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Abstract

Ensuring building-block (BB) mixing is critical to the success of genetic and evolutionary
algorithms. There has been a growing interest in analyzing and understanding BB mixing
and it is necessary to organize and categorize representative literature. This paper presents an
exhaustive survey of studies on one or more aspects of mixing. In doing so, a classification of the
literature based on the role of recombination operators assumed by those studies is developed.
Such a classification not only highlights the significant results and unifies existing work, but also
provides a foundation for future research in understanding mixing in genetic algorithms.

1 Introduction

Since the inception of genetic algorithms (GAs), the importance of building blocks have been
recognized (Holland, 1975; Goldberg, 1989b). Based on Holland’s notion of BBs, Goldberg proposed
a design decomposition method for a successful design of GAs (Goldberg, 1991; Goldberg & Liepens,
1991; Goldberg, Deb, & Clark, 1992). This design decomposition currently consists of sevens steps
(Goldberg, in press) and can be stated as follows: (1) Know what GAs process—building blocks
(BBs), (2) solve problems that are of bounded BB difficulty, (3) ensure an adequate supply of raw
BBs, (4) ensure increased market share for superior BBs, (5) know BB takeover and convergence
times, (6) ensure that BB decisions are well made, and (7) ensure a good mixing of BBs. Significant
progress has been made in developing facetwise models for many of the above decomposition steps
and the interested reader should consult Goldberg (in press) and the references therein for further
details.

However, researchers have often overlooked the issues of BB identification and mixing/exchange,
even though studies on selectorecombinative GAs have indicated that effective identification and
exchange of BBs is critical to innovative success. Furthermore, existing facetwise models such
as convergence-time and population-sizing models assume tight linkage. That is, alleles of a BB
were assumed to be close to one another, and crossover operators are assumed to ensure necessary
exchange of BBs with high probability. Even though, the assumption of tight linkage isolates the
phenomenon of interest while bracketing the linkage problem, in real-world problems this is not
the case, as we don’t know which alleles contribute to which BBs a priori. This necessitates the
incorporation of mixing of BBs into GA dynamics.

It is therefore critical to perform an exhaustive survey of work related to BB mixing in genetic
and evolutionary algorithms. Performing such a survey is the objective of this paper. In doing
so, existing studies on mixing are classified according to the facets of mixing they model. This
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classification not only organizes and highlights significant results, but also unifies representative
studies as a whole.

This paper is organized as follows: Section 2 presents a brief overview of genetic algorithms.
Section 3 describes the categorization used in surveying the studies on BB mixing. Studies belonging
to each of the four categories are discussed in sections 4–7. Finally section 8 presents the summary
and key conclusions of the study.

2 A Quick Introduction to Genetic Algorithms

This section presents a brief outline of a simple GA; A more detailed exposition is given elsewhere
(Goldberg, 1989b). GAs are search procedures based on the principles of natural selection and
genetics. Analogous to genetics, GAs encode the decision variables of the problem at hand into
finite-length strings of alphabets of certain cardinality. The letters present in a string are referred to
as genes or alleles. Usually, the parameters are encoded as a fixed length binary string. This string
of alleles is referred to as a chromosome or an individual. In contrast to traditional optimization
techniques, GAs work with coding of parameters, rather than the parameters themselves.

Once the problem has been represented, another thing to be determined is the method of
deciding between good and bad solutions. This can either be interactively decided by a human or be
the result of complex computer simulation. GAs do not differentiate between these different modes
of fitness assignments as long as good solutions have higher fitness when compared to bad solutions.
With the issues of representation and fitness functions decided, we can proceed with the evolution
process. To evolve new solutions, an initial population of encoded solutions is created randomly or
using some problem-specific knowledge. This population is subjected to genetic operators to create
new promising solutions. Different operators exist in GAs, the most popular being (1) selection,
(2) crossover, and (3) mutation. This newly created set of individuals replace the old population
and the process is continued till some criteria are satisfied.

The selection procedure follows the survival-of-the-fittest principle and allocates more copies
to better individuals. Various techniques exist for implementing this idea. They can be broadly
classified into two classes, (1) proportionate schemes like roulette-wheel selection (Goldberg, 1989b)
and stochastic universal selection (Baker, 1985), and (2) ordinal schemes like tournament selection
(Goldberg, Korb, & Deb, 1989), and truncation selection (Mühlenbein & Schlierkamp-Voosen,
1993).

Recombination or crossover combines parental solutions to form offspring that are likely to be
better solutions. Recombination operators are critical in ensuring good mixing of BBs. Various
recombination procedures exist in GA literature and a comprehensive description of the same is
out of the scope of this study. Instead, a brief description of the crossover techniques that are
commonly used is presented. Specifically, one-point crossover, two-point crossover, and uniform
crossover methods are discussed. For details on other crossover operators the interested reader
should refer elsewhere (Goldberg, 1989b; Booker, Fogel, Whitley, & Angeline, 1997; Spears, 1997)
and the references therein.

For the aforementioned three recombination procedures, individuals in the population are paired
randomly. Recombination is performed on each pair with a probability equal to the crossover
probability, pc, to obtain two new offspring. In one-point crossover (figure 1), a crossover site
is selected at random over the string length, and the alleles on one side of the site are exchanged
between the individuals. In two-point crossover (figure 1), two crossover sites are randomly selected.
The alleles between the two sites are exchanged between the two randomly paired individuals.
Two-point crossover is illustrated in figure 1. An nc-point crossover can be generalized using a
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Figure 1: Illustration of one-point, two-point, and uniform crossover methods.

two-point crossover. In uniform crossover (figure 1), every allele is exchanged between the two
random individual pairs with a certain probability, pe, known as the swapping probability. Usually
the swapping probability value is taken to be 0.5.

In contrast to recombination which operates on two individuals, mutation operates on a single
individual and modifies it slightly. Various mutation procedures exist in GA literature, the most
common being the bitwise mutation. In bitwise mutation, each bit in a binary string is changed (a 0
is converted to 1, and vice versa) with a certain probability, pm, known as the mutation probability.
Mutation performs a random-walk in the vicinity of the individual.

Elsewhere, it has been shown that though these operators when analyzed individually are inef-
fective, however, when combined together they can work well (Goldberg, 1999; Goldberg, in press).
This aspect has been explained with the concepts of the fundamental intuition and innovation
intuition. The same study compares a combination of selection and mutation to continual improve-
ment (a form of hill climbing), and the combination of selection and recombination to innovation
(cross-fertilizing).

With this brief introduction to GAs, the ground work for introducing BB-mixing has been laid.
The following section defines what we mean by the mixing problem, and presents the classification
of BB-mixing models developed to understand one or more facets of the mixing problem.

3 Classification of Building-Block-Mixing Models

Holland made two key observations in his monograph (Holland, 1975): (1) BBs with tighter linkage
(shorter defining length) have a selective advantage over those with loose linkage (longer defining
length), and (2) operators to adapt linkage and to choose allele combinations might be necessary for
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GA success. Goldberg, Deb, and Clark (1992) proposed the design decomposition for a successful
design of GAs, a core part of which is BB identification and mixing. However, Success stories of GAs
with fixed codings and crossover operators have somewhat masked the importance of investigating
and designing operators that adapt linkage and efficiently mix BBs (Goldberg, in press).

On a parallel note, it is now known that many operators such as elitism, niching, mating
restriction, inversion, and reordering, proposed to adapt linkage and to enhance GA performance
do not achieve their goal. Thierens (1995) showed that elitism and niching either alone or in cohort
do not address the mixing issue effectively. He also suggested that any crossover with fixed scheme
is highly unlikely to adapt linkage. Bagley (1967) and Frantz (1972) provided empirical evidence
to indicate that Holland’s (1975) inversion operator does not learn linkage effectively. Goldberg
and Bridges (1990) demonstrated that simple reordering operators have limited linkage-learning
capability.

Failures with such operators suggest that the critical step in designing better crossover operators
is to first analyze fixed crossover operators such as uniform, one-point, and n-point crossovers. Such
analysis should tell us if fixed crossover operators are powerful enough to solve problems of bounded
difficulty quickly, reliably, and accurately. They should also give us insights as to why such fixed
crossover operators fail if they do fail. The question as to how well fixed crossover operators
solve GA-easy as well as GA-hard problems is called the mixing question. Many researchers have
analyzed different aspects of fixed point crossovers and some of them contain answers to the mixing
question. These studies can be broadly classified into four categories based on what they assume
the principal role of recombination to be:

1. recombination as a mixer,

2. recombination as a schemata disrupter,

3. recombination as an innovator, and

4. recombination as a mixer, schemata disrupter, and innovator

Each of these roles in briefly explained in the following paragraphs. Next four sections will describe
the work done and discuss significant results in each of these categories.

Recombination as a mixer:

Studies belonging to this category model recombination as a tool that mixes solutions in a popula-
tion (Eshelman, Caruana, & Schaffer, 1989; Booker, 1993; Rabani, Rabinovich, & Sinclair, 1998).
They treat recombination as a main source for maintaining diversity in the population. Many of
these models are motivated from studies in population or quantitative genetics (Bailey, 1961; Bul-
mer, 1985; Falconer, 1989; McPeek, 1996). Such models quantify, linkage-disequilibrium, relaxation
time, and crossover-induced biases. These models neither consider the effects of schema disruption
nor the effects of innovation (mixing of good schemata). Such models are useful in understanding
the relative advantages/disadvantages of crossover operators. The results of such models are inde-
pendent of the search problem, which is both an advantage and a disadvantage. On one hand, the
results are universal once the problem coding is defined. On the other hand, their applicability is
limited as they incorporate no problem knowledge and linkage is problem specific.

Recombination as a schemata disrupter:

Studies belonging to this category model crossover as disrupter of building blocks (De Jong, 1975;
Syswerda, 1989; De Jong & Spears, 1992). Such studies are mainly based on the schema the-
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orem (Holland, 1975) and quantify schema survival rates. Elsewhere it has been suggested that
schema theorem should be obeyed, and it can be done be easily (Goldberg, Sastry, & Latoza, 2001).
Furthermore, satisfying schema theorem does not guarantee BB mixing. It should be noted that
schema theorem only focuses on a single BB, but for a GA success (for innovation and successful
recombination of best BBs),we must model some aspects about the likelihood of different BBs com-
ing together. Nevertheless, schemata-disruption models are useful in comparing different crossover
operators.

Recombination as an innovator:

Studies that visualize recombination as a innovation operator model the likelihood of combining
different BBs (Goldberg, Thierens, & Deb, 1993; Thierens & Goldberg, 1993; Thierens, 1996;
Thierens, 1999). These facetwise models not only integrate with other models on dimensional
grounds, but also yield a control map delineating the region of good performance for a GA. Such a
control map can be an useful tool in visualizing GA sweet-spots and provide insights in parameter
settings (Goldberg, 1999). Such models incorporate problem complexity, in terms of the BB size
and number of BBs. However, existing models are valid only for uniform crossover and have to
extended to incorporate other crossover operators.

Recombination as a mixer, schemata disrupter, and innovator:

These models combine all the facets of recombination operators (Bridges & Goldberg, 1987; Vose
& Liepens, 1991; Nix & Vose, 1992; Stephens & Waelbroeck, 1999; Prügel-Bennett & Shapiro,
1994) using tools such as difference equations, differential equations, Markov chains, and statistical
mechanics. They tend to model workings of recombination exactly or more accurately than any of
aforementioned three classes of models. That is, they contain all the information about BB mixing
that we are interested in. Such information is usually hidden among many other facets of GAs,
making these models highly complex. This makes it very hard to extract information on BB mixing
(or for that matter, any other single aspect of GAs) out of such models. Unless these models can be
simplified, or their asymptotic behavior predicted, it is very difficult to use them to design better
GAs or better operators.

4 Recombination As A Mixer

This section discusses representative studies on modeling recombination as a tool for mixing alleles.
These models are mainly motivated by analytical framework of population genetics. A detailed
description of such a framework is beyond the scope of this study and the interested reader should
consult elsewhere (Bailey, 1961; Bulmer, 1985; Falconer, 1989; McPeek, 1996). In these methods
crossover is analyzed in isolation, that is, in the absence of mutation and selection. Central to such
an approach is Geiringer’s theorem (Geiringer, 1944).

Geiringer’s theorem describes the equilibrium distribution of a population undergoing recombi-
nation alone. The theorem states that random mating and recombination without selection lead to
chromosome frequencies corresponding to the simple product of initial allele frequencies. A popu-
lation in such a state is said to be in linkage equilibrium or Robbin’s equilibrium (Robbins, 1918).
The equilibrium distribution can be written as

lim
t→∞

pt (S) =
∏̀

i=1

pi,0(S) (1)
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where, pt(S) is the proportion of string S at time t and pi,0(S) is the proportion of the ith allele of
S in the initial population.

Studies that model recombination as a mixing tool quantify one of the following three properties:

1. relaxation time, which measures the rate at which recombination operators converge to linkage
equilibrium.

2. coefficient of linkage disequilibrium, which measure the deviation of chromosome frequencies
at time t from their equilibrium frequencies.

3. Crossover-induced biases such as positional bias, distributional bias, recombinative bias and
schema bias

Models developed quantifying each of the above three properties is presented in the following two
subsections.

4.1 Relaxation-Time and Linkage-Disequilibrium Models

Christiansen (1989) developed analytical framework for the convergence to linkage equilibrium.
He suggested that the population dynamics of a population undergoing repeated recombination
is governed by marginal recombination distributions. He quantified the coefficient of linkage dise-
quilibrium and provided theoretic support that recombination operators that are more disruptive
reach linkage equilibrium more quickly. However, since his analysis is pertinent to the field of
mathematical genetics, it is not readily applicable to conventional analysis in GAs.

Recently, Rabani, Rabinovich, and Sinclair (1998) modeled crossover as a nonlinear quadratic
dynamical system (QDS) and provided tight bounds on relaxation time. They showed that crossover
operators can be successfully analyzed as a QDS, even with finite population sizes. Their study
overcame earlier claims of Arora, Rabani, and Vazirani (1994) and Pudlák (2001) who suggest
that QDS is unlikely to simulate the behavior of crossover. Rabani, Rabinovich, and Sinclair
(1998) analyzed uniform, one-point, and Poisson model crossover (Haldane, 1919) and quantified
the asymptotic rate of convergence to the stationary equilibrium for each of those operators. The
relaxation time, tm as computed by Rabani, Rabinovich, and Sinclair (1998) for uniform and one-
point crossover can be summarized as follows:

• Uniform crossover:
log2(`)−O(1) < tm ≤ 2 log2(`) + log2 ε

−1. (2)

where ` is the string length, and ε ∈ (0, 1] is the asymptotic distance from linkage equilibrium.

• One-point crossover:

` ln `
(

1
2
− o(1)

)

< tm ≤ ` ln `+ ` ln ε−1. (3)

In other words, relaxation time for uniform and one-point crossover is O(ln `) and O(` ln `) respec-
tively.

Prügel-Bennett (2001) also quantified the mixing rates of uniform, one-point and two-point
crossovers. He modeled mixing as a generalized card shuffle problem. In the card shuffle problem,
hands refer to strings or chromosomes, cards refer to genes, and suits correspond to different alleles.
He defined an order parameter to measure the degree of mixing within the population. The order
parameter is defined such that it decays as the strings becomes mixed. His approach is a more
detailed, yet intuitive. However, the approach used by Rabani, Rabinovich, and Sinclair (1998) is
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more general and is based on a rigorous mathematical framework. Prügel-Bennett (2001) computed
that the relaxation time of uniform, one-point and two-point crossover is O(ln `), O(` ln `), and
O(` ln `) respectively. It should be noted that the results of Rabani, Rabinovich, and Sinclair
(1998) and Prügel-Bennett (2001) agree, even though they used different approaches.

Spears (2001) used marginal recombination distribution to analyze the transient behavior of
crossover operators. He investigated the rate of approaching linkage equilibrium for second order
BBs (BB size = 2) with different defining lengths. He analyzed the effects of uniform and one-
point crossover. He modeled the rate of approaching the limiting distribution as a set of coupled
nonlinear differential equations.

4.2 Crossover-Induced Bias Models

The models discussed in the previous subsection considered the convergence rate of attaining linkage
equilibrium. The models presented in this subsection use recombination distributions to quantify
bias introduced by crossover operators. Eshelman, Caruana, and Schaffer (1989) attributed two
types of bias induced by crossover operators: (1) distributional bias, and (2) positional bias. Dis-
tributional bias refers to the number of loci transmitted during a recombination event and the
extent to which some values might be more likely than others. Positional bias refers to the extent
of dependence of the probability that a set of loci will be transmitted together depends on the
relative positions of those loci on the chromosome. An operator with high positional bias is less
likely to disrupt schema which shorter defining length. On the other hand, an operator with low
distributional bias disrupts less number of schemata, but will also have less exploratory power.

Eshelman, Caruana, and Schaffer (1989) quantified both distributional and positional biases
introduced by different crossover operators including uniform, one-point and nc-point crossovers.
They showed that one-point crossover has high positional bias and low distributional bias, and
uniform crossover has low positional bias and high distributional bias. They also showed that nc-
point crossover has lower positional bias when compared to one-point crossover, but has a higher
positional bias when compared to uniform crossover. The distributional bias of nc-point crossover
is higher than that of one-point crossover, but is lower than that of uniform crossover.

Booker (1993) revisited Geiringer’s work (Geiringer, 1944) and computed the marginal recombi-
nation distributions for different crossover operators similar to the approach used in mathematical
genetics (Christiansen, 1989). Booker (1993) used these marginal distributions to quantify both
the positional and distributional biases induced by uniform, one-point and nc-point crossover. He
obtained results similar to those of Eshelman, Caruana, and Schaffer (1989) and validated the usage
of marginal recombination distributions to analyze crossover operators in GAs. Rana (1999) ana-
lytical description for the distributional bias induced by uniform, one-point, two-point and HUX
(Eshelman, 1991) crossover. Rana quantified distributional bias as the distribution of Hamming
distances between parents and offspring. Such a model quantifies the step sizes provided by different
crossover operators in the initial generation.

Eshelman and Schaffer (1995) proposed a generalization of distributional bias called recombina-
tive bias. Recombinative bias refers to the expected proportion of the differing bits that a crossover
operator copies to a child from its furthest parent (in terms of hamming distance). They also
proposed a generalization of positional bias called schema bias. Schema bias is the extent to which
certain schemata are favored over others by a crossover operator. They also provided empirical
evidence to suggest that a crossover operator with strong recombinative bias and low schema bias
to overcome premature convergence. The also observed strong recombinative bias to be a liability
when solving GA-hard problems.
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Altenberg (1995) used Geiringer’s theorem to predict the evolution of fitness distribution under
recombination. He used marginal recombination distribution similar to the approaches used by
Booker (1993). Altenberg (1995) incorporated the marginal recombination distributions along with
Price’s theorem (Price, 1970) for selection into a schema theorem. He suggested that schemata
disruption is quantified by linkage disequilibrium and proposed a guidance measure for improving
recombination operator. This study, bridges the models belonging to this section and models
we will discuss in the next section, in the sense that it links schemata disruption with linkage
disequilibrium.

5 Recombination as a Schemata Disrupter

These studies follow along the lines of the schema theorem and model crossover as a disruption
operator. They model the schema disruption rates as a function of its defining length for differ-
ent crossover operators. However, these models still consider only one BB and thus fail to ad-
dress the mixing question posed in Section 3. Similar to the studies quantifying crossover-induced
bias, schema-disruption models provide us with a measure, albeit incomplete, to compare different
crossover operators.

It should be noted here that there are many other studies related to schema theorem (Goldberg,
1989b; Goldberg, in press), with the majority of them addressing the issue of BB growth. For
example, Goldberg and Sastry (2001) have used schema theorem to develop control maps between
selection pressure and crossover probability, but such a control map is the result of BB growth
analysis. Furthermore, they showed that obeying schema theorem does not guarantee BB mixing.
Therefore, studies belonging to this category are not included in this survey.

Syswerda (1989) analyzed schema survival rates and average number of schemata combination
for uniform, one-point and two-point crossover methods. He further provided empirical evidence to
suggest that uniform crossover outperformed one-point and two-point crossover methods in most of
the cases. Spears and De Jong (1991) analyzed multi-point crossover methods in terms of sampling
disruption and compared them to uniform crossover. Their study extended the work of De Jong
(1975) by extending the analysis to incorporate kth order schemata. Their study indicated that
uniform crossover has a much higher schema disruption rate when compared to one-point and
nc-point crossover. However, they also found that when the defining length is very long (∼ `),
then uniform crossover has a lower schema disruption rate when compared to one-point crossover.
Based on their analysis, they suggested that disruption has a positive role to play in balancing
the exploration and exploitation during the adaptive search (Spears & De Jong, 1991; De Jong &
Spears, 1990). De Jong and Spears (1992) further investigated the effects of crossover operators on
the population size. They empirically observed that uniform crossover performed better with small
population sizes and two-point crossover performed better with large population sizes. However,
they did not give any analytical framework to incorporate the effects of recombination operator on
population sizing.

6 Recombination as an Innovator

Models belonging to this category address the BB mixing issue in a more direct manner than those
belonging to other categories. These models develop models for predicting mixing or innovation
time. Here, mixing time is defined as the expected number of generations to obtain an instance
of the target string. Such models are not only intuitive, but also easy to analyze and compare
with other facetwise models using dimensional arguments. Such a comparison can lead to the
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construction of a control map clearly identifying different competing forces affecting the genetic
search.

Goldberg, Thierens, and Deb (1993) addressed the issue of allele-wise mixing building upon
Holland’s suggestion that limiting probability of success of BB exchange is allele-wise random
assortive (Holland, 1975). Goldberg, Thierens, and Deb (1993) calculated the mixing time, tx, for
allele-wise exchange, assuming a population of size n, geometric mean of proportion of target allele
p, crossover probability pc, and a string length `:

tx =
1

npcp`
(4)

The compared this model with selection time model (Goldberg & Deb, 1991), drift time (Goldberg
& Segrest, 1987) and cross-competition models to construct mixing boundary, drift boundary and
cross-competition boundary. They identified the following key points in computing these bound-
aries:

• When mixing time is less than selection time, then good BB exchange in ensured.

• On the other, hand if mixing time is greater than selection time, then a GA will converge
prematurely

• When the selection time is greater than the drift time then, GA drifts and converges to alleles
with little or no selection pressure

• When selection pressure is high, BBs in different partitions might compete. Such a competi-
tion between non-competing alleles is called cross competition.

Goldberg, Thierens, and Deb (1993) used these boundaries to construct a control map on the
crossover probability versus selection pressure (pc − s) plane. They also verified their facetwise
models and the control map with empirical evidence. They observed that simple GAs solving easy
problems have a large sweet-spot (Goldberg, 1999). As a consequence of a large sweet-spot, a
simple GA will successfully solve easy problems with a large range of parameters values to choose
from.

The allele-wise mixing model of Goldberg, Thierens, and Deb (1993) was further expanded and
used for GA design by Thierens (Thierens, 1995; Thierens, 1996). Specifically, he quantified the
interplay between (1) string length and selection pressure, (2) disruption probability and string
length, (3) population size and disruption probability, and (4) population size and string length.
He showed that for a GA easy problem, the effect of mixing on population size dominates the
effect of selection for small string lengths. For larger problems (longer string lengths), the effect of
selection on population sizing dominates the effect of mixing.

Thierens and Goldberg (1993) extended the BB mixing model to incorporate BB wise mixing.
One of their objectives was the investigate if the sweet-spot remained large enough for boundedly
difficult problems. Specifically, they considered deceptive trap problems with uniform building-
block scale and size (Goldberg, 1987; Goldberg, 1989a; Deb & Goldberg, 1993). They developed a
mixing-time model for the case of two BBs of size k and then extended it for the case of multiple
BBs of size k. For a problem with m building blocks of size k, the mixing time is given by (Thierens
& Goldberg, 1993; Thierens, 1995; Thierens, 1999),

tx = c
2µk

npc

2m

m
5
2

, (5)
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where c and µ are constants. Furthermore, comparing this with selection time yields a population-
sizing model to satisfy mixing:

n lnn > c
2µk

npc

2m

m
5
2

ln s. (6)

The above result clearly indicates that the sweet-spot shrinks rapidly as the problem size in-
creases. Their model also showed that for a GA success, the BBs have to be tightly linked in the
problem coding structure. One of the main outcome of their analysis is that they provided sufficient
evidence to indicate that, to solve boundedly difficult problems in polynomial time, operators that
adapt linkage are required. In other words, as the problems become more difficult, population sizes
much grow exponentially to ensure that a simple GA using fixed crossover operators converges to
good solution (Thierens, 1995; Thierens, 1999). This important result has led to the design of
many successful designs of operators that identify and adapt linkage (Goldberg, in press).

7 Recombination As A Mixer, Schemata Disrupter, and Innovator

The studies discussed in the previous three sections investigate one or more aspects of recombination
operators in isolation. Such facetwise models are easy to analyze and have been very helpful in
understanding and designing GAs. However, in building such facetwise models, we often neglect
or assume certain things about other GA aspects. Researchers have developed more complex
models that take into account the interplay between the genetic operators. Such models tend to
be powerful in simulating GAs and yield exact results. However, usually the property of interest
is hidden under the complex formulation, making it difficult to extract the information needed.
Therefore the applicability of such complex, yet accurate models in designing competent GAs is
limited. Nevertheless, they are still useful and can potentially guide us as to when the facetwise
models are applicable or when they are not. They can also validate the facetwise models through
some asymptotic analysis.

Bridges and Goldberg (1987) modeled the effects of selection and recombination as a difference
equation. Specifically, the considered fitness proportionate selection and one-point crossover. Their
analysis of crossover included not only BB disruption, but also BB innovation. They also extended
their analytical model to facilitate the computation of schemata propagation. Vose and Liepens
(1991) developed difference equations to model the dynamics of a GA similar to those developed by
Bridges and Goldberg (1987). Nix and Vose (1992) used the dynamics of recombination operator
developed by Vose and Liepens (1991) and proposed a Markov-chain model to simulate GAs.
The framework proposed by Nix and Vose (1992) is significant as it proposed a viable method to
incorporate finite population into the Markov-chain model. The key idea behind their approach
is the identification of a population as a state and the transition probability as the probability of
going from one population to another.

Stephens and Waelbroeck (1999) used coarse graining to model schemata evolution. He intro-
duced the notion of effective fitness and suggested that schemata with high effective fitness receive
exponentially increasing copies. He also suggested that when schema reconstruction dominates,
large schemata are favored and in deceptive problems, short, low order schemata are favored. Fur-
thermore, he derived Geiringer’s theorem (Geiringer, 1944) using the coarse-graining approach.
Another approach used to model the dynamics of GAs is statistical mechanics modeling proposed
by Shapiro and his coworkers (Shapiro, Prügel-Bennet, & Rattray, 1994; Prügel-Bennett & Shapiro,
1994; Rattray, 1996). In statistical-mechanics modeling, the dynamics of cumulants of fitness distri-
bution are quantified. Recombination operators are quantified by both benefits of mixing and BB
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disruptions modeled as “interface energy” (Prügel-Bennett, 1997). For further details on statistical-
mechanics models the interested should refer to Rattray (1996) and the references therein.

To reiterate, the models discussed in this section are complex, partially due to the fact that the
include many facets of GAs, but they yield a good agreement with the dynamics of GAs. However,
due the complexity of models, they cannot be easily used in successful GA design.

8 Summary and Conclusions

This study performed an exhaustive survey of models developed to analyze fixed recombination
operators. A classification methodology to organize the existing models was proposed based on
what aspect of recombination they model. This study suggests that majority of the work has been
done in analyzing recombination operators as just a diversity preservation tool. Only few studies
have been performed in developing facetwise models to analyze recombination as an innovation
operator. Therefore, there is an immediate need for a better facetwise model that addresses the BB
mixing problem and analyzes fixed recombination to answer the mixing question. This study also
acknowledges the existence of more complex models, however, such models rarely make themselves
amenable for designing successful GAs.
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