27) + lu —uy,ly , inf e — wl, ,
pGWh

< Crldl_ (lu = uylly 5, + = y,l, 0
Finally, combining (4.23) and (4.27), we have

I(d, ¥ — ¥l

4.28) Iy = y,l, = sup il
_1

< iyl
aeH~1(Q)
where s = min(r, £ + 1).

Estimates (4.24) and (4.28) improve on those in Ciarlet-Raviart [9]. Scholz [23]
obtained (4.24) under the assumption that T is smooth. (4.24) and (4.28) were also
obtained by Falk-Osborn [12]. Note that the approach of this paper does not yield
error estimates for the case £k = 1 for the method studied in this subsection (and also
for the method of Subsection (b)); for this case the reader is referred to Scholz [24].
Using L, -estimate techniques, Scholz [24] has shown that llu —u, ll, = O(#*~3/2)
under different assumptions than those made in (4.24). In [25] it is shown that in
any subdomain , CC Q, lu —u, “0,90 is of “nearly” the same order as Y — ¢, Ho,n’
provided y is sufficiently smooth. Finally we note that our approach allows the treat-
ment of the case when g € (H,f)' — H™ (). For example, we could treat the case
where g is the Dirac function, which corresponds to a concentrated load in plate theory.

Estimates (4.25) are new for this problem. (4.25¢) provides an estimate on the
rate at which the jumps in the normal derivatives of ¥, across interelement boundaries
is converging to zero and also contains the estimate

2
Sl

o
(b) Herrmann-Miyoshi Method. In this subsection we consider another mixed
method for the approximate solution of (4.1). In this method the auxiliary variable is

2
ds < Ch32 Myl

the matrix of second-order partial derivatives of .
For TE T, and v = (v;)), 1 <4 j <2, with y; €H'(T)and v,, = v,,, we set

2
M) = Y v,

Lj=1
and

2

M, (V) = 2 T
=1

where v = (v,, v,) is the unit outward normal and 7 = (7, 7,) = (v, —v,) is the
unit tangent along 07. We note that
4.29 . Yy 2\ _ ( d¢ _w)
(4.29) zlfT <v'l 0x,0x; + ax,. ax,.> dx aT M) v M) or ds

i’j=
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for all ¢ € H*(T). On
lj,,(Q)E{v =) 1 <4j<2iv, =v,,,v;, EH(T) VT €T, and
M (v) is continuous across interelement boundaries}

we define

VB, =X [ oy ax [ ey as
L7

where, on an interior edge 7' = T N dT? of T, we set M(v) =M ,(v) = M ,(v),
and, on a boundary edge T' of T,, we set M(v) = M,(v). Then we define V/, to be
the completion of V/, with respect to Ivll, ,. It is clear that

1/2
(4.30) vy, < <Z o 13

ij
forallv € H'(Q) = {v = (v, 1 <,/ <2: vy, =v,;, v; €H'(Q)}. When we use
the norm [I- 1, ,, it will be clear from the context whether we are applying it to scalar-
valued or matrix-valued functions. As in Subsection (a) we let (), = H,f N Hé. Then
the mixed method studied in this subsection is based on the following formulation of
4.1):
Given g € H™(Q), find (4, ¥) € V,, x W, satisfying

zfﬂu,,,,mz > - f,,axax

i,j=1 i,j=1 TET),

(4.31) +thM(v)J%‘;pds=0 Vvev,,

DI

ij=1 TeT, axa

Using (4.29), we can easily establish the relations between (4.1) and (4.31). If ¢ is

the solution of (4.1) and uy; = 92 w/ax,.ax,., then (, ) is a solution of (4.31), and

if (u, ¥) is a solution of (4.31), then V¥ is the solution of (4.1) and Uy = a2w/ax,.ax,..
(4.31) is an example of problem P with V, and (W, as above,

a,(u, v) = Zf UyjVyy %,
LJ

dx+f M(u)J—ds fgxpdx Yo EW,.

and

by(u, ¢) = Z Z f Uy axax dx + f M(u)J— ds.
Letting S, be as defmed in (3.1), we consider the approx1mate problem P, with
Vi =1v =@y vy =0y, v; €8}
and

W, =S, N H)(Q).
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With this choice for the forms a;, and b, and spaces V, and W,, problem P, describes
the Herrmann-Miyoshi method [15], [16], [20]. Note that with this method we ob-
tain direct approximations to ¥ and 92 ¥/0x;0x; (the displacement and moments in
elasticity problems).

In order to apply Theorem 1, we must check (2.1), (2.2), (2.5), and (2.6). (2.1) .
and (2.2) are immediate. In light of (4.30), the proof of (2.5) is similar to the proof
of (2.5) for the method in Subsection (a). Finally we consider (2.6). Let ¢ € W, be
given. By Theorem 3 we know there is a v € §), such that

J Vo Veax > o2,
and
Ioll, , < Clgl, ,.

Now let v = (; 0). We immediately have v € W, ,

by(V, 9) = an a; = [ Vo Voar > 10l2
]

and

/2 _
vl , < <Zuv,ju> <V2Cligl, .

This proves (2.6).

We are now ready to apply Theorem 1 to analyze the Herrmann-Miyoshi method.
This application is essentially the same as that in Subsection (a). We use the approxi-
mability results in Lemma 3, as modified for matrix-valued functions with the aid of
(4.30), and in Lemma 4. We will just state the results.

Suppose Y € H'(Q), r = 3. Then

(4.32) = w,ly , + 1 = 9,1, , < CH 2PN
and
(4.33) =y, I, <cr iyl

where s = min(7, k¥ + 1). From (4.32) we obtain

(4.34) ha —u,l, <cr2lyl,.

Estimates (4.33) and (4.34) improve on those in Brezzi-Raviart [7]. Rannacher
[22] recently obtained these estimates for the case k = 2. Falk-Osborn [12] also
proved these estimates. We further note that (4.32) contains additional information
corresponding to the mesh dependent norms; cf. (4.25).

(c) Herrmann-Johnson Method. In this subsection we consider a further method
for the approximate solution of (4.1) in which, as in the case treated in Subsection
(b), the auxiliary variable is the matrix of second-order partials of {. Also as in Sub-
section (b), the method is based on the variational formulation (4.31) (the spaces V,
and (i}, and the forms g, and b,, are the same as in Subsection (b)).
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We now consider the problem P, with

V,y=1{vel,: vi]-lTEPk_1 VTET,}

and

Wy = 8, 0 Hy(S).

This choice leads to the Herrmann-Johnson method [15], [16], [17]. Note that this
method differs from the Herrmann-Miyoshi method only in the choice of the finite-
dimensional space V.

This example has certain special features which allow an analysis that is rather
different than that employed in the previous two examples. These special features in-
volve the existence of two particular projection operators denoted by m, and Z,. We
turn to this now.

m, is defined as in [7, Section 4]. For v = (v;) with v;; € H'(T)and v, =
Uy, we define mpv = (w;; ) with w,, j EP_and wy, = w,, by

@39) fT, M,(v—npv)fds=0 VfE€P,_, and for each side T'of T,
4.35

fT [Uij - (WTV)ij] fdx=0 VfeEP,_,.

By Lemma 3 in [6], Il v is uniquely determined by (4.35). Now forvE V,, we de-
fine m,v€ V, by

(Ml = 7 (vlp).

Since we can write

a
bh(v, $) = Z Zf Vij axa AT Mu(v) _a% ds;’

TET,
it is clear that
(4.36) b,V =My, 9) =0 VpEW,.
Concerning the approximation of v by m, v, we have
LEMMA 6. Suppose v € [H™2(Q)]* N (O/h, r=3. Then
(4.37) Ity = vy, < CHlIv,
forl <1< min(k, r - 2).
Proof. In Lemma 4 of [7] it is shown that
v = vil, < CHlIv,

Thus it remains to show that

1/2
hfrh M(m,v — v)I? ds> < cr'livll,.
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Let T € T, and assume T is the image of T under the mapping F(X) = Bx + b.
Given a matrix-valued function w(x) on T, we set w(X) = Cw(F(%))C?, x € T, where
C = B~'. (Note that the correspondence between (matrix-valued) functions on T and
on T is different than the one introduced in Section 3.) Recall that v = C*HiB'|
((3.5)). Then we have

faT M, (v — mpv)|* ds = ZIT; M, (v = npv)* ds = Zle Wi (v — mpvwl? ds
1 I
= 5 I5°CB@ - n39) (F1NBICH1BYI® ds
i i
< IBW maxiT]| |, 5 M;(v = m9)? d§ < C(Tn IBIP 12 1

< C(Dhg B DICI (det B IvIZ 1

C(TYi}\T140°

T h2I—l |V|12,T
p%(z+2)7r

Hence
hfrth(v - m)? ds < ; h ), M, (v —apv)? ds < CR¥lZ g,

This completes the proof.

The second projection operator Z, is the interpolatior}) operator ], introduced
in Section 3. As in the proof of Lemma S in [7], forvE /, and p € H*Q) N
H}(Q), we can write

bu(v, ¥) = = ZZ Taxax Coax+ X[ AT, vpas

(4.38) T'En,

+ 2 B(a, vy(a),

acJ h

where I, is the set of all sides of the triangulation T, J, is the set of all vertices of
T,, and A(T’, v) is a polynomial of degree less than or equal to k — 2 in the variable
s. Since for v € V, we have a2u /ax 0x; IT €P,_;and A(T',v)EP _,, it follows
from (4.38) that Z,¢ = 1,9, as deﬁned in Section 3, satisfies

(4.39) b(v, Z,p-9)=0 VveEV,.

Now we are ready to derive the error estimates. First we estimate lu —u, ll,.
Subtracting (2.4a) from (2.3a), we obtain

(4.40) a,(u-u,,v) +b,(v,y-y¢,)=0 VvE V-

Suppose vE Z, ={wE V,: b,(w,9) =0 Vo € W,}. Then from (4.39) we see that
b, (v, 9) = b, (v, Z,¢) = 0 for all p € H*(Q) N H(} (£2). Hence from (4.40) we have

“4.41) a(u—v,,v)=0 VvEZ,.
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Subtracting (2.4b) from (2.3b) and using (4.36), we see that
by(mu=-u,, 9)=b,u-u,9)=0 YoEW,
ie., mu~—u, €Z,. Thus, recalling (4.41),
ha—u, 12 = a,(-u,, u—-u,)
=a,(u-u,, (u -mu,) + (mu-u,))
=a,(u-u,, u—mu) < lu—u,l - mul,

and hence

(4.42) T —u,ly < lmu-u llg-
Suppose now that Y € H'(Q), r = 3. Then from (4.42) and Lemma 6 we have

(4.43) lu =, ly < CRIYI, ,,

where s = min(k, r — 2).
Now we estimate Y — ¥,. As in Subsection (a) we can write

d y- tl/h)o = —ah(u U, W z) - bh(w 2R A ‘l/h)
(4.44)

—bh(u Uy, 0—u) V(z, w)€ Vh X wh,
where 0 is the solution of
A9 =de L, on§,

0= 3 = onT
and Wi = a2o/ax,.ax,.. We note that (w, 8) satisfies

a,(w,v) +b,(v, )=0 Vvevy,,

(4.45)
b, (w, ¢J)=—fn dy dx YoE W,

(cf. (4.31)). In(444)letz=m,wand u = Z,0. This gives

@ Vv-—vp) =—a,a—u,, w—mw) —b(w=mw, ¥ —y,)
(4.46)

~b,(u-u,, 6~ ,6).
We now estimate each term in (4.46).
Using (4.36), (4.39), (4.45), and Lemma 3, we have
lbh(w - W, Y — ‘I/h)l = |bh(w - mWw, v - Ehll/)l

(4.47) = |b,(w, ¥ = Z,¥)l = I(d, ¥ = Z,¥)o|

< ldlghy — Z,91 < Crilyighdll,,
where s = min(r — 1, k¥ + 1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




1060 I BABU§KA, J. OSBORN AND J. PITKARANTA

In our estimate for the third term on the right side of (4.46), we treat the cases
k > 2 and k = 1 separately. First assume &k > 2. Then, using (4.26), (4.39), and
Lemmas 4 and 6, we find that

b, (u =y, 6 = Z,0)] = b, (u — myu, 6 — Z,0)|
(4.48) <Clu=mull,y 10 - =00, , < Ch~'ul_, alol,

<crlyl, Ndl,,

where s = min(r — 1, kK + 1). Now suppose £ = 1. Then, using (4.26), (4.31), (4.39),
and Lemma 3, we have

b, =y, 6 = Z,0)| = |b,(u, 6 — Z,0) = (A%Y, 6 — £,0),]
(4.49) < 1A%yl 18 — =,81, < Ch2IAZY I, 161,

< Ch* Iy I, Ul
Finally, using (4.26), (4.42), and Lemma 6, we obtain

4.50)  la,(u—u,, w-mw)| < e —u, M hw-mwl, < eyl ldly,

where s = min(k + 1, r — 1).
Combining (4.46)—(4.50), we have

I I = ‘(d, Y- ll/h)o|
@sn VTVl = WP T,

<Ccrlyly,,, s=mink+1,7r-1),ifk>2

and
(4.52) Iy =y ll, <CR?lyll,, ifk=1.
One can also prove that
(4.53) hy =y, <Cr Uiyl s=min(, k + 1), if k£ >2
and
(4.54) Iy =y, <Chliyly, ifk=1.

Estimate (4.53) improves on estimates in [7]. Estimates (4.43) and (4.51)—(4.53)
are given in [7], and (4.43) and (4.51)—(4.54) are proved in [12].

Remarks. (1) As in Subsection (b), we could have shown that the method studied
here is stable with respect to the norm I Il , + Il I, , and then obtained error esti-
mates in this norm. This approach would have allowed the treatment of the case when
g€ (H}) — H () (cf. the next to the last paragraph in Subsection (a)). However,
due to the special nature of this example, more refined estimates can be obtained by
the analysis sketched above in the case when sufficient regularity of the solution is
assumed. Thus the mesh dependent norms play a less central role in the analysis of
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this method than in previous methods. They are, however, convenient; their use leads
to a very natural setting for the study of this example.

(2) The analysis in this subsection was based on the projections 7, and X, and
the fact that

Z,CZ={w:wEV,, b,(w,¢) =0 VYo €H*(Q) NH(},

which follows from the existence of ¥,. For a general discussion of the projections
m, and Z, and the condition Z, C Z see Falk and Osborn [12} and Fortin [13].
(3) In this subsection the mesh family is not required to be quasi-uniform.
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