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Analysis of MLP Based Hierarchical Phoneme

Posterior Probability Estimator
Joel Pinto, G.S.V.S. Sivaram, Mathew Magimai.-Doss, Member, IEEE,

Hynek Hermansky, Fellow, IEEE, and Hervé Bourlard, Fellow, IEEE.

Abstract—We analyze a simple hierarchical architecture con-
sisting of two multilayer perceptron (MLP) classifiers in tandem
to estimate the phonetic class conditional probabilities. In this
hierarchical setup, the first MLP classifier is trained using
standard acoustic features. The second MLP is trained using the
posterior probabilities of phonemes estimated by the first, but
with a long temporal context of around 150-230 ms. Through
extensive phoneme recognition experiments, and the analysis of
the trained second MLP using Volterra series, we show that
(a) the hierarchical system yields higher phoneme recognition
accuracies - an absolute improvement of 3.5% and 9.3% on
TIMIT and CTS respectively - over the conventional single
MLP based system, (b) there exists useful information in the
temporal trajectories of the posterior feature space, spanning
around 230 ms of context, (c) the second MLP learns the phonetic
temporal patterns in the posterior features, which include the
phonetic confusions at the output of the first MLP as well as the
phonotactics of the language as observed in the training data,
and (d) the second MLP classifier requires fewer number of
parameters and can be trained using lesser amount of training
data.

Index Terms—Multilayer perceptrons, Volterra series, hierar-
chical systems, posterior probabilities.

I. INTRODUCTION

MUltilayer perceptron (MLP) classifier based acoustic

modeling is being extensively used in state-of-the-art

automatic speech recognition (ASR) systems [1][2][3][4][5].

The MLP is typically trained using standard acoustic features

such as mel frequency cepstral coefficients or perceptual linear

predictive coefficients with a certain temporal context. A well

trained MLP can estimate the posterior probabilities of the

output classes, typically subword units of speech such as

phonemes, conditioned on the input features [6][7].

MLP based acoustic modeling has certain benefits. Firstly,

it obviates the need for strong assumptions on the statistics of

the features and the parametric form of its density function.

As a consequence, features with different distributions can be

simply concatenated and applied at the input of the MLP to

achieve feature combination [3]. Secondly, when trained on

large amount of data, MLPs have been shown to be invariant

to speaker characteristics [3] and environment specific infor-

mation such as noise [8]. Thirdly, the output of the MLP are

probabilities with useful properties (e.g., positivity, summing

to one), providing an efficient framework for multi-stream

combination [9]. Lastly, the MLP can be trained efficiently

and is scalable with large amount of data.

The phonetic class conditional probabilities estimated by

the MLP are used in hidden Markov model (HMM) based

ASR in different ways. In the hybrid HMM/MLP system [6],

they are used as local emission scores in the HMM states.

In the Tandem system [10], they are transformed by applying

logarithm followed by Karhunen-Loeve transformation (KLT),

and used as features to a standard HMM/GMM system. In a

recent study [11], the estimated posterior probabilities are used

directly as features in an HMM based system, where the state

emission distribution is multinomial. Throughout this paper,

whenever the phoneme posterior probabilities are used as local

representation of speech in place of standard acoustic features,

we refer to them as posterior features.

In the posterior feature space, each dimension corresponds

to a phoneme. The posterior feature vector at a particular time

instant is a point in the posterior feature space, representing

the instantaneous soft-decision on the underlying phoneme.

It carries useful information such as the probability mass as-

signed to the competing phonemes. The sequence of posterior

feature vectors is a trajectory in the posterior feature space,

and it can provide additional contextual information such as

the evolution of the posterior features within a phoneme (sub-

phonemic transition). Furthermore, a sufficiently long temporal

context on the posterior features can also capture the transition

to/from neighboring phonemes (sub-lexical transition).

The contextual information in the posterior features has

been successfully exploited in ASR in our previous stud-

ies [12][13], where a second MLP classifier was trained

on the posterior features with a temporal context of 150-

230 ms. This hierarchical approach yielded higher phoneme

recognition accuracies when compared to the conventional

single MLP based approach. This paper is an extension to

our previous work [12], and the main focus is on the analysis

of the hierarchical system. We investigate the reasons for

the effectiveness of the hierarchical system and attempt to

understand the functionality (or working) of the second MLP

classifier by analyzing its trained parameters.

As the second MLP is trained using posterior features

with a certain temporal context, we can expect it to learn

the phonetic-temporal patterns, mainly capturing the phonetic

confusions at the output of the first classifier. However, as

the MLP is a complex classifier with nonlinear activation

functions, discovering the phonetic-temporal patterns learnt by

the system for each phoneme is not straightforward. Moreover,

as the MLP is trained using a discriminative criterion, these

patterns cannot be simply derived from the confusion matrix

of the first MLP classifier. In addition, confusion matrices do

not capture any temporal information. To understand this in-

formation, one has to interpret the trained parameters (weights
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and biases) of the second MLP classifier.

In this work, we address this issue by representing the

second stage of the hierarchical system using Volterra se-

ries [14][15], thereby decomposing the trained nonlinear sys-

tem into its linear, quadratic, and higher order parts. Fur-

thermore, we analyze the linear part of the second MLP

and interpret the phonetic-temporal patterns that are learned.

In contrast, our previous study [12] utilized a single layer

perceptron in place of the second MLP to facilitate easy

analysis. While preliminary insights into the working of the

system were obtained by plotting its weight matrix, the actual

MLP that was used in ASR studies remained unanalyzed.

Other extensions to our previously published work include a

study on the role of temporal context on the posterior features,

and its effect on the performance of the hierarchical system.

We also analyze some of the useful properties of posterior

features such as lesser nonlinguistic variabilities and sparse

representation, and discuss its influence on the complexity of

the second MLP classifier and the amount of training data.

Experiments are also performed on conversational telephone

speech (CTS) to ascertain if the trends in results and analysis

concur with those obtained on TIMIT.

Through extensive phoneme recognition studies and the

analysis of second MLP in the hierarchical system using

Volterra series, we show that (a) the hierarchical system

yields higher phoneme recognition accuracies compared to a

single MLP based system, (b) the posterior features contain

useful contextual information spanning around 150-230 ms

of temporal context (c) the second MLP in the hierarchical

system learns the phonetic-temporal patterns in the posterior

features, which includes the phonetic confusion patterns at

the output of the first classifier and to a certain extent the

phonotactics of the language as observed in the training data,

and (d) the classifier at the second stage of the hierarchy

requires fewer number of parameters and lesser amount of

training data.

The rest of the paper is organized as follows: In Section II,

we describe the MLP based hierarchical system and discuss its

similarities/differences with previous works in the literature.

In Section III, we describe the experimental setup and the

results. In Section IV, we introduce Volterra series and discuss

its application in the analysis of the second stage of the

hierarchical system. Furthermore, we also interpret the linear

Volterra kernels of the system in terms of the phonetic-

temporal patterns. In Section V, we analyze the properties

of the posterior features that contribute to the effectiveness of

the hierarchical system. In Section VI, we discuss some of the

less explored facets of the hierarchical approach.

II. HIERARCHICAL POSTERIOR ESTIMATION

An MLP classifier with enough complexity and trained with

sufficient amount of data can directly estimate the Bayesian a

posteriori probabilities of the output classes, conditioned on

the input features [7]. Consequently, the performance of ASR

systems using MLP acoustic models can be improved using

the following three broad strategies: (a) using richer acoustic

features (b) increasing the capacity of the MLP (but this

approach is often limited by the amount of training data [16])

and (c) using finer representation of output classes such as

sub-phonemic states [12] [17].

In this work, we explore a way to post-process the output

of the MLP (posterior probabilities of phonemes, conditioned

on acoustic features) to obtain new enhanced estimates of the

phonetic class conditional probabilities.

A. Motivation

An MLP trained on acoustic features gives a frame-level

phoneme classification accuracy of around 60-70%. The errors

in classification can be mainly attributed to the limitations

in feature extraction and modeling techniques. Analysis of

the associated phonetic confusion matrices show that there

exists a consistent pattern in classification. For example, if

the phoneme /iy/ (e.g., beat) is misclassified, then it is more

likely that vowels such as /ih/ (e.g., bit) or /eh/ (e.g., bet) is

assigned a higher probability mass. This information in the

distribution of the probability values could be exploited to

correct the output of the MLP classifier.

The posterior features have lesser nonlinguistic variabilities

such as speaker and environmental characteristics when com-

pared to acoustic features. In addition, they have a simpler

(or sparse) representation. As a consequence, we hypothesize

that contextual information spanning longer time spans can

be effectively learned in the posterior feature space. The

useful contextual information could be the evolution of the

posterior features within a phoneme (sub-phonemic level) and

its transition into the neighboring phonemes (sub-lexical level).

There have been attempts in the recent past to model

the contextual information in the posterior features in an

hierarchical fashion by using classifiers such as conditional

random field (CRF) [18][19] or MLP [12][20]. In this work,

we further investigate the MLP based hierarchical system [12].

As shown in Fig. 1, the first MLP is trained in the conventional

way using standard acoustic features. The second MLP is

trained using posterior features estimated by the first MLP

classifier with a long temporal context of around 150-230 ms.

MLP−1
temporal 

90 ms
context

phoneme
posterior
probabilites

MLP−2

phoneme
posterior
probabilites

features
acoustic

PLP, MFCC

temporal 
context

150−230 ms

Fig. 1. Estimation of posterior probabilities of phonemes using an hierarchy
of two MLPs. The second MLP is trained using the posterior probabilities of
phonemes estimated by the first MLP.

B. Notations and Formalism

The following notations are used throughout this paper. ft
denotes the acoustic feature vector 1 at time t. A temporal

context of 2d1+1 frames on the feature vector ft is denoted by

ft−d1:t+d1
= [f ′t−d1

, . . . f ′t , . . . f
′
t+d1

]′. The first MLP classifier,

1All vectors are column vectors by default. Transpose is denoted by ′
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denoted by Θmlp1, estimates the posterior probability of each

of the K phonetic classes qt = k, k = 1, 2, . . . K, conditioned

on the acoustic features spanning d1 ≈ 4 frames around ft as

xk(t) = P (qt = k | ft−d1:t+d1
, Θmlp1) , k = 1, . . . K (1)

The estimated posterior probabilities at time t are represented

in a vectorial form as xt = [x1(t), x2(t), . . . xk(t), . . . xK(t)]′,
and a temporal context of 2d2 + 1 frames on the posterior

feature vector is denoted by xt−d2:t+d2
. The second MLP,

denoted by Θmlp2, estimates the posterior probabilities of

phonemes conditioned on a temporal context d2 ≈ 11 on the

posterior features estimated by the first MLP as

zk(t) = P (qt = k | xt−d2:t+d2
, Θmlp2) , k = 1, . . . K (2)

The output of the second MLP at time t is represented as zt =
[z1(t), z2(t), . . . zk(t), . . . zK(t)]′. In later parts of this section,

f1:T and x1:T denotes the sequence of acoustic and posterior

feature vectors in the entire utterance, where T denotes the

total number of frames.

In practice, the input features to the MLP are normalized

to zero mean and unit variance. Feature normalization ensures

that the operating region on the hidden activation function

is in the linear region, leading to a faster convergence of

the back propagation training algorithm [21]. In the case of

the second MLP, as the features are posterior probabilities,

mean and variance normalization is equivalent to taking scaled

likelihoods as features (refer Appendix A for the proof).

Hence, normalization of posterior features removes the effect

of unigram phonetic class priors learned by the first MLP

classifier. The priors are, however, again learned by the second

MLP classifier.

C. Background

In this section, we review different approaches in MLP

based acoustic modeling, that use hierarchical architectures

to model the temporal information in the speech signal, and

contrast them with the approach investigated in this paper.

In all the discussed works, the first stage of the hierarchy is

an MLP. The second stage of the hierarchy includes classifiers

such as MLP, HMM, recurrent neural network (RNN), or CRF.

The reviewed works are categorized into the following groups

(G1 to G8), mainly based on the application of temporal

context on the posterior features and the type of classifier at

the second stage of the hierarchy.

G1: Classifier Combination

Hierarchical architecture of MLPs have been previously

studied in the TRAPS [22] and HATS [23] systems. At the

first stage of the hierarchical system, separate MLP classifiers

are trained for each of the critical bands. Temporal information

in the acoustic features is exploited by using the log critical

band energies spanning over a period of about second as input

feature. At the second stage, an MLP is used to merge the

outputs from the classifiers at the first stage of the hierarchy.

In other words, the input to the second MLP classifier are the

activations at the output (hidden in case of HATS) layer of the

critical band specific MLPs, but without any temporal context.

Independent processing of speech in subbands was originally

inspired by Allen’s interpretation [24] of Fletcher’s work [25],

indicating a similar mechanism in the human auditory system.

Similar hierarchical architectures have also been studied in

multiband ASR [26][27].

G2: Feature Combination

Multi-resolution relative spectra [28] features are obtained

by filtering the log critical band energies using a bank of multi-

resolution bandpass filters. These features are typically used in

Tandem based ASR systems. In more recent studies [29][30],

the multi-resolution filter bank is split into two groups - fast

modulation filters (narrow bandwidth) and slow modulation

filters (wider bandwidth) - and combined in a hierarchical fash-

ion. At the first stage of the hierarchy, an MLP is trained with

features obtained using fast modulation filters. The estimates

of posterior probabilities from the first MLP (log + KLT),

with a temporal context of 90 ms are appended to the features

obtained using slow modulation filters, and used to train the

second MLP classifier. ASR studies using this hierarchical

system have shown to yield higher recognition accuracies. In

this approach, the second MLP acts like a feature combiner.

G3: Hierarchy using HMM

Hierarchical structures have also been investigated in an

attempt to integrate additional knowledge such as minimum

duration of phonemes and transition probabilities between

phonemes [31]. This knowledge is incorporated into an HMM

model Θhmm. The posterior probabilities of phonemes esti-

mated by the MLP model Θmlp1 are used as emission scores in

the HMM states. The new estimates of posterior probabilities

are derived from the state occupancy probabilities P (qt =
k|f1:T ,Θmlp1,Θhmm) estimated using the forward-backward

algorithm. The new estimates of the posterior probabilities are

conditioned on the entire acoustic observation sequence f1:T .

G4: Hierarchy using RNN

Recurrent neural networks (RNN) can also estimate the pho-

netic class conditional probabilities [32]. In a prior work [33],

the hierarchical estimation of the phoneme posterior proba-

bilities using an RNN was investigated. The first stage of

the hierarchical system consists of an MLP trained using

the power spectrum of the speech. Its output units represent

the articulatory features corresponding to the phonemes. In

the second stage, an RNN model Θrnn is trained on the

articulatory features estimated by the MLP. In this case, at

time t, the RNN estimates the posterior probabilities of the

phonemes P (qt = k|x1:t,Θrnn), conditioned on the present

and all the previously observed articulatory feature vectors

x1:t.

G5: Hierarchy using CRF

There is a growing interest in CRF based models, especially

linear chains (with first order Markovian assumption) for

reasons such as discriminative training, relaxed conditional

independence assumption, and ability to jointly model features
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streams with different distributions [34]. In more recent works,

CRFs have been investigated for hierarchical estimation of

phoneme posterior probabilities [18][19]. At the first stage

of the hierarchical system, an MLP estimates the posterior

probabilities of phonemes using (1). In the second stage, the

estimates of the posterior probabilities from the MLP x1:T are

used as features to the CRF model Θcrf . The new estimates of

the posterior probabilities of phonemes P (qt = k|x1:T ,Θcrf )
are obtained using a framework similar to HMM based

forward-backward algorithm.

The main difference between the CRF based hierarchical

system and HMM based hierarchical system, discussed in G3,

is in the way the estimates of posterior probabilities from

the MLP are used. In the HMM based system, the posterior

probabilities of phonemes are used as local acoustic scores

in the HMM states, whereas in the CRF based system, they

are used as features. In addition, the CRF based system also

benefits from discriminative training.

G6: Hierarchy using MLP

In the proposed approach, the MLP at the second stage of

the hierarchy yields a new estimate of posterior probabilities,

conditioned on a window of the posterior features estimated

by the first MLP, and the model Θmlp2 representing the second

MLP as P (qt = k|xt−d2:t+d2
,Θmlp2).

This approach is similar in principle to the RNN based

hierarchical approach G4 and the CRF based hierarchical

approach G5. The classifiers in the second stage of these

systems are trained discriminatively using either posterior

features or articulatory features. Apart from the modeling

abilities of these classifiers, the main difference between

these hierarchical systems is the temporal context on the

posterior features. In the RNN based system, the new estimates

of posterior probabilities are conditioned on all previously

observed posterior feature vectors. In the CRF based approach,

it is conditioned on the entire sequence of posterior features.

Whereas in our approach, the temporal context on the posterior

features is explicitly limited to be around 150-230 ms.

The works described in G1-G3 are primarily motivated

towards exploiting the temporal information in the acoustic

features. Whereas in our work as well as G4 and G5, the

hierarchical system is motivated towards exploiting temporal

information in the posterior features. In this work, the first

MLP is trained using standard PLP features. However, it can

be trained with any acoustic features, or the first stage can be

entirely replaced with more sophisticated MLP based systems

described in G1-G2. Table I gives a summary of the discussed

approaches highlighting the differences in the temporal context

and the nature of the second classifier in the hierarchy.

The proposed hierarchical framework can also be related to

the following prior works in the literature

G7: Bottleneck Features

In bottleneck feature extraction [35], a five layer MLP with a

bottleneck constriction at the middle (or compression) layer, is

trained to classify phonemes. The linear activation values at the

bottleneck layer are used as features in Tandem based speech

TABLE I
SUMMARY OF THE HIERARCHICAL SYSTEMS EXPLOITING TEMPORAL

INFORMATION. NOTATIONS INCLUDE: CLASSIFIER-1 (C1), CLASSIFIER-2
(C2), ACOUSTIC FEATURES (A), POSTERIOR FEATURES (P), POSTERIOR

FEATURES TRANSFORMED USING log AND KLT (Ptr ), LENGTH OF THE

UTTERANCE (T).

system temporal context C2 C2
name C1 (acoustic) C2 (posterior) features type

G1 [22][23] long (1s) nil P MLP

G2 [29][30] long (1s) 90 ms A+Ptr MLP

G3 [31] T nil - HMM

G4 [33] any 1:t P RNN

G5 [18][19] any T P CRF

G6 [12][20] any 230 ms P MLP

recognition. The processing from the input to the compression

layer can be likened to the first MLP in the hierarchical system,

and the processing from the compression layer to the output

layer can be likened to the second MLP.

Even though the architectures of both these systems seem to

be similar, the motivation for these works and their application

in speech recognition are different. In the bottleneck feature

extraction, the objective is to obtain lower dimensional features

(independent of the phonetic classes), which are more suitable

to the ensuing HMM/GMM system. In the proposed hierar-

chical system, the first MLP transforms the acoustic features

to posterior features with lesser undesirable variabilities such

as speaker and environment characteristics. Consequently, the

second MLP can exploit the temporal information in the

posterior features spanning temporal contexts as long as 250

ms. The second MLP gives new estimates of phonetic class

conditional probabilities.

G8:Frame-based MPE

The hierarchical system discussed in this work can be

related to the frame based minimum phone error (fMPE) sys-

tem [36]. In fMPE, a very high dimensional vector of posterior

probabilities is obtained from Gaussian mixture models with

a temporal context. The high dimensional posterior vector

is projected to a lower dimensional feature space, and used

as a correction to the input features such as PLP cepstral

coefficients. The linear transformation matrix is trained using

minimum phone error criterion [37].

In the MLP based hierarchical system, the high dimensional

vector of posterior probabilities is obtained by stacking the

output of the first MLP over a long temporal context. The

second MLP acts as a nonlinear transform, and is trained using

a minimum cross-entropy error criterion, which also achieves

minimum phone error. Apart from the nonlinear transforma-

tion, the major difference between the two is that in fMPE, the

transformed posterior vectors are used as a correction to the

input features, but in the hierarchical system, they are used as

new features to the ASR. Interestingly, fMPE has been shown

to be a special case of semi-parametric trajectory model that

models the trajectories of the acoustic features [38]. In our

case, the second MLP learns the trajectories of the posterior

features. This is discussed in Section IV-C.
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III. EXPERIMENTS AND RESULTS

A. Experimental Setup

The efficacy of the hierarchical system in estimating

phoneme posterior probabilities is evaluated by performing

speaker independent phoneme recognition experiments on

TIMIT as well as CTS databases. We preferred phoneme

recognition as it facilitates a detailed analysis of the results.

Improvements in word recognition using the hierarchical ap-

proach have been reported in [20][39].

The TIMIT database consists of 4.3 hours (including 1.1

hours of NIST complete test set) of read speech, recorded in

clean conditions. The ‘sa’ dialect sentences in the database

are not included in the experiments. The database is hand-

labeled using 61 phonetic symbols, which include the closures

as well as the allophonic variations of certain phonemes. In

our experiments, these phonetic symbols are mapped to the

standard set of 39 phonemes [40] with an additional garbage

class.2

The CTS setup used in the experiments consists of 277.7

hours speech defined as ctstrain04, which is a subset of

h5train03 data set defined at the Cambridge University for

training the CU-HTK system for RT03 evaluation [41][42]. 3

The phonetic transcription of the speech - required for training

the MLP as well as computing the accuracy of phoneme

recognition - is obtained by Viterbi forced alignment. For this,

we used off-the-shelf HMM/GMM acoustic models developed

in [44] in conjunction with the UNISYN [45] pronunciation

dictionary containing 45 phonemes. The dictionary, on an

average, contains 1.015 pronunciations per word.

In all the experiments, the acoustic features are the first

13 PLP cepstral coefficients. These coefficients, after speaker

specific mean and variance normalization, are appended to

their delta and delta-delta derivatives, to obtain a 39 dimen-

sional feature vector for every 10 ms. A three layered MLP

with sigmoid nonlinearity at the hidden layer, and softmax

nonlinearity at the output is used in all the experiments. The

parameters of the MLP are optimized using minimum cross-

entropy training criterion. Phoneme recognition is performed

using hybrid HMM/MLP approach [6]. The sequence of

phonemes is decoded by applying Viterbi algorithm, where

each phoneme is represented by a strictly left-to-right, three-

state HMM, thereby enforcing a minimum duration of 30 ms.

The emission likelihood in each of the three states is the same,

and is derived from the associated output of the MLP.

Table II shows the number of speakers and the amount of

data in the training, cross-validation, and test sets of the two

databases. On TIMIT, the train and test sets are according

to the standard protocol. On CTS, the total data is split into

train, CV, and test sets as shown in the table. The parameters

2Unlike in [40], the closures are merged with their corresponding bursts
(e.g., /bcl/,/b/→/b/). The garbage class handles frames with no labels, and
the glottal stop /q/ and its closure /qcl/. The garbage and silence classes are
excluded while evaluating the recognition accuracies.

3The h5train03 setup consists of around 296 hours of speech from
Switchboard-I [43], Switchboard Cellular, and Callhome English speech
corpora, distributed by the Linguistic Data Consortium. For training the AMI
RT05 system [44], the sentences containing words which do not occur in the
dictionary were removed, resulting in 277.7 hours of ctstrain04 data set.

TABLE II
THE NUMBER OF SPEAKERS AND THE AMOUNT OF DATA IN THE TRAIN,

CROSS-VALIDATION (CV) AND TEST SETS OF TIMIT AND CTS.

TIMIT CTS
train CV test train CV test

speech (hours) 2.6 0.6 1.1 232.0 36.3 9.4

speakers 375 87 168 4538 726 182

of the MLP and the phoneme n-gram models are estimated on

the training set. The cross-validation set is used to control the

learning rate of the MLP. In addition, it is also used to optimize

the the phoneme insertion penalty (and language model scaling

factor, if phoneme n-gram models are used) of the decoder.

All the results reported in this paper are on the test set, which

is not seen in the entire training phase.

On CTS task, training an MLP with 232 hours of speech

is computationally expensive.4 In order to speed up the ex-

periments to obtain various plots, the training data set is split

randomly into two equal parts. The first MLP is trained with

one half of the training data, and the second MLP is trained

with the remaining half. The single MLP based system is,

however, trained on the complete training data. On TIMIT, as

the amount of training data is small, both the MLPs in the

hierarchical system are trained on the full data.

The MLPs are trained using the Quicknet package [46].

The phoneme n-gram models are trained using the SRILM

toolkit [47] and phoneme recognition is performed using the

weighted finite state transducer based Juicer decoder [48].

B. Experimental Results

Table III shows the phoneme recognition accuracies ob-

tained by hierarchical modeling (system S2) in comparison

with the standard single MLP modeling (system S1). The

single MLP system is trained using PLP features with a 90

ms context. The second MLP in the hierarchical system is

trained using the output of the single MLP based system S1,

with a temporal context of 230 ms. It can be seen that, by

hierarchical modeling we obtain an absolute improvement of

3.5% in recognition accuracy on TIMIT, and 9.3% on CTS.

To study the effect of increase in the model capacity on the

recognition accuracies, we also compare these results to those

obtained by a single MLP based system with the same number

of parameters as in the hierarchical system (system S3). In this

case, the improvement in the recognition accuracies is 2.5%

and 8.3% respectively.

In Fig. 2, we compare the phoneme recognition accuracies

obtained using hierarchical approach to those obtained using

the single MLP approach for different values of the temporal

context. In the case of hierarchical system, the first MLP

is always trained with a temporal context of 90 ms on the

acoustic features. As the temporal context on the posterior

features at the second MLP is increased, the total number

of parameters in the MLP is kept constant by appropriately

4Using multi-threaded version of Quicknet [46] (with eight threads and
bunch size of 2048), training an MLP of size 351× 5000× 45 on 232 hours
of speech takes roughly 72 hours to complete 8 epochs on a 2.4 GHz, AMD
Opteron processor, with eight cores.
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TABLE III
PHONEME RECOGNITION ACCURACIES OBTAINED BY USING

HIERARCHICAL POSTERIOR ESTIMATION AS COMPARED TO THE

STANDARD SINGLE MLP ON TIMIT AND CTS DATABASES.

single MLP hierarchical single MLP
baseline (S1) two MLPs (S2) same capacity (S3)

TIMIT 68.1 71.6 69.1

CTS 54.3 63.6 55.3

reducing the size of its hidden layer.5 In the case of single MLP

estimator, as the temporal context on the acoustic features is

increased, the total number of parameters is kept constant,

and equal to those in the hierarchical system (sum of the

parameters in both the MLPs).
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Fig. 2. (a) Phoneme recognition accuracy on TIMIT using an hierarchical
setup as well as single MLP with the same number of parameters. In
hierarchical system, the size of the first MLP is 351 × 1000 × 40, and the
size of the second MLP for 23 frame context is 920 × 1083 × 40. (b) A
similar plot on the CTS, where the size of the first MLP is 351×5000×45,
and the size of the second MLP for 23 frame context is 1035 × 1334 × 45.
Any two points in the plot correspond to systems with the same number of
parameters, and can be calculated using.5

It can be seen from the figure that:

1) The hierarchical system consistently outperforms the

single MLP based system with the same number of

parameters for all values of context. As the context at

the second MLP is increased, even though the number

of hidden nodes is decreased, there is a steady increase

in the recognition accuracies. Thus it can be concluded

that improvement is due to the topology of two MLPs

in tandem, and not merely due to the increase in overall

model capacity.

2) In case of CTS, the recognition accuracies begin to satu-

rate at around 230 ms of temporal context at the input of

the second MLP. In case of TIMIT, the accuracies begins

to saturate after 150 ms, but this could be due to the lack

of sufficient training data. In both cases, the effective

temporal context of 150-230 ms extends well beyond

the typical duration of phonemes (50-70 ms), which

suggests that the second MLP is integrating temporal

information in the posteriors features corresponding to

the neighboring phonemes as well.

5 If F denotes the dimensionality of the features, C denotes the temporal
context, and H (and O) denote the size of the hidden (and output) layers, the
number of parameters in the MLP is given by C ∗F ∗H +H +H ∗O +O.

3) A long temporal context is more effective when applied

on the posterior features rather than on the acoustic

features. On increasing the temporal context on the

acoustic features at the input of the single MLP system,

recognition accuracies peak for a context of around 90-

110 ms, but are significantly lower when compared to

the hierarchical system.

From the above discussion it is clear that the hierarchical

system is useful as a phoneme posterior probability estimator,

and that a long temporal context is more effective on the

posterior features rather than on the acoustic features. As

the second MLP is trained using posterior features, which

represents the underlying sequence of phonemes, it is clear

that the second MLP learns the phonetic-temporal patterns.

The following questions, however, remain unanswered: (a)

what are the phonetic-temporal patterns learned for each

phoneme ? (b) as the long temporal context extends beyond

the typical duration of phonemes, has the second MLP also

learned the phonotactics of the language ? and (c) why is

the relatively longer temporal context more effective on the

posterior features ?

The first two questions can be answered by analyzing the

input-output relationship learned by the second MLP classifier.

In this work, we use Volterra series for the analysis, and this is

discussed in Section IV. The effectiveness of temporal context

on the posterior features is discussed in Section V.

C. Second MLP as a Function

The second MLP can be viewed as a vector valued function

fmlp2(.), which takes the estimates of posterior probabilities

of phonemes from the first MLP denoted by xt−d2:t+d2
as

its arguments, and gives a new estimate of the posterior

probabilities of phonemes zt as

zt = fmlp2(xt−d2:t+d2
). (3)

In the second MLP classifier, let W denote the weight matrix

connecting the input layer to the hidden layer, C denote the

weight matrix connecting the hidden layer to the output, bh

and bo denote the bias vectors at the hidden and output

layers respectively, and fsoft(.) and fsigm(.) denote the vector

valued softmax and sigmoid functions at the output and the

hidden layers of the MLP respectively. Then, equation (3) can

be expressed as

zt = fsoft (yt) , (4)

where the vector yt = [y1(t), . . . yj(t), . . . yN (t)]′ denotes the

linear activation vector before the softmax nonlinearity at the

output layer of the MLP, and is given by

yt = bo + Cfsigm (bh + Wxt−d2:t+d2
) . (5)

It is difficult to analyze or interpret the input-output relation-

ship (xt, zt) of the MLP, given by (4) and (5), due to the

presence of nonlinear functions fsigm(.) and fsoft(.). The

output nonlinearity can be conveniently dropped from the

analysis as parameters of the discriminatively trained MLP

{W,bh, C,bo} can still be interpreted from the input-output

relationship (xt,yt). This does not affect the interpretability
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as the output units are still phonemes, and the ordering of the

estimates are not altered. The nonlinearity at the hidden layer,

however, can still make the analysis of (5) difficult.

In our previous work [12], this problem was circumvented,

but not solved, by using a single layer perceptron (SLP) in

place of the second MLP in the hierarchical system. The SLP

retained the same input-output architecture, training data, and

optimization criterion as that of the MLP. The weights of

the trained perceptron revealed the linear fit to the observed

training data. However, the MLP classifier which was actually

used in ASR studies was not analyzed.

In this work, we follow a more principled approach and

represent the second stage of the hierarchical system using

Volterra series. For this, we treat the multi-input xt, multi-

output yt system characterized by (5) as a nonlinear time-

invariant system. Traditionally, in the literature, such systems

have been analyzed using Volterra series [14][15]. By using

Volterra series, the nonlinear system can be decomposed into

its linear, quadratic, and higher order parts and analyzed.

At this stage, we digress from the discussion on hierarchical

systems to present the theory of Volterra series. We also briefly

discuss our earlier work on representing a cascade of finite

impulse response (FIR) filter bank and an MLP using Volterra

series [49][50]. The analysis of the hierarchical system using

Volterra series is resumed from Section IV-C onwards.

IV. VOLTERRA SERIES

A Volterra series is an infinite series which can model the

input-output relationship of a nonlinear time-invariant system.

As an illustration, we first discuss the Volterra series expansion

for a single-input, single-output system.

A. Volterra Series: Single Input - Single Output System

If x(t) is the input to a nonlinear system, and y(t) its output,

the Volterra series expansion for the system is given by

y(t) =

∞
∑

n=0

Gn [gn, x(t)]

where, {Gn} is the set of Volterra functionals, and {gn} is

the set of Volterra kernels of the nonlinear system. The first

three functionals in the Volterra series are given by

G0 [g0, x(t)] = g0,

G1 [g1, x(t)] =

∫

R

g1(τ)x(t − τ)dτ, and

G2 [g2, x(t)] =

∫

R2

g2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2

Each term in the Volterra series is a multi-dimensional con-

volution between the input to the system and its Volterra

kernels. The Volterra kernels {g0, g1, g2 . . . g∞} completely

characterize the nonlinear time-invariant system.

The first order Volterra functional G1 is the linear convolu-

tional integral, and its kernel g1 is impulse response function,

which characterizes the linear part of the nonlinear system. As

a special case, if the system is linear, then the Volterra series

reduces to order one, and its first order Volterra kernel gives

the actual impulse response function of the system.

Volterra series has been extensively used in the analysis

of biological systems [51]. It has also been used in the

literature to analyze artificial neural networks in various fields

of engineering. For example, in the analysis of neural networks

used for velocity estimation in computer vision [52], analysis

of perceptron based nonlinear noise filtering and beamform-

ing [53], analysis of time-delay neural networks used to model

the nonlinear behavior of electronic devices [54], etc.

B. Volterra series : Three Layered MLP

In recent works [49][50], we proposed a mathematical

framework to apply Volterra series to a nonlinear time-

invariant system comprising of an FIR filter bank, followed

by a three layer MLP. This generic framework was developed

to analyze MLP classifiers trained using standard acoustic

features such as mel frequency cepstral coefficients (MFCC),

along with the dynamic coefficients. In such cases, if the MLP

is analyzed as a standalone system, then the functionality of

the trained MLP is revealed in terms of input features (e.g.,

cepstral patterns), which is difficult to analyze. However, in

most cases, ASR features are obtained by processing an inter-

mediate representation (e.g., spectro-temporal) using a linear

time-invariant system. For instance, in MFCC, the intermediate

representation is the log energies in the mel critical bands, and

the linear system consists of discrete cosine transformation

matrix and the FIR filters that compute the dynamic cepstral

features. By including the linear system in the analysis, the

parameters of the trained MLP can be analyzed using more

interpretable spectro-temporal patterns.

Application of Volterra series to the second stage of the hier-

archical system forms a special case in this generic framework.

The input to the system are the posterior features estimated by

the first MLP. The temporal context on the posterior features

can be viewed as being obtained using a bank of FIR filters

with time-shifted Kronecker delta impulse response functions.

Fig. 3 is a block diagram of the system under analysis. Let

xt = [x1(t), . . . xk(t), . . . xK(t)]
′

denote the input to the FIR

filter bank, where K is the number of inputs. If L denotes

the number of filters in the filter bank, and hl(t) denotes the

impulse response of these filters, then the input features to

the MLP is given by ut = [u1,1(t), . . . uk,l(t), . . . uK,L(t)]
′
,

where uk,l(t) is given by the convolution 6 between xk(t) and

hl(t) as

uk,l(t) =

∫

τ

hl(τ)xk(t − τ)dτ (6)

Furthermore, let M and N denote the size of the hidden and

output layers respectively, wi
k,l denote the weight connecting

the node (k, l) in the input layer to the node i (with a bias

bi
h) in the hidden layer, c

j
i denote the weight connecting the

hidden node i to the output node j (with a bias bj
o), and φ(.)

denote the nonlinear activation function at the hidden layer.

The output of the system yt =
[

y1(t), . . . yj(t), . . . yN (t)
]′

is

6Even though the above system is a discrete-time system, continuous-time
notations are used for clarity. This helps in distinguishing the integral operator
in the convolution from the summation in the MLP function.
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Fig. 3. Block schematic of the system analyzed using a Volterra series. It consists of an FIR filter bank followed by a three layer MLP.

the linear activation values before the output nonlinearity in

the MLP, and is given by

yj(t) = bj
o +

M
∑

i=1

c
j
iφ

(

bi
h +

K
∑

k=1

L
∑

l=1

wi
k,luk,l(t)

)

. (7)

The nonlinear time-invariant system characterized by (6)

and (7) cannot be analyzed in its present parametric form

due to the nonlinear function φ(.). However, if the nonlinear

function can be expressed as a power series, then the same

system can be alternatively represented using Volterra series

as

yj (t) = g
j
0 +

K
∑

k1=1

∫

τ1

g
j
k1

(τ1) xk1
(t − τ1) dτ1 +

K
∑

k1=1

K
∑

k2=1

∫

τ1

∫

τ2

g
j
k1k2

(τ1, τ2) xk1
(t − τ1) xk2

(t − τ2) dτ1dτ2 + . . . (8)

and analyzed. In the above equation, g
j
0, g

j
k1

(τ1), and

g
j
k1k2

(τ1, τ2) respectively denote the zeroth, first, and second

order Volterra kernels of the trained MLP for the output

class j. The variables τ1, τ2 . . . denote time, and k1, k2 . . .

denote the components of the input vector xt. The first order

Volterra kernel is the linear part of the nonlinear system, and

can reveal the contribution of the input xk1
(t) to the output

yj (t). Similarly, the second order Volterra kernels reveal the

quadratic part of the nonlinear system.

The Volterra kernels of the system can be identified in

terms of the impulse response of the FIR filter bank and the

parameters of the trained MLP. Suppose that the nonlinear

activation function φ(.) at the hidden node i with a bias bi
h

can be approximated as a polynomial expansion as

φ(. + bi
h) = a0,i + a1,i (.) + a2,i (.)2 + . . . , (9)

where, a0,i, a1,i, a2,i . . . are the coefficients of the polynomial

expansion. By substituting (6) and (9) in (7), and comparing

the resulting equation to (8), the first three Volterra kernels are

identified as

g
j
0 = bj

o +

M
∑

i=1

c
j
i a0,i (10)

g
j
k1

(τ1) =

M
∑

i=1

c
j
i a1,i

L
∑

l1=1

wi
k1l1

hl1 (τ1) (11)

g
j
k1k2

(τ1, τ2)=

M
∑

i=1

c
j
ia2,i

L
∑

l1=1

L
∑

l2=1

wi
k1l1

wi
k2l2

hl1 (τ1)hl2(τ2)

(12)

The complete derivation of the Volterra kernels is described

in [49]. Note that the bias at the hidden layer is captured in

the polynomial coefficients and the bias at the output layer

is incorporated into the zeroth order Volterra kernel. The

identified Volterra kernels are in continuous-time notations.

The corresponding discrete time kernels are obtained by using

discrete-time expressions for the impulse response functions

of the filter bank in (10)-(12).

Polynomial expansion: The key step in the analytical iden-

tification of the Volterra kernels is the polynomial approxi-

mation of the hidden nonlinearity. Polynomial expansion of

saturating functions such as sigmoid or hyperbolic tangent

are divergent if approximated for all possible values of the

input (−∞,∞). However, since the MLP is trained using

posterior features, which are trained to be linearly separable as

discussed in Section V-A3, and as a consequence of feature

normalization, the operating point on the nonlinearity is in

a relatively small region containing the linear part of the

function. To estimate the polynomial coefficients, the operating

region on the hidden nonlinearity is first identified using cross-

validation data. The coefficients are subsequently optimized to

minimize the least square error between the sigmoid function

and its polynomial approximation in the operating region of

the hidden nonlinearity, leaving a small percentage (1%) of its

tail. The estimation of polynomial coefficients is described in

detail in [49].
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C. Application of Volterra Series

In this section, we compute the Volterra kernels for multi-

input xt, multi-output yt = [y1(t), . . . yj(t), . . . yN (t)]′ sys-

tem characterized by (5). This system can be viewed as N

parallel, multi-input, single-output, nonlinear, time-invariant

systems, and represented by

y
j
t = bj

o + Cjfsigm (bh + Wxt−d2:t+d2
) , j = 1 . . . N,

(13)

where, Cj denotes the weight row vector connecting the

hidden layer to the output node j, and bj
o the bias at the

output node j. The system represented by (13) can be realized

using the framework shown in Fig. 3, where the temporal

context of 2d2 + 1 frames on the posterior features, denoted

by xt−d2:t+d2
, can be created by filtering xt using a bank of

L = 2d2 + 1 FIR filters. The impulse response of the 2d2 + 1
tap FIR filter is given by

hl(n) = δ

(

n + l −
L + 1

2

)

l = 1, 2 . . . L

n = −d2, . . . 0, . . . d2

The Volterra kernels are computed in terms of the above

impulse response functions and the weights of the trained MLP

using the discrete-time versions of (10)-(12). In practice, due

to feature normalization, xt represents posterior features which

are normalized to zero mean and unit variance.

In the remaining part of this section, we analyze trained sec-

ond MLPs in the hierarchical system (see Table III for results)

- one trained on TIMIT (K = 40, L = 23,M = 1083, N =
40), and the other trained on CTS (K = 45, L = 23,M =
1334, N = 45). Before analyzing the Volterra kernels, the

accuracy of first and second order truncated Volterra series is

evaluated. For this, we substitute the identified kernels in the

synthesis equation (8) to obtain the linear activation values

of phonemes. Approximate estimates of phoneme posterior

probabilities are obtained by applying softmax nonlinearity,

and subsequently used in phoneme recognition.

TABLE IV
PHONEME RECOGNITION ACCURACY OBTAINED BY LINEAR AND

QUADRATIC APPROXIMATION OF THE MLP USING THE VOLTERRA SERIES.

model series phoneme accuracy
order TIMIT (%) CTS (%)

linear 1 68.7 50.1

quadratic 2 70.1 54.9

MLP ∞ 71.6 63.6

Table IV shows the phoneme recognition accuracies ob-

tained by the first and second order Volterra series approxima-

tion of the second MLP classifier. In theory, the recognition

accuracy obtained by the Volterra series approximation should

approach asymptotically to the accuracy obtained by the direct

evaluation of the MLP, as the order of the series is increased.

However, the computation of the higher order Volterra kernels

is computationally intensive and hence not practical.

It can be seen that on TIMIT, the phoneme recognition

accuracy obtained by the first order Volterra approximation

is only three percent lower compared to direct evaluation of

the MLP function. In other words, the second (quadratic),

third (cubic), and higher order parts contribute very little to

nonlinear modeling ability of the second MLP. Hence, in this

case, the linear Volterra kernels reveal most of the information

learned by the nonlinear classifier.

In the case of a more complex CTS task, the phoneme

recognition accuracy obtained using first order Volterra series

is 13.5% lower compared to the direct evaluation of the

MLP. This implies that second and higher order Volterra

kernels contribute significantly to the modeling ability of the

second MLP and that the linear Volterra kernels can only

partially explain its functionality. The remaining information

is complemented by the higher order Volterra kernels. In this

work, we restrict the analysis to linear Volterra kernels.

D. Interpretation of the First Order Volterra Kernels

It is clear from (8) that the first order Volterra kernels reveal

the linear part of the nonlinear system under analysis. Suppose

that the second MLP is trained using a temporal context of

230 ms, then the Volterra kernel for phoneme j = 1, 2 . . . N

at the output of the second MLP is given by g
j
k(t), and reveals

the contribution of each of the phonemes k = 1, 2 . . . K at the

input of the MLP, in a window of [t−11, . . . t, . . . t+11], which

amounts to 230 ms of context. As the input to the second MLP

is in terms of phonemes, the first order Volterra kernels can be

interpreted as phonetic-temporal patterns. In our experiments,

N = K as both the MLPs in the hierarchical system are

trained on the same phoneme set.

The phonetic-temporal patterns observed in the first order

Volterra kernels can reveal two important aspects learned by

the second MLP classifier: 1) the acoustic confusion among

phonemes at the output of the first MLP classifier, and 2) the

phonotactics of the language as observed in the training data.

In the remaining part of this section, we discuss these aspects

in detail.
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Fig. 4. (a) First order Volterra kernel of the phoneme /iy/ (e.g., beat) obtained
on TIMIT. (b) A similar plot on CTS database.

1) Volterra kernels revealing acoustic confusions among

phonemes: Fig. 4 (a) and (b) are the plots of the first order

Volterra kernel of the second MLP classifier for the vowel /iy/

(e.g., beat) on TIMIT and CTS respectively. The figure shows

the impulse response functions corresponding to the top four

contributing phonemes at the input of the MLP. The impulse
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response function corresponding to other phonemes are not

plotted in the figure for clarity. The top contributing phonemes

are selected based on the energy in their impulse response

functions. It is not surprising that the maximum contribution is

from the same phoneme /iy/ at the input. There are, however,

positive contributions from other confusing vowels such as

/ih/, /ey/, and /eh/.

−100 −50 0 50 100

−0.5

0

0.5

1

1.5

context (ms)

k
e
rn

e
l 
v
a
lu

e

/g/

/k/

/ih/

/t/

−100 −50 0 50 100

−0.5

0

0.5

1

1.5

context (ms)

k
e
rn

e
l 
v
a
lu

e

/g/

/k/

/d/

/ih/

(a) (b)

Fig. 5. First order Volterra kernel of the phoneme /g/ (e.g., goat) obtained
on TIMIT. (b) A similar plot on CTS database.

Fig. 5 (a) and (b) are plots of first order Volterra kernel

of the phoneme /g/ (e.g., goat) obtained on TIMIT and CTS

databases respectively. It can be seen that the kernels show

positive contributions from other confusing consonants such

as /k/, /t/, and /d/. Moreover, the MLP has also learned to

give negative weight to the vowel /ih/. This is due to the

discriminative training of the MLP and this information is

otherwise not intuitive. It suggests that the consonant /g/ is

less likely to be confused with the vowel /ih/.

As both the input and output representations of the second

MLP are in terms of phonemes, the first order Volterra kernel

can be interpreted as a phonetic-temporal confusion patterns.

However, unlike the standard phonetic confusion matrix, the

first order Volterra kernels reveal the contribution of the input

phonemes in a window of certain duration depending on the

temporal context used. In Table V, we show the top three

contributing phonemes at the center (t = 0) of the Volterra

kernels for both TIMIT as well as CTS databases. These

confusions patterns are compared to the standard confusion

matrix, obtained by performing frame-level phoneme classi-

fication at the output of the first MLP. Only entries in the

confusion matrix with values greater than 0.06 are shown in

the table.

It can be seen from the table that the confusions at the center

of the Volterra kernels match to a certain extent with standard

phonetic confusion matrix derived from the posterior features.

However, these confusion entries need not be the same because

the Volterra kernels represent the discriminatively trained

second MLP classifier, whereas the phonetic confusion matrix

is a measure of the phonetic confusion in the posterior features,

which are used to train the second MLP.

It is interesting to note that the ability of the second classifier

(an MLP in our case) in the hierarchical setup to learn the

acoustic confusion among phonemes at the output of the first

MLP has also been observed in the CRF based hierarchical

TABLE V
CONFUSING PHONEMES AT THE CENTER OF THE VOLTERRA KERNELS

(TOP THREE) AS COMPARED TO THE PHONETIC CONFUSION MATRIX

(VALUE > 0.06).

phonemes confusions confusion phonemes confusions confusion
TIMIT Volterra matrix CTS Volterra matrix

iy ih, ey, eh ih iy ih, eh, ey ih, ey
ih iy, eh, ae ah ih iy, sil, eh ax, iy
ey ih, iy, ae ih, iy ey ih, ay, eh iy, ih
eh ih, ae, ah ih, ae, ah eh ah, ih, ey ae, ih, ax, ah

aa ah, ay, ow ah, ay, ao
ah ih, ao, eh ih, ao, ow ah ay, eh, l ax, ow

ax axr, ah, m ih, ah
axr r, ax, ih r, ax

uw ih, iy, w ih, iy uw iy, ih, ow iy, ax
uh ih, ah, eh ih, ah, ow, l, uw uh ih, s, ey ax, ih
ae ao, ah, aw eh ae eh, ah, ay eh
ao ae, ay, ah ao aa, l, w aa, ow
aw ao, ah, ae ao, ae aw ah, ay, eh ae, ow, ah, aa, eh, ay
ay ao, ah, ey ao ay ah, eh, aa ah
ow ah, ao, l l, ah, ao ow ah, l, ao ah, l
oy ao, ih, ay ao, ey oy r, w, ay w, l, ao, ow
y iy, ih, oy iy, uw, ih y iy, ae, ch iy, sil
w l, uh, oy l w l, r, ao
l ao, ah, ow ow, ao l ah, el, w ow

el l, ow, ao l, ow, ax
r er, ae, ao er r axr, iy, w axr
er r, ih, ah r er r, axr, ih r, axr
hh sil, k, p sil hh s, ae, dh sil
m n, p, b n m n, ng, w n, sil

em n, ah, m, en m, ah, sil, n, ax
n m, dx, dh m n m, ng, en d

en n, m, ng n, ax, d, m
ng n, m, uw n ng n, m, iy n
p t, b, k p k, t, f t, sil
t d, p, k d, k t d, k, m sil
k sil, t, p t k sil, p, t sil, t
b p, d, m p b p, dh, w dh
d t, dx, k t d t, sil, s t, n, sil
g k, d, t k, d g k, d, dh k
dx d, n, dh d
f p, s, sil f s, sil, k s, sil
th s, t, f f, t th s, sil, f s, t, sil
s z, sh, f z s f, sh, z sil, z
sh s, z, jh s sh s, f, ch s, ch
v f, b, m v sil, f, z ax
dh t, th, d sil dh y, b, g t, d
z s, sh, th s z s, sil, f s, sil

zh iy, ih, z z, sh, uw
ch s, jh, sh sh, t, jh, s ch t, s, k t, s, sh
jh s, z, sh ch, sh jh ch, d, y t, d, ch

system [19] (refer system G5 in section II-C).

2) Volterra kernels revealing the phonotactics of the lan-

guage: A closer look at the first order Volterra kernels

reveals that the MLP has also learned the phonotactics the

language. In the ensuing discussions, the following notations

are used. P (p1+|p2) = P (pn+1 = p1|pn = p2) denotes the

probability that phoneme /p1/ follows /p2/, and is typically

used using n-gram statistical language modeling. In contrast,

P (p1−|p2) = P (pn−1 = p1|pn = p2) denotes the probability

that phoneme /p1/ precedes /p2/. To estimate this language

model, the sequence of phonemes in the training data are

reversed, and bigram statistics are estimated.

Fig. 6 (a) is a plot of the first order Volterra kernel of

the phoneme /y/ on TIMIT, showing the contributions of two

phonemes /uw/ and /er/ that are most likely to follow /y/. It

can be seen that the corresponding kernels have higher value to

the left of the origin as compared to the right. This is because

P (uw+|y) = 0.52 ≫ P (uw−|y) = 0.04. As Volterra kernels

are impulse response functions, the corresponding matched

filters are obtained by time-reversing the kernels about their

origin t = 0.

Fig. 6 (b) is a plot of the Volterra kernel of phoneme /y/ on

CTS, showing the impulse response functions of phonemes

/uw/ and /eh/, that are most likely to follow /y/. It can be
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Fig. 6. (a) The Volterra kernel of phoneme /y/ on TIMIT. P (uw+|y) = 0.52,
P (uw−|y) = 0.04, P (er+|y) = 0.16, and P (er−|y) = 0.03. (b) The
Volterra kernel of phoneme /y/ on CTS. P (uw+|y) = 0.54, P (uw−|y) =
0.04, P (eh+|y) = 0.30, and P (eh−|y) = 0.001.

seen that the kernel for /uw/ is consistent with the bigram

language model probabilities, but in case of /eh/, there is no

such agreement as the kernel is close to zero for all values of

the context.
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Fig. 7. (a) The Volterra kernel of phoneme /dh/ on TIMIT. P (ih+|dh) =
0.34, P (ih−|dh) = 0.04, P (ah+|dh) = 0.29, and P (ah−|dh) = 0.11 (b)
The Volterra kernel of phoneme /f/ on CTS. P (ih+|f) = 0.07, P (ih−|f) =
0.17, P (ax+|f) = 0.05, and P (ax−|f) = 0.10.

Fig. 7 (a) is the plot of the impulse response functions

of phonemes /dh/, /ah/, and /ih/ in the first order Volterra

kernel of phoneme /dh/ (e.g., this) on TIMIT. It can be seen

that the impulse response functions of phonemes /ih/ and /ah/

have higher weight to the left of origin as compared to the

right. This is because the pairs of phonemes /dh//ah/ and

/dh//ih/ occur more frequently in the training data than the

pairs /ah//dh/ and /ih//dh/.

In Fig. 7 (b), we plot the impulse response functions of

phonemes /f/, /ih/, and /ax/ in the first order Volterra kernel of

phoneme /f/ (e.g., far) on CTS. Phonemes /ih/, and /ax/ are the

two most likely phonemes to precede /f/ and as a consequence,

their impulse response functions have higher values to the right

of the origin. Moreover, it can also be seen that at the origin,

the impulse response functions of /ih/ and /ah/ have negative

weights, which suggests that these vowels are not confusable

with the consonant /f/. It should be noted that the Volterra

kernels reveal the properties of the discriminatively trained

MLP. Hence, they need not always be consistent with the

bigram probabilities between phonemes (derived from simple

counts) in all cases.

The interpretations that can be drawn by analyzing the linear

Volterra kernels are summarized below. If g1
1(τ) and g1

2(τ) are

the impulse response functions (indicating the contributions)

of phonemes /p1/ and /p2/ respectively in the Volterra kernel

of the phoneme /p1/. The function g1
1(τ) will always have a

positive peak at the origin τ = 0. Depending on the shape of

the function g1
2(τ), the interpretations could be as follows: (a)

a positive peak at the origin indicates the acoustic confusion

between the phonemes, (b) a negative valley at the origin

indicates the anti-confusion due to the discriminative training

of the MLP, and (c) a peak which is shifted away from the

origin reveals the phonotactics implicitly learned by the MLP.

Moreover, the Volterra kernels can also reveal the effective

temporal duration learned by the system.

E. Decoding with Language Models

First order Volterra analysis of the hierarchical system

reveals that, apart from the acoustic confusions, the second

MLP has also implicitly captured the phonotactics of the

language. However, it is not clear if the implicitly learned

phonotactics has indeed contributed towards the increase in the

recognition accuracies of the hierarchical system. To ascertain

this, we performed phoneme recognition by explicitly using

phoneme n-gram models.

Fig. 8 (a) and (b) are plots of the phoneme recognition

accuracies on TIMIT and CTS respectively, obtained by de-

coding with nogram (loop of phonemes with equal transition

probabilities), bigram and trigram phoneme language models.

The accuracies are shown for temporal context at the second

MLP ranging from 10ms to 250ms. As the input context is

increased, the total number of parameters of the second MLP

is kept constant by appropriately modifying the size of the

hidden layer. The horizontal dotted lines in the plot indicate the

recognition accuracies obtained by a single MLP based system

using different language models. It can be seen from the figure

that recognition accuracies increase by explicitly using bigram

and trigram models. This improvement is observed for all

values of the temporal context on the posterior features, but the

gain in the accuracies decreases with the increase in context.
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Fig. 8. (a) Phoneme recognition accuracies on TIMIT using nogram, bigram,
and trigram phoneme language models. The horizontal lines show the accuracy
of the first MLP using language models. (b) A similar plot on CTS database.
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To illustrate this, in Fig. 9 we plot the relative gain in

the recognition accuracies obtained on CTS by decoding

with bigram and trigram language models over no language

model, as a function of the temporal context at the input

of the second MLP classifier. It can be seen that the gain

in accuracy obtained by explicitly using a phoneme n-gram

model decreases with the increase in the temporal context.

This is because, with increase in the temporal context, the
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Fig. 9. Relative gain in recognition accuracy on CTS database obtained
by decoding with bigram and trigram language model as compared to no
language model for different values of the temporal context at the input of
the second MLP.

second MLP is able to learn the phonotactics more effectively,

and gain in accuracy by introducing explicit language models

reduces. This further supports the observations from the linear

Volterra kernels. However, even with 230 ms context, the MLP

has only partially learned the phonotactics and we still obtain

1-2% improvement in accuracies by using bigram/trigram

language models in decoding.

To summarize briefly, we showed in this section that

the second MLP classifier in the hierarchical system learns

the phonetic-temporal patterns (acoustic confusions among

phonemes and and the phonotactics of the language) in the

posterior features spanning a temporal context of 150-230 ms.

In the following section, we discuss the important properties

of the posterior features that enabled the second MLP to

effectively learn these patterns.

V. MODELING FLEXIBILITY OF POSTERIOR FEATURES

In this section, we discuss the important properties of poste-

rior features such as (a) lesser nonlinguistic variabilities when

compared to the acoustic features, (b) sparse distribution, and

(c) linear separability in the posterior feature space. We also

discuss the consequence of these properties on the complexity

of the second MLP classifier and the amount of training data.

A. Characteristics of Posterior Features

1) Variability in posterior features: The acoustic features

are known to exhibit a high degree of nonlinguistic variabil-

ities such as speaker and environmental (e.g., noise, channel)

characteristics. The first MLP classifier can be interpreted as

a discriminatively trained nonlinear transformation from the

acoustic feature space to the posterior feature space. It has

been shown that a well trained (large population of speakers,

and different conditions) MLP classifier can achieve invariance

to speaker [3] as well as environmental [8] characteristics.

Moreover, it has also been shown that the effect of coarticu-

lation is less severe on the posterior features when compared

to the acoustic features [55][56].

In other words, the posterior features are soft-decisions

on the underlying sequence of phonemes (i.e., the linguistic

message), and have much lesser nonlinguistic variabilities

when compared to acoustic features.

2) Sparseness in the posterior features: The posterior

features represent the probabilities of the phonetic classes

conditioned on the acoustic features, and hence sum up to

unity at any given time instant. In addition, they are also

sparsely distributed in the posterior feature space. To illustrate

this, in Table VI, we show the average number of components

(or phonemes) in the posterior feature vector that capture 90,

95, and 99% of the probability mass value. It can be seen

that on TIMIT, on an average, 3.6 phonemes capture 95%

of the probability mass value. The other phonemes share the

remaining 5% of the probability mass. On CTS, on an average

6.2 phonemes capture 95% of the probability mass value,

indicating the more complex nature of the task.

TABLE VI
AVERAGE NUMBER OF COMPONENTS (PHONEMES) IN THE POSTERIOR

FEATURE VECTOR THAT CAPTURE 90, 95, AND 99% OF THE PROBABILITY

MASS IN THE POSTERIOR PROBABILITIES OF PHONEMES ESTIMATED BY

THE FIRST MLP.

probability mass value
>90% >95% >99%

TIMIT (max 40) 2.7 3.6 6.6

CTS (max 45) 4.4 6.2 11.3

The sparse distribution of the posterior features has been

previously studied in [3], where the authors termed the poste-

rior features as more regular compared to the standard acoustic

features. It was argued that sparse distribution was one of the

favorable properties of posterior features.

3) Linear separability: The model parameters of the first

MLP are optimized to minimize the cross entropy between the

estimated posterior probability vectors and the output target

vectors, which are typically in the hard-target format. In other

words, if K denotes the number of phonemes, the hard target

vector lpi
∈ R

K for the phoneme pi, i = 1, 2 . . . K is given

by lpi
(k) = δ(k − i). The target vectors are, therefore, at

the simplex of the K dimensional space, which makes them

linearly separable. Hence, a well trained model attempts to

achieve linear separability in the estimated posterior features.

The properties of posterior features discussed in this section

can influence the choice of the second MLP classifier in the

following ways:

1) Since the posterior features are trained to be linearly

separable and have a sparse distribution, a simpler

classifier (in terms of model capacity) may be sufficient

at the second stage of the hierarchy. We validate this

hypothesis in Section V-B.

2) Since the posterior features have lesser variability, the

second MLP could be trained with lesser amount of

training data. We test this hypothesis in Section V-C.
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B. Complexity of the Second MLP

In this section, we study the effect of the model capacity (in

terms of the number of parameters) of the second MLP in the

hierarchical system on the phoneme recognition accuracies.

Fig. 10 is a plot the phoneme recognition accuracies obtained

by using the hierarchical approach, as a function of the number

of parameters in the second MLP classifier (relative to the

number of parameters in the first MLP). The number of

parameters is controlled by reducing the size of the hidden

layer until it equals the size of the input layer. On both

TIMIT as well as CTS, the second MLP is trained using a

temporal context of 230 ms. The horizontal dotted lines in the

plot indicate the recognition accuracies obtained by using the

output of the first MLP classifier.
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Fig. 10. Phoneme recognition accuracies as a function of the number of
parameters in the second MLP classifier (relative to the number of parameters
in the first MLP classifier, which has a size of 351 × 1000 × 40 on TIMIT,
and a size of 351 × 5000 × 45 on CTS). In both cases, a temporal context
of 230 ms is applied at the input of the second MLP, and the horizontal lines
indicate the recognition accuracies obtained by using a single MLP system.

It can be seen from the figure that on both TIMIT as well

as CTS, the recognition accuracies drop with the reduction in

the number of parameters, and the drop in accuracy is more

significant in the case of CTS. Nonetheless, the hierarchical

system still outperforms the single MLP based system on both

the tasks. The second MLP with just 20% of the parameters

in the first MLP can still yield significantly higher recognition

accuracies over the single MLP based system.

As an extreme case, a single layer perceptron (SLP) is used

as a second classifier in the hierarchical system. It can be seen

from Table VII that even a linear classifier in the second stage

of the hierarchy can yield higher recognition accuracies (2.3%

and 1.1% respectively on TIMIT and CTS respectively) when

compared to the baseline system.

TABLE VII
PHONEME RECOGNITION ACCURACIES OBTAINED BY HIERARCHICAL

POSTERIOR ESTIMATION USING MULTILAYER AND SINGLE LAYERED

PERCEPTRON (SLP) CLASSIFIERS.

experiment no MLP SLP
hierarchy(%) hierarchy(%) hierarchy (%)

TIMIT 68.1 71.6 70.4

CTS 54.3 63.6 55.4

It can be recalled from Table IV that, on TIMIT, the

phoneme recognition accuracy obtained by first order Volterra

series approximation was only three percent lower compared

to the accuracy obtained by directly evaluating the MLP,

indicating the linear separable nature of the posterior features.

Therefore, at the second stage of the hierarchy, an MLP

classifier with fewer number of parameters (mildly nonlinear)

is sufficient. On CTS, however, it can be seen that there is

a 13.5% drop in recognition accuracy by approximating the

MLP using first order Volterra series, which indicates that the

posterior features estimated by the first MLP are not as linearly

separable as those in TIMIT. This explains the higher drop in

recognition accuracies with the reduction in the number of

parameters on CTS task.

C. Size of Training Data

In this section, we study the effect of the amount of data

required to train the second MLP in the hierarchical system

on the phoneme recognition accuracies. In Fig. 11, we plot the

phoneme recognition accuracies obtained by using the hierar-

chical approach as a function of the amount of training data

used to train the second MLP classifier (relative to the amount

of training data used to train the first MLP classifier). The

amount of training data is controlled by randomly dropping

the sentences in the training set. It can be seen that even with

80% reduction in the training data, the hierarchical system

yields higher recognition accuracies when compared to the

baseline system.

In this work, in order to speed up the training time on the

CTS task, the training data was split into two halves, and

the two MLPs in the hierarchical system were trained on the

disjoint data sets. By training the hierarchical system using the

above strategy, where the MLPs have sizes 351 × 5000 × 45
and 1035 × 1334 × 45, we obtained a recognition accuracy

of 63.6%. However, only a slight improvement in recognition

accuracy, about 0.7%, is obtained by training both the MLPs

in the hierarchical system on the full 232 hours of data.

Moreover, the training strategy for the hierarchical system -

same training set or disjoint sets - did not affect the recognition

accuracies.
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Fig. 11. Phoneme recognition accuracies as a function of the amount of
data used to train the second MLP. 100% data corresponds to 153 minutes on
TIMIT, and 116 hours on CTS. An MLP with fewer number of hidden nodes
(200 on TIMIT and 400 on CTS) is used. In both cases, a temporal context
of 230 ms is applied at the input of the second MLP. The horizontal lines
indicate the accuracies obtained by using a single MLP based system.
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VI. DISCUSSION

We investigated a simple hierarchical system consisting of

two MLP classifiers in tandem. The second MLP is trained

using the posterior features estimated by the first with a

temporal context of 150-230 ms. The effectiveness of the

hierarchical system is a consequence of the long temporal

context being applied in the posterior features, which are

trained to be linearly separable, possess a sparse distribution,

and lesser nonlinguistic variabilities.

A similar hierarchical system was previously studied in [19],

where a CRF was used at the second stage of the system.

It was argued that the system learns the phonetic confusion

patterns in the posterior features estimated by the MLP. The

findings from the present study further strengthens this argu-

ment. We show using Volterra analysis that the second MLP

indeed learns the phonetic-temporal patterns which capture the

phonetic confusions at the output of the first MLP. In addition,

we also showed that it learns the phonotactics of the language

as observed in the training data.

In the following subsections, we discuss some of the in-

teresting aspects of the MLP based hierarchical system and

possible future directions.

A. Choice of the Subword Units

In this work, the second MLP is trained on posterior features

where each dimension corresponds to a phoneme. Further

improvements in recognition accuracies have been observed

using posterior features corresponding to the sub-phonemic

states, e.g., three states per phoneme [12]. A Volterra analysis

of the second MLP classifier in such a scenario would reveal

the phonetic-temporal patterns in the sub-phonemic posterior

feature space.

The second MLP could also be trained using posterior

features corresponding to the articulatory or phonological

attributes of phonemes, e.g., place and manner of articulation.

A Volterra analysis of the second MLP in this case would

reveal the articulatory-temporal patterns that are learned for

each of the phonemes. Similar hierarchical systems have been

previously studied where the second classifier is a RNN [33]

or a CRF model [18].

B. Choice of the classifiers

In this work, the second MLP classifier in the hierarchical

system is trained using posterior probabilities of phonemes

conditioned on acoustic features, which are estimated by an

MLP. In general, however, these phonetic class conditional

probabilities could be estimated using other statistical models

as well. For example, in an earlier work, the posterior proba-

bilities of phonemes were estimated using a GMM, and similar

improvements in recognition accuracies were observed [57].

The basic idea is to transform the acoustic features into

posterior features corresponding to linguistically meaningful

units such as phonemes, sub-phonemic states, or articulatory

attributes using any classifier. In the posterior feature space,

the temporal information spanning durations as long as 250

ms can be effectively learned.

C. The Second MLP as a Matched Filter

In the hierarchical system discussed in this paper, the second

MLP can be viewed as a discriminatively trained nonlinear

matched filter. Matched filters have been investigated previ-

ously in phoneme spotting in [58], where the matched filter

for each phoneme was derived independently by averaging its

phoneme posterior trajectory. The width of the matched filter

implicitly captured the duration of the phoneme. The phoneme

posteriors are multiplied with their respective matched filters

and peaks are picked to spot phonemes.

D. Choice of the Databases

Experiments were performed on two databases (TIMIT and

CTS), mainly to confirm the effectiveness of the hierarchical

system in different data conditions. The results on the two

tasks also exhibit certain differences. Firstly, the improvement

in recognition accuracies obtained using the hierarchical ap-

proach is much higher on CTS, about 9.3%, when compared to

3.5% on TIMIT. Secondly, on TIMIT, the recognition accuracy

obtained by first order Volterra series approximation is just 3%

lower to that obtained by a direct evaluation of the MLP. In

contrast, this difference is about 13.5% on CTS.

The TIMIT and CTS tasks differ in three aspects namely,

the channel conditions (microphone versus telephone), the

speaking styles (read speech versus conversational), and the

labeling strategy (hand labeling versus forced alignment). It

is not clear from the present study how the speaking style

or the labeling strategy affects the hierarchical system as the

experimental conditions differ in more than one respect.

These aspects can be studied using carefully designed

experiments. For example, the impact of speaking styles on

the hierarchical system can be studied by using two different

databases which differ only in the speaking style, with all other

relevant factors (the channel conditions, the labeling strategy,

etc) the same. In such a scenario, the differences in the Volterra

kernels of the second MLP for the two systems will bring out

the impact of speaking style.

E. MLP based Hierarchical system for Adaptation

A potential application of the MLP based hierarchical

system is in task adaptation. At the first stage of the hier-

archical system, a well trained MLP available off-the-shelf

could be used. The second MLP is trained on the posterior

features estimated for the target task (adaptation data). It has

already been observed that the second MLP in the hierarchy

requires fewer number of parameters and can be trained using

lesser amount of data, making it an ideal case for adaptation,

especially in scenarios where the training data is limited.

VII. SUMMARY AND CONCLUSIONS

We investigated a simple hierarchical architecture for esti-

mating the posterior probabilities of phonemes. The system

consisted of two MLP classifiers in tandem. The first MLP is

trained on PLP features, with a temporal context of 90 ms.

The second MLP is trained on the posterior probabilities of

phonemes (posterior features) estimated by the first classifier,
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but with a relatively longer temporal context of around 150-

230 ms. The hierarchical system yielded an absolute improve-

ment of 3.5% and 9.3% over the conventional single MLP

based system on TIMIT and CTS databases respectively.

The posterior features are endowed with two important

properties. Firstly, they are trained to be linearly separable and

possess a sparse distribution. Secondly, the posterior features

carry very little information on the undesirable nonlinguistic

variabilities such as speaker and noise characteristics. In other

words, the posterior features represent the soft-decisions on

the underlying sequence of phonemes, and are much simpler

to classify. Consequently, the second MLP classifier can effec-

tively learn the contextual information present in the temporal

trajectories of the posterior features, spanning about 230 ms

of context.

In order to unearth the phonetic-temporal patterns learned

by the second MLP classifier, we applied Volterra series

to model the second stage in the hierarchical system, and

analyzed its first order Volterra kernels (linear part of the

nonlinear system). The analysis of the linear Volterra kernels

showed that the second MLP has effectively captured the

phonetic confusion patterns at the output of the first classifier,

as well as the phonotactics of the language, as observed in the

training data.

Furthermore, we demonstrated that a simpler MLP with

fewer number of parameters is sufficient at the second stage

in the hierarchy, and that it can be trained using lesser amount

of training data. We attribute this to the salient properties of

the posterior features such as lesser nonlinguistic variabilities,

sparse distribution, and linear separability.

APPENDIX A

NORMALIZATION OF POSTERIOR FEATURES

The expression for the posterior features is given by (1).

In the following derivation, we drop the subscript for time

t and simplify the notations by denoting the event qt = k

by simply qk. The model for the first MLP is denoted by Θ.

Subsequently, (1) reduces to xk = P (qk | f ,Θ), where qk

denotes the phoneme, f denotes the input feature vector. The

mean of the component k in the posterior feature vector is

given by

mk = Ef [xk]

= Ef [P (qk | f ,Θ)]

=

∫

p(f)P (qk | f ,Θ) df

= P (qk | Θ) (14)

Hence, the sample mean of the posterior features is an estimate

of the prior probability of the phonemes qk. In the above

simplification, the property p(f | Θ) = p(f) is exploited. The

mean and variance of the posterior features are related as

σ2
k + m2

k = Ef

[

(xk)2
]

=

∫

p(f)
p(f | qk,Θ)P (qk | Θ)

p(f | Θ)
xk df

= P (qk | Θ)

∫

p(f | qk,Θ) xk df

= P (qk | Θ) Ef |qk
[xk] (15)

The conditional expectation in the above expression can be

estimated as the average posterior probability of a phoneme

obtained using data belonging to that particular phoneme only.

If x̂k denotes the scaled likelihood of the phoneme qk, and

given by

x̂k =
xk

mk

=
P (qk | f ,Θ)

P (qk | Θ)
,

(15) can be expressed using (14) as

σ2
k

m2
k

+ 1 = Ef |qk
[x̂k] (16)

The posterior feature vector component, normalized to zero

mean and unit variance ˆ̂xk can be be simplified using (16) as

ˆ̂xk =
xk − mk

σk

=
x̂k − 1

[

Ef |qk
[x̂k] − 1

]
1

2

(17)

From (17), it is clear that mean and variance normaliza-

tion on the posterior features is equivalent to taking scaled

likelihoods as features. In other words, by taking scaled

likelihoods as features and normalizing them to zero mean

and unit variance would yield the same features as in (17). The

only difference is that in the latter, the prior probabilities are

estimated by normalizing the relative frequency of the phonetic

labels in the training data. In the above formulation, the priors

are estimated using the MLP model. In effect, by normalizing

the posterior feature to zero mean and unit variance, the effect

of priors in them are removed.
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nique de Fédérale Lausanne (EPFL), Switzerland
in 2000 and 2005, respectively. From April 2006
till March 2007, he was a postdoctoral fellow at
International Computer Science Institute, Berkeley,

USA. Since April 2007, he has been working as a research scientist at
Idiap Research Institute, Martigny, Switzerland . His research interests in-
clude speech processing, automatic speech and speaker recognition, statistical
pattern recognition, and artificial neural networks.

Hynek Hermansky is a Full Professor of the Elec-
trical and Computer Engineering at the Johns Hop-
kins University in Baltimore, Maryland. He is also
a Professor at the Brno University of Technology,
Czech Republic, an Adjunct Professor at the Oregon
Health and Sciences University, Portland, Oregon,
and an External Fellow at the International Computer
Science Institute at Berkeley, California. He is a
Fellow of IEEE for Invention and development of
perceptually-based speech processing methods, is in
charge of plenary sessions at the upcoming 2011

ICASSP in Prague, was the Technical Chair at the 1998 ICASSP in Seattle
and an Associate Editor for IEEE Transaction on Speech and Audio. Further,
he is Member of the Editorial Board of Speech Communication, holds 6 US
patents and authored or co-authored over 200 papers in reviewed journals
and conference proceedings. He has been working in speech processing for
over 30 years, previously as a Director of Research at the IDIAP Research
Institute, Martigny and an Adjunct Professor at the Swiss Federal Institute of
Technology in Lausanne, Switzerland, a Professor and Director of the Center
for Information Processing at OHSU Portland, Oregon, a Senior Member of
Research Staff at U S WEST Advanced Technologies in Boulder, Colorado,
a Research Engineer at Panasonic Technologies in Santa Barbara, California,
and a Research Fellow at the University of Tokyo. He holds Dr.Eng. Degree
from the University of Tokyo, and Dipl. Ing. Degree from Brno University
of Technology, Czech Republic. His main research interests are in acoustic
processing for speech recognition.
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