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Analysis of Mixed Methods Using
Mesh Dependent Norms*

By I. Babuska, J. Osborn and J. Pitkaranta

Abstract.   This paper analyzes mixed methods for the biharmonic problem by means

of new families of mesh dependent norms which are introduced and studied.   More

specifically, several mixed methods are shown to be stable with respect to these norms

and, as a consequence, error estimates are obtained in a simple and direct manner.

1. Introduction. In [5] Brezzi studied Ritz-Galerkin approximation of saddle-
point problems arising in connection with Lagrange multipliers. These problems have
the form:

Given / G [/ ' and g6(ll', find (u, \p) E \J x|il satisfying

) + biv,i>) = (fv)   Vu G I/,

biu, <¿) = (g, <p)   W G W

(a(u, u)

where f and W are real Hubert spaces and a(-, •) and b(-, •) are bounded bilinear
forms on 1/ x 1/ and 1/ x(|J, respectively.

Given finite-dimensional spaces Vn C 1/ and Wh C W, indexed by the parameter
0 < h < 1, the Ritz-Galerkin approximation (un, \ph) to (u, \p) is defined as the solu-
tion of the problem:

Find (un, \pn) E Vn x Wn satisfying

(a(uh,v,-)+b(v,iPh) = (f,v)    VvEVh,

Kuh,<p) = ig. <fi) We wh.

The major assumptions in Brezzi's results are

\a(u, v)\
(1.3) sup   ——->70ll«lly    V« € Zft and V/i,

where 70 > 0 is independent of h, and Zn = {u G Vh : b(v, ip) = 0 Vip G Wh}, and

(1.4) sup   -77^ > ko M» w    ^ e wh and Vfc,
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1040 I. BABUSKA, J. OSBORN AND J. PITKARANTA

where k0 > 0 is independent of h.   Using (1.3) and (1.4), Brezzi proves the following

error estimate for the approximation method determined by (1.2):

(1.5)  II«-«JIV + H«//-^fallw<c/   inf   ll«-xlli,+    inf   I^-tj«w\    VA,
\x^vh VGWh )

where C is independent of h.
In [1], [2] Babuska studied Ritz-Galerkin approximation of general, variation-

ally posed problems.  The main result of [1], [2], as applied to (1.1) and (1.2), is
that (1.5) holds provided

\a(u, u) + biv, i//) + b(rl,y)\
SUP ll„ll    I 1,1 >T°<-lul» + "*V(v,lp)evnxwn «v\\v + ll^llw

(1.6)

V(«, i¡>) G Vn x Wn and Mh,

where r0 > 0 is independent of h.  It is clear from [1], [2] that (1.3) and (1.4) hold
if and only if (1.6) holds.  (1.3)—(1.4) or, equivalently, (1.6) is referred to as the
stability condition for this approximation method.

The results of [1], [2], [5] can be viewed as a strategy for analyzing such ap-
proximation methods:   the approximation method is characterized by certain bilin-
ear forms, norms (spaces), and families of finite-dimensional approximation spaces,
and if the method can be shown to be stable with respect to the chosen norms, then
the error estimates in these norms follow directly, provided the bilinear forms are
bounded and the approximation properties of Vn and Wn are known in these norms.
These results can be used to analyze, for example, certain hybrid methods for the

biharmonic problem [5], [6].  The results of [1], [2] have also been used to ana-
lyze a variety of variationally posed problems that do not have the form (1.1).

There are other problems of a similar nature, however, where attempts at using
the results of [1], [2], [5] were not entirely successful since not all of the hypoth-
eses were satisfied:   specifically, the Brezzi condition (1.3) or, equivalently, the
Babuska condition (1.6), is not satisfied with the usual choice of norms, i.e., the ap-
proximation methods for these problems are not stable with respect to the usual
choice of norms.   This is the case, for example, in the analysis [7] of the Herrmann-
Miyoshi [15], [16], [20] mixed method for the biharmonic problem.   In the analy-
sis of this method, a natural choice for both II- IIy and II • llw is the 1st order Sobolev
norm; however, this method is not stable with respect to this choice of norms.  As a
result of this difficulty, the error estimates obtained in [5] are not optimal.   A simi-
lar difficulty arises in the analysis of the Herrmann-Johnson [15], [16], [17] and
Ciarlet-Raviart [9] mixed methods for the biharmonic problem.   In later work of
Scholz [23] and Rannacher [22], optimal error estimates were obtained for the
mixed methods of Ciarlet-Raviart and Herrmann-Miyoshi.   In a forthcoming paper,
Falk-Osborn [12] develop abstract results from which optimal error estimates for
these and other problems can be derived.   However, in neither the work of Scholz
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MIXED METHODS USING MESH DEPENDENT NORMS 1041

[23], Rannacher [22], nor Falk-Osborn [12] is the systematic approach of Brezzi and
Babuska used.

It is the purpose of this paper to analyze mixed methods for the biharmonic
problem by means of the results of Brezzi and Babuska.  This is done by introducing
a new family of (mesh dependent) norms with respect to which the above-mentioned
mixed methods (Ciarlet-Raviart, Herrmann-Miyoshi, Herrmann-Johnson) are stable.
Once the stability condition has been checked and the approximation properties of the
subspaces Vh and Wn have been determined in these new norms, the error estimates
in these norms follow immediately from the abstract results of Brezzi and Babuska.
Error estimates in the more standard norms are then obtained by using the usual
duality argument.  The results of this paper were announced in [21].  We also note
that the methods employed in this paper have been applied to two-point boundary
value problems in [3].

Section 2 contains a review of the convergence results of Brezzi and Babuska.
In Section 3 we introduce and study the mesh dependent norms and spaces used in
the analysis in this paper.   In Section 4 we treat three examples previously analyzed
in the literature and show how error estimates can be derived from the abstract re-
sults in Section 2, used in conjunction with the mesh dependent norms introduced in
Section 3.  These examples are all mixed methods for the biharmonic problem.  The
error estimates in the standard norms that are obtained in the present paper and those
obtained in [12], using different techniques, are the same.

Throughout this paper we will use the Sobolev spaces Hm = //m(fi), where £2
is a convex polygon in the plane and m is a nonnegative integer. On these spaces we
have the seminorms and norms

K.-4..o«( Z /„ \D*v\2dx)il2,

and

■»■m-l»l*.n-(   L    /„ \D«V\2dxY12.

//o"(fi) denotes the subspace of 7/m(fi) of functions vanishing together with their
first m - 1 normal derivatives on T = 9 £2.  We also use the spaces H~m(£l) =
(tf^ifi))' (the dual space of i/^ifi)) with the norm on /Tm(fi) taken to be the
usual dual norm.

2.   Abstract Convergence Results.   In this section we review certain results on
the approximate solution of saddle-point problems.

Let t/A and W„ be real Hubert spaces (indexed by the parameter h, where 0 <
h < 1) with norms II • Il y   and II- II Wfc, respectively, and let an(-, •) and bh(-, •) be
bilinear forms on Vh x ¡/h and Vn x Wn, respectively.  We suppose

(2.1) \ahiu,v)\<Kllulvfolv      VM,uGl/„,
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1042 I. BABUSKA, J. OSBORN AND J. PITKÄRANTA

(2.2) \bhiu,<p)\<K2Mv  V*Kh    V"G^^    V^GWfa,

where Kx and K2 are constants that do not depend on h.
We consider the following problem, referred to as problem P:
Given /G [l'n and g E \)}'n, find (m, \¡j) E \Jh x Wft satisfying

(2.3a) an(u, v) + bn(v, r¡/) = (f, v)    Vu G V„,

(2-3b) bhiu,j) = ig,v)    VpG vhJ

where (-, •) denotes the pairing between Vn and its dual space \j'h, or between Wn
and W'h.

We shall consider this problem for a subclass of data, i.e., for (f, g) E D, where
D is a subclass of \}'h x \ffh.  We assume that P has a unique solution for all (f, g) E D.

We are interested in the approximate solution of P. Toward this end we suppose
we are given finite-dimensional spaces Vn C \1 h and Wn C [)Jn, 0 < h < l,and consider
the following problem, referred to as problem Pn:

Given (f, g)E D, find (uh, \ph) E Vh x Wh satisfying

(2.4a) an(un, v) + bh(v, *„) = (/, u)    Vu G F,,

(2-4b) bhiuh,*) = ig,v)    tyEWh.

We now regard uh as an approximation to u and i//ft as an approximation to \p.
Regarding problem Ph, we suppose

\an(u, v)\
(2-5) SUP  -^- > To llul1 l/fa    V" G zh and V>*>

u<EZ>i "a

where 70 > 0 is independent of h, andZh = {v E Vn: bn(v, y) = 0 Vip e IVft}, and

(-2-ÖJ sup  —¡j|- > *0II^IWä   W> G Wh and VA,

where kQ > 0 is independent of h.  We now state the fundamental estimate for the
errors u - uh and \p - \pn.

Theorem 1 (Brezzi [5]). Suppose (2.1), (2.2), (2.5), and (2.6) are satisfied.
Then problem ?h has a unique solution (un, \ph) for each h, and there is a constant
C, independent of h, such that

(2.7)   II«-«„ Il y. + H-4>hh „<C( inf  \\u-XWv   +   inf  IU/--t?II
* VxeF„ "       r,<BWh

Wh.

(2.5)—(2.6) is referred to as the stability condition for this approximation method.
In many applications of Theorem 1 the spaces \Jn and Wn and the forms ah and

bn do not depend on h, i.e., [/n = [/ and Wn = W are fixed Hubert spaces and ah = a
and bh = b are fixed bilinear forms and 1/ x \J and V x W.  The space Vn and Wh,
typically, are spaces of piecewise polynomials with respect to a triangulation Th of
some domain by triangles of size less than or equal to h and, of course, depend on h.
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MIXED METHODS USING MESH DEPENDENT NORMS 1043

In the applications in this paper, both the spaces Vh, l)Jh and Vn, Wn depend on h, i.e.,
are mesh dependent; the constantsKx, K2, y0, and kQ, however, will be independent of
h; cf. [2, Chapter 7].   In these applications the solution (u, \p) of (2.3) is independent
of h and lies in Vn x ijJh for all h. Thus the estimate (2.7) yields convergence estimates
for u-uh and \p - \¡/n, provided the families {K^and {Wh} satisfy an approximability
assumption. For typical finite element applications this would involve the assumption
that infxGK  II« - x II y   and inf GW  Hi// - r/IL   tend to zero as h tends to zero.

3. Mesh Dependent Norms and Spaces. In this section we describe the mesh de-
pendent norms and spaces we shall use in the paper. Let fi be a convex polygon in the
plane. For 0 < h < 1, we let Tn be a triangulation of £2 by triangles T of diameter less
than or equal to h. We assume the family of triangulations {Tn} satisfies the minimal
angle condition, i.e., there is a constant o such that

hT
(3.1) max   — <o    Wh,

re jh Pt

where hT is the diameter of T and pT is the diameter of the largest circle contained in
T, and is quasi-uniform, i.e., there is a constant r > 0 such that

(3.2) ¿T<r    Vr e Th and VA-

Let rh =Urf=r àT. We define

H2 = {uEH1(Çl):u\TEH2(T) VTETh}

and on Hn define the norm

rbu 2
Jx~\   ds,bv\Wu\\\h=   I  Mlr + IC'L

TGTh '

where, if T' = bTl dbT2 is an interior edge of the triangulation Th, we set

J bv
_ bu_      bu_

T'~bvi      bv2'

where v1 is the unit normal to T' exterior to V, and if T' is a boundary edge of Tn,
we set

bu
J bv

_ Ça
t'     bv'

On #'(£2) we define

ll"|lo,ft = fnM2dx + h5r   |M|2&
and then define H® to be the completion of//'(fi) with respect to IHI„ /,. H% can
be identified with L2(fi) ®L2(Th)

We note that norms similar tc
manner in Douglas-Dupont [11] and Thomas [26]

We note that norms similar to ll-ll0 n and H-H2>ft have been used in a different
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1044 I. BABUSKA, 3. OSBORN AND J. PITKARANTA

For i>la fixed integer, we define

(3-3) Sn = {u G C°(fi): u|T EPkWTE T„}
where Pfc is the space of polynomials of degree k or less in the variable xx and x2.   It
is clear that Sh is contained in H® and H%.

We now prove several lemmas that are fundamental to the analysis of this paper.
These proofs are all closely related to the ideas used in the proof of the Bramble-
Hilbert lemma [4].  Prior to stating the first of these lemmas, we describe the notation
we will use and state some well-known results that will be used in the proofs.

Let T be an arbitrary triangle and let T be the reference triangle with vertices
(0, 0), (1,0), and (0, 1). Then there is an invertible affine mapping FT(x) = BjSc + bT
= F(x) = Bx + b such that T = FT(T).  This mapping leads to the correspondence
x ET <—» x = FT(x) E T between points in T and points in T and the correspondence
(û: T —>■ R) <-+ (v = v ° Fj1 : T —*■ R) between functions defined on f and functions
defined on T.  Note that v(x) = v(x).

It is easily seen that

(3-4) (Vxv)(x) = iB-l)'iVxv)iF-lix)).

If v = v(x) denotes the outward unit normal to bT at x and v = v\x) is the outward
unit normal to bT and x, then

(3.5) V{x) = (JT'y^lfi'K*)!.

where t denotes transpose. Let the sides of T be denoted by T¡, i = 1, 2, 3. |r| de-
notes the area of T and \T¡\ denotes the length of T\. The seminorms |u|j T and |û| »
are related by

(3.6) lul,^ <|det .BP1/2ILSllH:r

and

(3.7) |u|;_r<|det5|1/2ll5-1ll'|U|/>í-,

where I15II is the norm of B induced by the Euclidean vector norm; cf. [8, Theorem
3.1.2].  We will also use the estimates

(3-8) IISIK—,       ILrTHK—;
Pt Pt

cf. [8, Theorem 3.1.3].   We also note that |det B\ = \T\l\f\.  Finally we remark that
there is a constant C = C(T) such that

•39} inf Kt+plk+l T<C\û\k+l f   WÛEHk+1(f);
Pepk

cf. [8, Theorem 3.1.1].

Lemma 1.  There is a constant C such that

\\u\\0n <C\\u\\0    WuESh.
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MIXED METHODS USING MESH DEPENDENT NORMS 1045

Proof.   It is sufficient to show that

hf   \u\2ds<C\\u\\2    WuESn.
rh

Now (Jf \û\2 dx)ï/2 and (Jf \u\2 dx + fdf \u\2 ds)l/2 are both norms on the finite-
dimensional space Pk(T) = {p\f. p EPk} and hence there is a constant C(T) such
that

J"af l«l2 ds < C(f)ff l«l dxWÛE Pk(f).
Let T E Tn and suppose T is the image of T under the mapping F(x) = Bx + b. Then,
using (3.1), (3.2), and (3.6), we see that for any u EPk we have

ii,\u\2dS=zST,\u\2ds<ZSî,\û\2\Ti\dx
i= 1      ' i        '

< C(f) max \T¡\L l«l2 dx < C(f) max\T¡\ |det B\~lfT l«l2 dx
í <

< C(T) max |I-| gj- ll<r < ^^ /^\ II« f0>T

^^-l—\   J- Hull2 T < C(tW II««g t
ft \Pt j       T '

Therefore

C(f)4\f\_¡hr\-   \
\Pt

<C(T)oTh-1\\u\\2T-

hfr \u\2ds<h  £ SdTM2ds

<C(T)or   Z    ll"HoT<C(r)arll«ll2;n
rer„

for all u E Sn.

Lemma 2.   There is a constant C such that

lli/ll2>h<Crl"1ll«ll1>n      WUEPk.

Proof.   Since {Th} is quasi-uniform, it is well known that

£ \\u\\22T<ch-2\\u\\2il   WuEPk.
TGTfa

Thus it is sufficient to show that

*-abu
J bv ds<ar2\\ufia  wUEPk.

(fj, \u\2 dx + ¡df \S7xu\2 ds)1'2 and Hull, f are both norms on the finite-dimen-
sional space Pk(T) and hence there is a constant C(T) such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1046 I. BABUSKA, J. OSBORN AND J. P1TKARANTA

E(Û) = XflVí«!2 ds < C(T)\\u\\2>T   WÛ E Pk(f).

Clearly, E(u + p) = E(ù) VP E PQ.  Thus

E(u) = £•(« + p) < C(T)\\u +p\\2xj    Vp GF0

and hence, using (3.9), we have

£■(«) < C(T)   inf lb + p\ j. < C(f)\u\x j..
Pepo

Now let T E Tn and assume T is the image of T under the mapping F(x) = Bx
+ b.  Then, using (3.1), (3.2), (3.4), (3.6), and (3.8), we see that for any u EPk we
have

/JdT
ds = ZL l[(Vx«)(*)]fK*)l2ds

i      l

<ZLP"1),(v5«)(F-1W)i2ds
i Tt

< [B~l\2 max\T¡\fd~\SJxU\2d~s^C(f)\\B-lW2 max\T¡\ \u\2j
i

< C(f)\\B-1 II2 max|r;i |det B\~l ll£ll2|«|^r

<C(T)

<C(f)

hï\2/hT\2t    \f\ ,
Pt     \Pt nT\r\ '"'l.rin
hf\2(hT\ 417-1    !
Pr/  W - ^wï.'

<c(Kpf)2a4T^"_i|"iir'*n ,4,4mfc_1Uil2

Therefore, we obtain

*-;r
bu
bv ds< £ "-/„

t<et„

9w
9i> ds

< C(T)o4t    £ h~2 \u\\ T < C(T)a\h~2 \u\\ „.
reT„

This completes the proof.

Lemma 3.   There is a constant C such that

inf  II« - x»o ft < ChH ft
xesh

/or a// u E Hr(Sl) and all h, where 1 < r and 1 < / < mini/, k + 1).

Ptoo/   We define two interpolation operators that will be used in the proof.
For u E H2(T), let IjiiE Pk be defined by
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MIXED METHODS USING MESH DEPENDENT NORMS 1047

fT(u-lru)fdx = o   V/epfc_3,

/ . (w - I r")/^ = °   wfePk-2 and v sides T' of r>
and

u(a) - (JTu)(a) = 0    Vvertices a of T.

Then, for « G //2(fi), we let Iftt/ G Sh be defined by

(IAH)lr=  Ir("lr)-
For u E Hl(Q,), we define the interpolant in a different manner.  Here we con-

sider only the case k = 1.  Let the vertices of Th be denoted by zx, . . . , zm and
let wx, . . . , wm be the basis for Sh defined by w¿z) = 5(...  Set S- = (supp w) n £2
and let |5-| be the area of 5;-.  Now, following Clément [10], we define lhu by

m    („ udx
I a,« = 2^ —¿- w-*    /tr,   is,!    /•

We first consider the case r > 2 and / > 2. In this case we obtain the desired
result by estimating II« - lnuW0n. By the standard approximability results for Sh,
we have

fa\u- Ihu\2dx<Ch2'\u\ln.

Thus it is sufficient to show that

fr \u-:hu\2ds<Ch2,-l\u\2n.
1 ft

Suppose u E Hl(T) and set E(u) = fdT \u - lfù\2 ds.   By the trace theorem
and the Sobolev imbedding theorem we have

Eiu) <C(f) II w II,2 f,
and since E(û + p) = E(u) Wp EP¡X, we thus have

£■(«) < C(f)    inf   II« + pII2 j < C(T)\u\2f ■
Pepi-i

Now let T E Th be the image of r under the mapping F(x) = Bx + b.  Then

f    \u- ITu\2 ds<Z fr: I« - If«l2iri'l dsi       '
max\T¡\fd~\Ü - lrrÛ\2 ds < maxir/lCír)!«!?,?

i
< max \T¡\C(f)\ det B\~l ll/5ll2,|«l2r

„   .  4hT   hT\2i

crM¡4¿        ,
y7rpj,

7*       lMl/ y1«
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Jr  \u - Jnu\2 ds<   X jdT I« - lTu\2 ds
TGTh

<C(T)o2h2l~l    X \u\2T = C(f)o2h2'-l\u\2Cl.
reTft

This completes the proof for the case r, I > 2.
For the case r> 2 and / = 1 or r = I = 1, we estimate II« - lnu\\0n.  Clement

[10] has shown that

II«- ?„«ll0< Ch\u\x.
By a slight modification of the proof in [9], we obtain

lj/2y/2

hfr \u- ¿„«I2 ds)      <C7i|«|,.

The desired result now follows.

Lemma 4.   There is a constant C such that

inf     H«-xll2,ft <Ch'-2\u\in
xesftn//0

for all u E /T(fi) n H* (fi) and all h, where 2 < /• awd 2 < / < min(r, k + 1 ).

Proof.   Let ln be defined as in the proof of Lemma 3.  Note that lhu E Sn n
Hq if u E Hr C\ Hq .  Since, by standard approximability results, we have

Zii"-ift«ii22,r<CÄ2/"4i"i,;ft.
T

it is sufficient to show that

L b(u- I„«)
bv ds<Ch2'-i\u\lcl

We next observe that

iaf IV*(" - ï^)l2 ds < C(T)\Ù\2lT    V« G H\f).

Now let T E Th be the image of T under the mapping F(x) = Bx + b.  Then

Jar -(«-Ir«)

<

ds = ZiT,\[Wx(u-JTu)]tv(x)\2ds
i        '

Z [T,\(B-ly\7x(Û-JîÛ)\2ds
i i

E L it/r1)^«- í?«)(í)i2i7;;ids

Iß"112 max |r;i/3f|V5(« - 2>«)|2 ds  < C*(Z")ll^"1 II2 maxir/l |«|2fi|,f

C(f)\f\4h\< C(Di ̂ ) fè )   j£ l«l2,^ < ̂ ^ ^KÇr
Pt/ \Pt)     irl     ""   " TPi
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MIXED METHODS USING MESH DEPENDENT NORMS 1049

Therefore

L b(u - uT)
bv ds< *■*   J dT

TST,
-(«-Ir«) ds

<C(r)a4Ä2'-Jl«l/n,

which completes the proof.

(4.1)

4.   Applications.   In this section we analyze three mixed methods,
(a) Ciarlet-Raviart Method   Consider the biharmonic problem

ÍA2^=g   in £2,

\¡i = b\¡J¡bv = 0    on T = dfi,

where £2 is a convex polygon in the plane and g is a given function.  If g E i/~2(fi),
then there is a unique solution i// G i/,2(fi) of (4.1).   In addition, the following regular-
ity result is known for this problem:   If g E #_1(fi)> then i// G #3(fi) n #2(fi) and
there is a constant C such that

(4-2) M3<C%IL,    VgEH-\Sl).
Using the well-known correspondence between the biharmonic problem and the Stokes
problem, this regularity result can be deduced from the regularity result for the Stokes
problem proved in [18].  We assume g E //_1(fi) throughout this section.

We now seek an approximation to the solution t// of (4.1) by a mixed method,
i.e., we introduce an auxiliary variable, (u = - Ai// for the method of this subsection),
write (4.1) as a second-order system, cast this sytem into variational form, and then
consider the Ritz-Galerkin method corresponding to this variational formulation.

Thus we let u = -Ai// and write (4.1) as

(4.3)

A« = -g,

Ai// + « = 0    in £2,

i// = biilbv = 0    on T.

The desired variational formulation of (4.3) is obtained by multiplying the 1st equa-
tion in (4.3) by i/J G 7/2 n H¿, the 2nd equation by u G H®, integrating the resulting
equations over fi, and integrating the first one by parts over each T E Th.  By means
of this process we arrive at the following problem:

Given g E H~l(n.), find («, i//) G #° x (H2 n H¿) satisfying

(4.4)

fnuvdx-   Z $TvA^dx-$Y  u(/|^)ds = 0    VuG#o,
TGTh

Z  fTuA<pdx-fThu(j^;)ds = -fngipdx    V<pEH2nH¿.
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Using the regularity result (4.2), one can easily show that if i// is the solution of (4.1)
and u = -Ai//, then («, i//) is a solution of (4.4), and if («, i//) is a solution of (4.4),
then i// is the solution of (4.1) and u = -A\¡/. (4.4) is an example of problem P in
Section 2 with Vh =H°, II- 11^ = ll-ll0)/], Wh = H2 HH¿, |-lWj, = ll-ll2/l, ah(u, v)
= ¡n uvdx, and

bh(u, V) =    Z fT u&Pd* - i  « (J ff ) ds

(and with g replaced by -g).  Here the subclass of data for which (4.4) is uniquely
solvable is D = 0 x H~l(Cl).

As pointed out above, H® can be identified with I2(fi) © L2(Tn).  Under this
identification, //'(fi) is considered a linear manifold in H% through the mapping

HliO) 9 « ^ (w, u\Th) E ¿2(fi) © L2(Th) = Hi.

Thus an element « = («, «) G L2(fi) ffi L2(rh) is considered to be in //'(fi) if « G
//'(fi) and «|r   = «.  To be completely precise, bn should be defined by

K(u, v) =    Z L"&P dx - f    ub^jds,
TGThJT rft      X    °   '

for « = (m, u)EH° = L2(fi) ©¿2(rft) and ^ G#2.  Note that

(4.5) bh(u, ̂ ) = -JnV«-V^dx

for « G #'(£2) and <p G #2. We further note that it is immediate that (2.1) and (2.2)
are satisfied with constants that do not depend on h.

For finite-dimensional spaces we choose Vn = Sh and Wh = Sh n //¿ (£2), where
Sn is defined in (3.3).   Problem ?h thus has the form:

Given g E H~X(Q.), find (un, \¡Jh) E Vh x Wh satisfying

fnuhvdx+    Z iTvA^ndx-fr   v (j-^-)dx = 0    VuGK„

(4.6)
^V

'jl^Ä-ir/»^^"!^    V^GIV,.

Using (4.5), one easily sees that the approximation procedure determined by (4.6) is
the same as that considered by Glowinski [14] and Mercier [19] and further devel-
oped by Ciarlet-Raviart [9].   Note that this method yields direct approximations to
i// and to « = - Ai// (the stream function and vorticity in hydrodynamical problems).

We have already observed that (2.1) and (2.2) are satisfied.   In order to apply
Theorem 1, we must check the stability condition (2.5)-(2.6).
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Theorem 2.   There is a constant yQ > 0, independent of h, such that
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sup
vez.

Jft uvdx

"O.ft
^7ollullo,ft    V"ezft>

ie., (2.5) is satisfied

Proof.   Using Lemma 1, we have

sup
vezh

I Jí¡uvdx
>

"O.ft
sup

yeZfa

Jft «udx

Cllull

= C-1llUll0>C-2ll«ll0ifa    VhGZ„,

where C is independent of h.  Thus (2.5) holds with 70 = C~2.
Now we consider (2.6).   Let Sn = {v E Sh: fn v dx = 0}.

Lemma 5.  r/zere ¿s a constant C, > 0, independent of h, such that

inf     sup

iVoo/   We first note that

llull0i„Ml2,ft > C,     VA.

(4.7) inf    sup
^Sn vGSh

(Vv ■ Vydx

llulL =   inf    sup —¡¡-¡¡
,_ar    ^£      Hull

r v« • v*dx

"0,ft"^"2,ft veShv>(ESh       """0,h^"2,h

This is a consequence of the fact that an operator and its adjoint have equal norms.
Given v G 5 h, we choose tp to satisfy

^ESh,

Letting \ = u and using Lemma 1, we obtain

(4-8) Jn Vu • V* dx = /  u2 dx > C2 Hull2,,,A>

where C2 > 0 is independent of h.
Now let y be defined by

^G/SMifiWwGtf'tfi): JfiM dx = ol.

Jí2VÍ-v?dx = /nu?dc   vçeÂr^n).

Then by/bv = 0 on T and, since £2 is convex,

(4.9) M2 <Cllull0.
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y is the Neumann projection of ¡¿> into Sn and it is well known that

(4-10) I*-*», <C/iM2.

Let vJ be the piecewise linear interpolant of <¿>.
Since <£ G //2(fi) and byjbv = 0 on T, we see from the definition of II • Il2 h

and from (4.9) that

(4.11) H*\\2h = IMI2<Cllull0.

From Lemma 4, with k = 1 and r = 2, and (4.10), we have

(4.12) l^-^l2,ft <Cllp2 <Cllull0.

Using Lemma 2, (4.9), (4.10), and standard approximability results, we find that

11^-^ <C/r111^-¡¿llj <Ch~1ih-^1 + Ç-*!,)

<or'(fciMi2 + h\\f\\2) < c\\v\\0.

Now, using (4.11)—(4.13), we have

(4.14)     IMI2„ < M-*I2i„ + Kp-*K,h + M2,ft  <C3llull0 <C3llull0i,,

where C3 is independent of h.
Combining (4.8) and (4.14), we get

(s/v ■ V<pdx
—-  >—  =C  >0

H,ftM2,» C3    -C'>U-

C2(4.15) . ,mi      sup
v<=Sn  vGSh

The desired result now follows from (4.7) and (4.15).

Theorem 3.   There is a constant k0 > 0, independent ofh, such that

\bh(v, <¿>l
(4.16) sup  -j-z—- > k0 M2 n    V*EWh and Vh,

vevh    'mo,h

ie., (2.6) is satisfied

Proof.   Let ^ G Wh and set e = (l/|fi|)/n ydx.   Then |e| < C\\<p\\0 and £ =
tp - e E Sn.   By Lemma 5 there is a u, G S,, such that

(4.17) bh(vx,<p) = bh(vx,ï) = -fnS/vl ■Vvdx>Ç\\ln>\\<p\\2th-C4\\v\\20

and

(4.18) ^illo,ft<Cll^ll2,fa<C5IMI2/I.

We also know that

(4.19) -bnip, *) = fn IV^I2 dx>C6Ml2,

and

(4.20) Moft<C7M2,„.
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Now let u = Uj - C4C¿ly.   Then, using (4.17)-(4.20), we have

(4.21) *ftO>. ¥>)> Ml,ft
and

(4.22)

1053

K^<(c,5+c4c7c6-1)Mi2ih.

Combining (4.21) and (4.22), we have (4.16) with C = (Cs + QC,^1)"1.
We are now ready to apply Theorem 1 to analyze the Ciarlet-Raviart method.

We obtain

II« -uh\\0h + H- *h H2 h < c( inf II« - x»o ft +   inf U - ri\\2¡h) .
\xevh n&wn )

Suppose i// G Hr(£ï), r > 3, and suppose k>2.  Using Lemmas 3 and 4, we obtain

(4-23> h« - «faii0,ft +1*- <ph\\2,h<ch°-2m\s,

where s = mini/, k + 1).   From (4.23) we get

(4.24) \\u-uh\\0<Chs-2H\\s.

In addition, (4.23) yields the estimates

< Or*-5/2 II <//!!,,(4.25a)
(/rfcl"-«ftl2*)

(4.25b)

and

(4.25c)

Z H-tJl
tgtu

ft "2,T
1/2 < CaV"2 II «//IL

fe^ft
9i>

2       \l/2
ds)      <ChT3'21\¡/L

We now derive an estimate for \\\p - \ph\\x by means of the well-known duality
argument.   Given d E ,fY_1(fi), let 9 be the solution of

A20 in £2,

[6 = b6/bv =0    on T.
If we let w = - Ad, then from (4.2) we have

(4-26) Ho||3 + flwll, <ClldL,.

Also, from the discussion following Eqs. (4.4), we know that the pair (w, 9) satisfies

(d, vOo = ~ah(v, w) - bn(w, & - bh(v, d)    V(u, & E Hi x (H2 n H\).

Setting u = u - un and <p = i// - \¡/n, using the exact equations (4.4) and the Ritz-
Galerkin equations (4.6), we get

id, i// - i//„)0 - -an(u - un, w) - bh(w, \p-iph)- bn(u - uh, 9)

= -an(u -un,w-z)- bn(w -z, i// -<//„)- ¿>„(« -uh,e- p)

W(z,p)EVn x HV
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Thus, using (2.1), (2.2), (4.26), and Lemmas 3 and 4, we get

|(d, <// - 1>h)\ <C(II« -«A,ft + II* - *ftH2,ft)   inf llw-zll0>*
zœvh

(4.27) + H"-"ftll0ft    inf ll0_'ill2,ft
ßewh

<Ch\\d\\_x0\u-uh\\Oth + ll"//-*„ll2,„).

Finally, combining (4.23) and (4.27), we have

\(d, \jj - \l/h)\
(4.28) 10 - *fc II, =      sup      - < QTl II*\\s,

de/Y-^ft) -i

where s = min(r, Ä: + 1).
Estimates (4.24) and (4.28) improve on those in Ciarlet-Raviart [9].  Scholz [23]

obtained (4.24) under the assumption that Y is smooth.  (4.24) and (4.28) were also
obtained by Falk-Osborn [12].  Note that the approach of this paper does not yield
error estimates for the case k = 1 for the method studied in this subsection (and also
for the method of Subsection (b)); for this case the reader is referred to Scholz [24].
Using ¿„-estimate techniques, Scholz [24] has shown that II« - uh\\0 = OQ^-3^2)
under different assumptions than those made in (4.24).   In [25] it is shown that in
any subdomain fi0 CC £2, II« - un ll0 n   is of "nearly" the same order as Hi// - \ph H0,n>
provided i// is sufficiently smooth.   Finally we note that our approach allows the treat-
ment of the case when g E (H^)' - //-1(fi).   For example, we could treat the case
where g is the Dirac function, which corresponds to a concentrated load in plate theory.

Estimates (4.25) are new for this problem.  (4.25c) provides an estimate on the
rate at which the jumps in the normal derivatives of i//ft across interelement boundaries
is converging to zero and also contains the estimate

L a*,,
bv

2
ds<chs-3/2m

(b) Herrmann-Miyoshi Method   In this subsection we consider another mixed
method for the approximate solution of (4.1).   In this method the auxiliary variable is
the matrix of second-order partial derivatives of i//.

For T E Tn and v = (uiy), 1 < i, j < 2, with v¡, E HX(T) and u, 2 = u2,, we set

2
Mv(\) =  Z vijvjvi

',/= i
and

2

MVT(v)= Ew«>

where v = (^,, v2) is the unit outward normal and r = (t,, t2) = (v2, -vx) is the
unit tangent along bT.  We note that
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for all ip E H2(T).  On

£„(«) = {v = ivv), Ki,j<2:vx2=v2X, vif E Hl(T) WT E T„, and

Mv(\) is continuous across interelement boundaries}

we define

*<,h=Lfn\Vij\2dx+hfr \M(v)\2ds,
'./' n

where, on an interior edge T' = bTl n bT2 of Th, we set M(v) - M x(\) = M 2(v),
and, on a boundary edge T' of Tn, we set M(v) = Mv(\).  Then we define Vh to be
the completion of \Jn with respect to llvll0 A.   It is clear that

1/2
,ft(4.30) H^fe'W,

usefor all v G tf'ffi) = {v = (u,y), 1 < i, j < 2: vl2 » u2,, u,y G tf'ífi)}.  When we
the norm II • llQ n, it will be clear from the context whether we are applying it to scalar-
valued or matrix-valued functions.  As in Subsection (a) we let ()Jh = H\ C\Hq.  Then
the mixed method studied in this subsection is based on the following formulation of

(4.1):
Given g E //-1(fi), find (u, i//) G Vn x ()Jh satisfying

.? L «W* + T.     Z   - iTv(i 3^ dx
i,]=l ¡,/'=l   TGTh oxlox]

(4.31)  J +  (   M(v)J^ds = 0    VvGl/„,Jrn bv n

£     ^   - Ît uU ¿jL Ä + irhM^J fvds = -SaMdxW<pE Wh.
Using (4.29), we can easily establish the relations between (4.1) and (4.31).   If i// is
the solution of (4.1) and «,-■ = 92i///9x(9jc-, then («, i//) is a solution of (4.31), and
if (u, \jj) is a solution of (4.31), then i// is the solution of (4.1) and u¡- = 92i///9x(9x-.

(4.31) is an example of problem P with 1/n and W,, as above,

ah(">v) = Zfa»ijVijdx,
i.i

and

»„(u, ,) = £ Ç - fTutj ¿^ dx + fThMiu)Jdfu ds.
Letting Sn be as defined in (3.1), we consider the approximate problem P,, with

Vh =iV  = 0></):»12  =v21'VijGSh}

and

wH=shnHl0iSi).
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With this choice for the forms an and bn and spaces Vn and Wn, problem Ph describes
the Herrmann-Miyoshi method [15], [16], [20].  Note that with this method we ob-
tain direct approximations to i// and 92 \plbx¡bXj (the displacement and moments in
elasticity problems).

In order to apply Theorem 1, we must check (2.1), (2.2), (2.5), and (2.6).  (2.1)
and (2.2) are immediate.   In light of (4.30), the proof of (2.5) is similar to the proof
of (2.5) for the method in Subsection (a).   Finally we consider (2.6).   Let <p E Wh be
given.   By Theorem 3 we know there is a u G Sn such that

LVvVipdx> I?II2'ft     "      '*"«*- »*"'2,ft

and

llull0>„<ciMl2>ft.
(V   0s

',1
and

Now let v = (     ).  We immediately have v G Wn,

bh<V,<p)= ZSnît.^ dx  = J^Vu-V^dxSHMI2,,

Hvll0,fa<  &K7llo,fty/2<V2Cll^ll2)fa.

This proves (2.6).
We are now ready to apply Theorem 1 to analyze the Herrmann-Miyoshi method.

This application is essentially the same as that in Subsection (a).  We use the approxi-
mability results in Lemma 3, as modified for matrix-valued functions with the aid of
(4.30), and in Lemma 4.   We will just state the results.

Suppose i// G Hr(Sl\ r>3.  Then

(432) u« - U„ H0,ft   +•!*-** H2 ,ft  < CrV-2 II >// II,
and

(4-33) '*-**li <Ch*-1 II\MIS,

where s = min(r, k + 1).  From (4.32) we obtain

(4.34) llu-uhll0<a,-2ll^/llr

Estimates (4.33) and (4.34) improve on those in Brezzi-Raviart [7].  Rannacher
[22] recently obtained these estimates for the case k = 2.  Falk-Osborn [12] also
proved these estimates.  We further note that (4.32) contains additional information
corresponding to the mesh dependent norms; cf. (4.25).

(c) Herrmann-Johnson Method.   In this subsection we consider a further method
for the approximate solution of (4.1) in which, as in the case treated in Subsection
(b), the auxiliary variable is the matrix of second-order partials of i//.  Also as in Sub-
section (b), the method is based on the variational formulation (4.31) (the spaces Uh
and Wn and the forms ah and bn are the same as in Subsection (b)).
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We now consider the problem Pn with

Vh={vE\}h.Vij\TEPk_xWTETh}
and

Wh=Sh n//¿(fi).

This choice leads to the Herrmann-Johnson method [15], [16], [17].  Note that this
method differs from the Herrmann-Miyoshi method only in the choice of the finite-
dimensional space Vn.

This example has certain special features which allow an analysis that is rather
different than that employed in the previous two examples.  These special features in-
volve the existence of two particular projection operators denoted by vn and Zft.  We
turn to this now.

Ttn is defined as in [7, Section 4].  For v = (u,-) with u¿- G HX(T) and u12 =
u2 x, we define 7rrv = (wA with w(j E Pk_x and wx2 = w2x by

!/ , Mv (v - nT\)f ds = 0    V/ G Pk_ x and for each side t of T,T

o
By Lemma 3 in [6], IIr v is uniquely determined by (4.35).  Now for v G \Jh, we de-
fine nn\ E Vn by

ÍThv)\T = TTi\\T).

Since we can write

TeTh(     i.j '    i )

it is clear that

(4.36) bn(y - Tihv, <p) = 0    Vys G H^.

Concerning the approximation of v by -nn\, we have

Lemma 6.  Suppose v G [Hr"2(ü,)]4 n Vn, r> 3.   77ze/i

(4-37) H7TÄv-vn0ift <C%'livHí

for Kl < mini*, /• - 2).

Pr-oo/   In Lemma 4 of [7] it is shown that

ll7rftv-vll0<C/i'llvllz.

Thus it remains to show that

(hfr   |M(7r„v - v)|2 dsY     <Ch'M¡.
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Let T E Th and assume T is the image of t under the mapping F(x) = Bx + b.
Given a matrix-valued function w(x) on T, we set w(i) = Cw(F(i))Cf, x ET, where
C = B~l.  (Note that the correspondence between (matrix-valued) functions on T and
on ris different than the one introduced in Section 3.)  Recall that v = Ctv\Btv\
((3.5)).  Then we have

Jar |Af„(v - 7trv)|2 ds = zL W„(v ~ ftrv)|2 ds = £ f, \v\y - *Ty)v\2 ds'T; " ' ^~'JT¡

= ZL |írCB(v - 7Tfv) (F-'W^C'?!2 |£fi/|4ds

< llßll4 max|r;i/af; |M5(v - tttv)|2 ds< C(f)hT\\BII4|v|2r

<C(7')/i7,llßll2('+2)|ICll4|det5r1lv|2r

af^lfKa6
<- /i2/_1lv|72r.

Hence

hfr ^(v-7rftv)|2 ds< ZhfdT\Mv(v-nTv)\2 ds < Ch2l\v\2n.

This completes the proof.
The second projection operator ¿Zn is the interpolation operator 1h introduced

in Section 3.   As in the proof of Lemma 5 in [7], for v G \Jh and <p E //2(fi) n
//¿(fi), we can write

bh(y,^p) = -ZZi^-~-^dx+   Z   jr,A(T',vypds
T  i,j        ox ¡ax- T'eiu(4.38) h

+   Z B(a, vV(a),
aejh

where Ih is the set of all sides of the triangulation Jn, Jh is the set of all vertices of
Tn, and A(T', v) is a polynomial of degree less than or equal to k - 2 in the variable
s.   Since for v G Vn we have 92u///9x,-9x/lr G Pk_3 and A(T, v) G />fc_2, it follows
from (4.38) that zZn<p = ln<p, as defined in Section 3, satisfies

(4.39) bhfy, Eh<p - <p) = 0    Vv6Fr

Now we are ready to derive the error estimates.   First we estimate II u - uftllQ.
Subtracting (2.4a) from (2.3a), we obtain

(4.40) ah(u - uh, v) + bn(v, * - <//„) = 0    Vv G V„.

Suppose v EZn = {w G Vh: bh(w, <p) = 0 V<p G IVft}.  Then from (4.39) we see that
6Ä(v, i) = &„(v, Xh<p) = 0 for all ¡p G tf2(fi) n //¿(fi).  Hence from (4.40) we have

(4.41) aA(u-uh,v) = 0    VvGZ„.
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Subtracting (2.4b) from (2.3b) and using (4.36), we see that

èftKu-uft. *) = Vu~uft> ^ = 0   W>GKV

i.e., nnu - uh E Zh.  Thus, recalling (4.41),

"u - »A, «0 = aft(u ~ uft' u ~ uft)

= «fa(u - U„, (U  - TlhUh) + (ir„ll - U„))

= ah(u - uh, u - 7r,,u) < Ilu - \in II0 IIu - tt^uIIq
and hence

(4.42) Hu-u^ll0 < Il7rftu-ull0.

Suppose now that <// G //'"(fi), r > 3.  Then from (4.42) and Lemma 6 we have

(4.43) llu-uJI0<C/isll^lli+2,

where s = min(fc, r - 2).
Now we estimate i// - \ph.  As in Subsection (a) we can write

(d, i// - \¡j„)0 = -fl„(u - u„, w - z) - Z>„(w - z, ,// - i//ft)
(4.44)

-ift(u-uft, Ö-M)    V(z, /i)GFh x Wn,

where 0 is the solution of

IA29=dEL2    on £2,

Ö = ~ = 0        on rbv
and Wy = b26¡bx¿bXj.  We note that (w, 0) satisfies

a„(w, v) + 6„(v, 6) = 0    Vv G l/„,

(4.45) r
*ft(w. ^) = - jn dtp dx       V<pE {Un

(cf. (4.31)).   In (4.44) let z = irhv/ and p = zZh9.  This gives

(d,   * - *„)„  = -ûfa(u - U„, W - TT^w) - bhiVf - 7tftW, il - l//fa)

(4.46)
-ftÄ(u-uh, 0-2,0).

We now estimate each term in (4.46).
Using (4.36), (4.39), (4.45), and Lemma 3, we have

|&fc(w - 7T„w, ii - 4ih)\ = |2>fa(w - 7T„w, ii - 2„i//)|

(4'47) = I6„(w, ii - Xnii)\ = l(d, ii - zZhii)0\

< lldll0ll<//-2^ll0<C/rçll^/llilldll0,
where s = mint/ - 1, k + 1).
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In our estimate for the third term on the right side of (4.46), we treat the cases
k > 2 and k = 1 separately.  First assume k > 2.  Then, using (4.26), (4.39), and
Lemmas 4 and 6, we find that

\bh(n -uh,6- 2,0)1 = \bh(u - 7,„u, 0 - 2,0)1

(4.48) < Cllu - JrÄu«0iÄllö - 2/I0ll2i„ < C/zs_xIIu 11^, h\\9\\3

<Or*l*lt+1lrfl0,

where s = min(r - 1, k + 1).  Now suppose k = 1.   Then, using (4.26), (4.31), (4.39),
and Lemma 3, we have

\bniu ~ u„, 0 - 2,0)1 = |ô„(u, 0 - 2,0)1 = l(A2^, 0 - 2,0)ol

(4.49) < IIA2^/IIOII0 - 2„0IIO < O/2llA2.//lloll0ll2

<C/22ll\¡/ll4lldll0.
Finally, using (4.26), (4.42), and Lemma 6, we obtain

(4.50) \ah(u - u„, w - 7r„w)| < In - uÄll0llw - jrhw¡0 < Chs\\ii\\s+xWd\,

where s = min(k + I, r — 1).
Combining (4.46)-(4.50), we have

l(d, 0 - ■Mq I
(4.51) '*-**"•-JSa        y»o

<C/jilli//Hi+1,       s = min(Â: + 1, r - 1), if k > 2

and

(4.52) ll*-lMo <C7i2lli//U4,    if Ar = 1.

One can also prove that

(4.53) II i//-<//„ II, <C/i^1lli//lli,       s = mini/, k+ 1), if k>2

and

(4.54) \\ii-iih\\x^Ch\\ij\\3,    ifit=l.

Estimate (4.53) improves on estimates in [7].  Estimates (4.43) and (4.51)-(4.53)
are given in [7], and (4.43) and (4.51)-(4.54) are proved in [12].

Remarks.   (1) As in Subsection (b), we could have shown that the method studied
here is stable with respect to the norm II II0 n + II ll2 n and then obtained error esti-
mates in this norm.  This approach would have allowed the treatment of the case when
g E (H^)' - //_1(fi) (cf. the next to the last paragraph in Subsection (a)).   However,
due to the special nature of this example, more refined estimates can be obtained by
the analysis sketched above in the case when sufficient regularity of the solution is
assumed.  Thus the mesh dependent norms play a less central role in the analysis of
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this method than in previous methods.   They are, however, convenient; their use leads
to a very natural setting for the study of this example.

(2) The analysis in this subsection was based on the projections iih and 2, and
the fact that

Zh C Z = {w: w G \Jn, bhivf, j) = 0 W e H2(£l) n //¿(fi)},

which follows from the existence of 2ft.   For a general discussion of the projections
■nh and 2, and the condition Zh C Z see Falk and Osborn [12] and Fortin [13].

(3) In this subsection the mesh family is not required to be quasi-uniform.
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