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A magnetic toroidal moment is a fundamental electronic degree of freedom in the absence of both spatial in-

version and time-reversal symmetries and gives rise to novel multiferroic and transport properties. We elucidate

essential model parameters of the nonlinear transport in the space-time (PT ) symmetric collinear antiferro-

magnetic metals accompanying a magnetic toroidal moment. By analyzing the longitudinal and transverse

components of the second-order nonlinear conductivity on a two-dimensionally stacked zigzag chain based on

the nonlinear Kubo formula, we show that an effective coupling between the magnetic toroidal moment and

the antisymmetric spin-orbit interaction is an essential source of the nonlinear conductivity. Moreover, we find

that the nonreciprocal longitudinal current and nonlinear transverse current in a multi-band system are largely

enhanced just below the transition temperature of the antiferromagnetic ordering. We also discuss the relevance

of the nonlinear conductivity to the linear magnetoelectric coefficient and conductivity. Our result serves as a

guide for exploring microscopic essence and clarifying the parameter dependence of the nonlinear conductive

phenomena in ferrotoroidal metals.

I. INTRODUCTION

Spontaneous time-reversal symmetry breaking has long

been attracted much attention, as it leads to intriguing phys-

ical phenomena, such as the anomalous Hall effect and the

magneto-optical Kerr effect. Modern understanding of these

phenomena has been achieved based on the Berry phase

mechanism [1, 2]. Although such phenomena were originally

studied in the ferromagnetic state, it has recently been recog-

nized that similar phenomena can occur in a certain class of

antiferromagnetic (AFM) states without the uniform magneti-

zation [3]. For example, the collinear AFM ordering with the

mirror symmetry breaking as the uniform magnetization, re-

sults in the anomalous Hall effect [4–7]. Thus, the AFM mate-

rials can also exhibit the same physical properties as ordinary

ferromagnetic ones, which is advantageous for functional ma-

terials without leakage of a magnetic field.

The AFM state also exhibits multiferroic phenomena when

both spatial inversion (P) and time-reversal (T ) symme-

tries are broken simultaneously while their product (PT )

symmetry is preserved. The typical example is the lin-

ear magnetoelectric effect in the AFM insulators, e.g.,

Cr2O3 [8], Ga2−xFexO3 [9, 10], LiCoPO4 [11, 12], and

Ba2CoGe2O7 [13], and in the AFM metals, e.g., UNi4B [14–

16] and Ce3TiBi5 [17, 18]. Moreover, the nonreciprocal

optical and transport properties have been studied [19–23].

Among them, multiferroic phenomena within the linear re-

sponse theory have been understood by regarding the fact that

the AFM states accompany the uniform orderings of the elec-

tronic odd-parity magnetic-type multipoles [14, 24–39], such

as the magnetic toroidal (MT) dipole [14, 25, 26, 30, 33, 35,

37, 40–44].

Meanwhile, the microscopic understanding of the nonlin-

ear transports in AFMs has not been fully achieved except for

several works [22, 45, 46] and symmetry analyses [39, 47].

For example, it remains unclear which model parameters are

essentially important to induce nonlinear transports and how

the odd-parity magnetic-type multipoles are related to them.

To be clear this point and obtain an intuitive understand-

ing of the nonlinear transport, it is useful to extract the es-

sential model parameters, without which the nonlinear trans-

port coefficients vanish, from various hopping processes, spin-

orbit coupling, and order parameters in the microscopic model

Hamiltonian. Such an understanding provides a guideline to

explore new functional AFM materials with a giant nonlinear

transport, and its efficient bottom-up design in combination

with the ab initio calculations.

In this paper, we elucidate the microscopic essential model

parameters for the second-order nonlinear conductivity in the

PT -symmetric collinear AFMs by focusing on the role of

the MT moment. By analyzing a minimal model on a two-

dimensionally-stacked zigzag chain based on the nonlinear

Kubo formula, we show that the effective coupling between

the MT moment and one of the antisymmetric spin-orbit in-

teractions (ASOIs) plays an essential role in inducing the lon-

gitudinal and transverse components of the nonlinear conduc-

tivity. Moreover, we find that the nonlinear conductivities are

highly enhanced near the transition temperature in the case

that the AFM molecular field is comparable to the ASOI in

a multi-band system. We also discuss the relevance between

the transverse nonlinear conductivity and the linear magneto-

electric coefficient by comparing the ASOI and temperature

dependences.

The organization of this paper is as follows. In Sec. II, we

introduce a minimal model on a two-dimensionally stacked

zigzag chain. After showing the relation of an MT moment

to the nonlinear conductivity and the linear magnetoelectric

coefficient in Sec. III, the numerical results are presented in

Sec. IV. In Sec. V, we discuss the essential model parameters

and the semi-quantitative evaluation of the nonlinear conduc-

tivity. We summarize this paper in Sec. VI. In Appendix A,

we present the functional forms of the odd-parity magnetic

and MT multipoles. In Appendix B, we show the analytic

expressions for the essential model parameters in the asym-

metric band modulation, nonlinear conductivities, and linear
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FIG. 1. (a), (b) Schematic pictures of (a) a two-sublattice zigzag

chain and (b) its stacking along the z direction. (c) The temperature

(T ) dependence of the MT moment T MF
x at α1 = 0.4 and α2 = 0.1.

The AFM structure with the MT moment along the x direction Tx is

shown in the inset. (d) The energy bands measured from the chemical

potential µ at kz = 0 for three temperatures.

magnetoelectric coefficient. Finally, we present the numerical

result of the nonlinear transverse conductivity in the presence

of the additional interlayer hopping in Appendix C.

II. MODEL

We consider a minimal two-dimensional system where the

zigzag chain along the x direction [Fig. 1(a)] is stacked along

the z direction [Fig. 1(b)]. The tight-binding Hamiltonian is

given by

H =HAB
hop +Hhop +HASOI +Hint, (1)

HAB
hop =

∑

k

∑

σ

{

εAB(k)c
†

kAσ
ckBσ + H.c.

}

, (2)

Hhop =
∑

k

∑

σ

ε(k)(c
†

kAσ
ckAσ + c

†

kBσ
ckBσ), (3)

HASOI =
∑

k

∑

σσ′

g(k) · σσσ
′

(c
†

kAσ
ckAσ′ − c

†

kBσ
ckBσ′ ), (4)

Hint =JAF

∑

〈i j〉

M̂z
iA

M̂z
jB
, (5)

where c
†

klσ
(cklσ) is the creation (annihilation) operator of

electrons at wave vector k, sublattice l = A,B, and spin

σ =↑, ↓. The hopping Hamiltonian HAB
hop

in Eq. (2) includes

the nearest-neighbor hopping between A and B sublattices as

εAB(k) = −2t1 cos(kxa/2), while Hhop includes the hoppings

within the same sublattices along the x and z directions as

ε(k) = −2t2 cos (kxa) − 2t3 cos (kzc). HASOI in Eq. (4) repre-

sents the ASOI that arises from the relativistic spin-orbit cou-

pling as g(k) = [−α2 sin (kzc), 0, α1 sin (kxa)]. The ASOI in

Eq. (4) has the sublattice-dependent staggered form satisfy-

ing the global inversion symmetry [24, 48]. Hint in Eq. (5)

represents the Ising-type AFM exchange interaction of the

nearest-neighbor A-B bond with JAF > 0 where M̂z
iA(B)

=
∑

σσ′ c
†

iA(B)σ
σz
σσ′ciA(B)σ′ is the z component of the magnetic

dipole operator and c
†

ilσ
and cilσ are the Fourier transforms of

c
†

klσ
and cklσ, respectively. We adopt the Hartree-type mean-

field approximation as

JAF

∑

〈i j〉

M̂z
iA

M̂z
jB

→ J̃AF

∑

i

(

〈M̂z
A
〉 M̂z

iB
+ 〈M̂z

B
〉 M̂z

iA
− 〈M̂z

A
〉 〈M̂z

B
〉
)

, (6)

where 〈· · ·〉 represents the statistical average and J̃AF = 2JAF

is the renormalized coupling constant taking into account the

two nearest-neighbor atomic sites. We set the model param-

eters as (t1, t2, t3, JAF) = (0.1, 1, 0.5, 2.5), electron filling as

1/5, and the lattice constant as a = c = 1 in the following

discussion; t2 is set as the energy unit.

The model in Eq. (1) exhibits the MT moment when the

global inversion symmetry is broken under the staggered

AFM ordering, as shown in the inset of Fig. 1(c) [14, 24].

In the present system, the staggered AFM moment along the z

direction is equivalent to the uniform MT moment along the x

direction; T MF
x ≡ (〈M̂z

A
〉−〈M̂z

B
〉)/2 [49]; see also Appendix A.

The T dependence of T MF
x at α1 = 0.4 and α2 = 0.1 is shown

in Fig. 1(c), where T MF
x is self-consistently determined for

the two-sublattice unit cell by taking over 2002 grid points

in the Brillouin zone. T MF
x becomes nonzero below the transi-

tion temperature TN and saturates below T ≃ 0.2TN. Almost

the same behavior is obtained for α1, α2 . 0.5. Reflecting

T MF
x , 0, the electronic band structure is asymmetrically mod-

ulated along the kx direction, as shown in Fig. 1(d) [24, 49].

This asymmetric band modulation is understood from the ef-

fective coupling between T MF
x and the ASOI α1 in the doubly

degenerate bands with the PT symmetry, i.e.,

ε±(k) = ε(k) ± X(k), (7)

X(k) =

√

(α1sx − T̃ MF
x )2 + α2

2
s2

z + 4t2
1
c2

x/2
, (8)

where sx = sin kx, sz = sin kz, cx/2 = cos kx/2, and T̃ MF
x =

J̃AFT MF
x . The factor (α1sx − T̃ MF

x )2 includes the coupling be-

tween T̃ MF
x and α1 with the odd function of kx. This asym-

metric band modulation due to the coupling between α1 and

T̃ MF
x becomes a source of the nonlinear transport as will be

discussed in the following sections; see also Appendix B.

III. SECOND-ORDER NONLINEAR CONDUCTIVITY

AND LINEAR RESPONSE COEFFICIENT

A. Second-order nonlinear conductivity

The second-order nonlinear conductivity tensor σµνλ de-

fined as Jµ = σµνλEνEλ (µ, ν, λ = x, y, z) is calculated on the
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basis of the second-order Kubo formula [22]. In the clean

limit, the intraband contribution is dominant, which is given

by

σµνλ =
e3τ2

~3

1

V

∑

k

∑

n

∂2εn(k)

∂kµ∂kν

∂εn(k)

∂kλ

∂ f [εn(k)]

∂εn(k)
, (9)

where e(> 0), τ, ~, and V are the elementary charge, relaxation

time, the reduced Planck constant, and the system volume, re-

spectively [50]. f [εn(k)] is the Fermi distribution function for

the nth-band eigen energy εn(k). The intraband contribution

in Eq. (9) represents the Drude-type one with the dissipation

τ−2, whose expression eventually coincides with that obtained

by the Boltzmann formalism [22, 51–53]. Hereafter, we use

the scaled σµνλ as σ̄µνλ = σµνλ/(e
3τ2
~
−3).

From Eq. (9), one finds the relation σµνν = σνµν by inte-

gration by parts. This indicates that the Drude-type nonlinear

conductivity σµνλ is the totally symmetric rank-3 tensor with

10 independent components: σxxx, σyyy, σzzz, σxyy, σyzz, σzxx,

σxxy, σyyz, σzzx, and σxyz. As σµνλ is a third-rank polar time-

reversal-odd tensor, i.e., σµνλ → −σµνλ under P or T opera-

tion butσµνλ → σµνλ underPT operation, it becomes nonzero

when both the spatial inversion and time-reversal symmetries

are absent. From the multipole viewpoint, above symmetry

requirement means that the nonzero tensor components are

related to the active odd-parity MT multipoles [42, 54–57]:

three rank-1 MT dipoles (Tx, Ty, Tz) and seven rank-3 MT oc-

tupoles (Txyz, T
α
x , T

α
y , T

α
z , T

β
x , T

β
y , T

β
z ), whose correspondence

is given by [39]

σ =















































σxxx σyxx σzxx

σxyy σyyy σzyy

σxzz σyzz σzzz

σxyz σyyz σzyz

σxzx σyzx σzzx

σxxy σyxy σzxy















































T

↔

























































3Tx + 2Tαx Ty − Tαy − T
β
y Tz − Tαz + T

β
z

Tx − Tαx + T
β
x 3Ty + 2Tαy Tz − Tαz − T

β
z

Tx − Tαx − T
β
x Ty − Tαy + T

β
y 3Tz + 2Tαz

Txyz Tz − Tαz − T
β
z Ty − Tαy + T

β
y

Tz − Tαz + T
β
z Txyz Tx − Tαx − T

β
x

Ty − Tαy − T
β
y Tx − Tαx + T

β
x Txyz

























































T

, (10)

where the functional forms of dipoles and octupoles are sum-

marized in Appendix A. The correspondence in Eq. (10) is ob-

tained by decomposing σµνλ into the tensor components with

the same rotational symmetry to the dipoles and octupoles

(See also Appendix A). When the MT dipole and/or MT oc-

tupole in Eq. (10) are activated in an AFM metal, the corre-

sponding tensor component of σµνλ becomes nonzero. From

Eq. (10), one finds that MT dipole Tµ is relevant to the longi-

tudinal component σµµµ and the transverse components σµνν
and σνµν (ν , µ). It means that both nonreciprocal conduc-

tivity and nonlinear transverse conductivity are expected to be

realized in the presence of the MT dipole, i.e., ferrotoroidal

metals [39, 58, 59].

In the present system under the magnetic point-group m′mm

with the nonzero MT moment T MF
x , five components σxxx,

σxyy, σyxy, σxzz, and σzzx can be nonzero, since Tx, Tαx , and

T
β
x in Eq. (10) belong to the totally symmetric irreducible rep-

resentation [39]. Among them, σxyy and σyxy vanish owing

to ky = 0 in the present two-dimensional system. In addition

to the nonzero contribution from the linear conductivity σxx,

σxxx results in the nonreciprocal current, while σxzz without

linear σxz leads to the pure second-order transverse current,

respectively.

B. Linear response coefficient

In the presence of the MT moment T MF
x , the linear mag-

netoelectric tensor αµν in Mµ = αµνEν (µ, ν = x, y, z) is also

finite. We calculate the linear magnetoelectric tensor by the

linear response theory as

αµν =
egµB~

2Vi

∑

k

∑

n,m

f [εn(k)] − f [εm(k)]

[εn(k) − εm(k)]2 + (~δ)2
σnm
µk3

mn
νk , (11)

where g and µB are the g factor (g = 2) and Bohr magneton,

respectively. σnm
µk
= 〈nk|σµ|mk〉 and 3mn

νk
= 〈mk|3νk|nk〉 are

the matrix elements of spin σµ and velocity 3νk = ∂H/(~∂kν)

for the eigenstate |nk〉. We use the scaled ᾱµν = αµν/(eµB~) in

the following discussion.

As αµν in a PT symmetric system is relevant to

the rank-0–2 odd-parity multipoles: magnetic monopole

M0, MT dipoles (Tx, Ty, Tz), and magnetic quadrupoles

(Mu,Mv,Myz,Mzx,Mxy) (see also Appendix A), the relation

is represented as follows [31, 32]:

α =



















αxx αxy αxz

αyx αyy αyz

αzx αzy αzz



















(12)

↔



















M0 − Mu + Mv Mxy + Tz Mzx − Ty

Mxy − Tz M0 − Mu − Mv Myz + Tx

Mzx + Ty Myz − Tx M0 + 2Mu



















. (13)

Since Tx and Myz become active for T AF
x , 0 in the present

system, αyz and αzy are expected to be nonzero. As αzy is zero

due to the two dimensionality, we only consider αyz.

For the following discussion, we also present the linear Hall

conductivity

σxz =
e2
~

Vi

∑

k

∑

n,m

f [εn(k)] − f [εm(k)]

[εn(k) − εm(k)]2 + (~δ)2
3

nm
xk3

mn
zk . (14)

We use the scaled value σ̄xz = σxz/(e
2
~Hy) in the following,

where Hy is the Zeeman field along the y direction.

IV. NUMERICAL RESULT

A. Longitudinal second-order conductivity σxxx

We first show the numerical result of the longitudinal non-

linear conductivity σ̄xxx. Figure 2(a) shows σ̄xxx as a function
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FIG. 2. (a) The longitudinal second-order conductivity σ̄xxx for

α1 = 0.1–0.5 as a function of T at α2 = 0.1. The inset shows σ̄xxx/α1.

(b) The upper- and lower-band contributions to σ̄xxx at α1 = 0.4.

of T for various α1 = 0.1–0.5 at α2 = 0.1. The T depen-

dence for different α1 is qualitatively similar; σ̄xxx is largely

enhanced just below T = TN, and shows maximum with de-

crease of T . While further decreasing T , σ̄xxx shows the sign

change, and then reaches a negative value at the lowest T .

The nonzero σxxx is closely related to the formation of the

asymmetric band structure under T MF
x , 0, since σxxx has

the same symmetry as T MF
x [39]. As the asymmetric band

modulation is caused by the coupling between T̃ MF
x and α1,

they are indispensable for nonzeroσxxx. Indeed, σ̄xxx vanishes

for α1 = 0 or T̃ MF
x = 0. Moreover, σ̄xxx is well scaled by

σ̄xxx/α1 at low temperatures T . 0.7TN for small α1. See

Sec. V A for the essential model parameters in details.

Meanwhile, σ̄xxx is not scaled by α1 for 0.7 . T/TN ≤ 1

in the region where σ̄xxx is drastically enhanced. This is

attributed to the rapid increase of T̃ MF
x and resultant dras-

tic change of the electronic band structure near the Fermi

level. As σ̄xxx in Eq. (9) includes the factors ∂2εn(k)/∂k2
x and

∂εn(k)/∂kx, the small X(k) appearing in the denominator of

∂2εn(k)/∂k2
x and ∂εn(k)/∂kx gives a dominant contribution.

When considering the small order parameter compared to the

ASOI, i.e., T̃ MF
x . α1, X(k) can become small when the Fermi

wavenumber kF
x satisfies T̃ MF

x ≃ α1 sin kF
x , which results in a

large enhancement of σ̄xxx. Such an enhancement is remark-

able when the upper and lower bands are closely located in

the paramagnetic state with small X(k) as shown in Fig. 1(d),

which can be realized for small t1 = 0.1 and α2 = 0.1. In

short, there are two conditions for large σ̄xxx: One is the large

essential parameters, such as α1, T MF
x , and JAF, and the other

is to satisfy T̃ MF
x ≃ α1 sin kF

x in a multi-band system. These

conditions can be experimentally controlled by electron/hole

doping and temperature.

The sign change of σ̄xxx in T dependence is owing to the

multiband effect. As shown in Fig. 1(d), the band bottom is

shifted in the opposite direction for the upper and lower bands,

which means that the opposite sign of the coupling α1T̃ MF
x re-

sults in the opposite contribution to σ̄xxx. This is demonstrated

by decomposing σ̄xxx into the upper- and lower-band contri-

butions, as shown in Fig. 2(b). The results indicate that the

dominant contribution of σ̄xxx arises from the upper band for

0.9 . T/TN ≤ 1, while that arises from the lower band for

T/TN . 0.9. The suppression of the upper-band contribution

for low T is because it becomes away from the Fermi level by

the development of T MF
x .

B. Transverse second-order conductivity σxzz

FIG. 3. The transverse second-order nonlinear conductivity σ̄xzz for

several α1 and α2 with α1 = α2. The inset represents σ̄zxx/(α1α
2
2
).

Next, let us discuss the transverse nonlinear conductivity

σ̄xzz. Figure 3 shows the T dependence of σ̄xzz for 0.02 ≤

α1, α2 ≤ 0.1 with α1 = α2. The behavior of σ̄xzz against T

is similar to σ̄xxx except for the sign change; σ̄xzz becomes

nonzero below T = TN and shows the maximum near TN.

While decreasing T , σ̄xzz is suppressed and shows an almost

constant value.

Similar to σxxx, the origin of nonzero σxzz is the asymmet-

ric band modulation under T MF
x , 0 via the effective cou-

pling T̃ MF
x α1. Besides, we find another contribution from

α2 for nonzero σxzz in contrast to σxxx, where σ̄xzz is well

scaled by α1α
2
2

as shown in the inset of Fig. 3, as discussed

in Sec. V A. The additional parameter dependence for α2
2

is

owing to an additional symmetry between kz and kz + π for

α2 = 0, which gives the opposite-sign contribution to σxzz so

that totally σxzz = 0.
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C. Comparison to magnetoelectric coefficient αyz

FIG. 4. (a) The magnetoelectric coefficient ᾱyz and (b) the quan-

tity σ̄xzᾱyz with the same parameters as Fig. 3. σ̄xz is calculated by

supposing the magnetic field Hy = 0.01. The insets of (a) and (b)

represent ᾱyz/α2 and σ̄xzᾱyz/(α1α
2
2
), respectively.

We also present another MT-moment-driven phenomena,

the magnetoelectric response, and compare its parameter and

T dependence to the nonlinear conductivities obtained in the

previous section. Figure 4(a) shows the T dependence of ᾱyz

for 0.02 ≤ α1, α2 ≤ 0.1 with α1 = α2, whose behavior is

similar to the transverse nonlinear conductivity σxzz in Fig. 3

except for the sign. ᾱyz is nonzero even if α1 = 0 that is dif-

ferent from the nonlinear conductivities, whereas α2 and T̃ MF
x

are essential to obtain the finite ᾱyz, as detailed in Sec. V A.

As shown in the inset of Fig. 3(a), ᾱyz is well scaled as ᾱyz/α2

for small α2.

Moreover, it is noteworthy to comment on the relation be-

tween the transverse nonlinear conductivity and a combina-

tion of the linear magnetoelectric and Hall coefficients, since

the nonlinear transverse transport in thePT -symmetric AFMs

can be understood as the Hall transport driven by the induced

magnetization through the linear magnetoelectric response at

the phenomenological level [14, 21].

We show the T dependence of σ̄xzᾱyz in Fig. 4(b) for the

same parameters in Fig. 3. The small magnetic field Hy =

0.01 is introduced to mimic the induced magnetization in αyz.

Compared to the results in Fig. 3 and 4(b), one finds the re-

semblance between the T dependences of σ̄xzz and σ̄xzᾱyz,

both of which are scaled by α1α
2
2
. A good qualitative cor-

respondence in these responses indicates that the interpreta-

tion of dividing subsequent two linear processes for nonlinear

conductivity is reasonable in the present model. The overall

quantitative difference σ̄xzᾱyz/σ̄xzz ∼ 10−2 may be ascribed to

the magnitude of the used internal magnetic field (Hy = 0.01)

that should be replaced by the true internal field. However, it

is hard to estimate it quantitatively.

V. DISCUSSION

A. Essential model parameters

We discuss the parameter dependences of the asymmetric

band modulation, nonlinear conductivity, and the linear mag-

netoelectric and Hall coefficients at the level of the micro-

scopic model Hamiltonian. For this purpose, we try to extract

the essential parameters for each response from various hop-

pings, spin-orbit coupling, and internal/external field in the

model Hamiltonian based on the method in Refs. 60 and 61.

In the following, we discuss the important model parameters

in each case one by one, and the results are summarized in

Table I. The derivation is shown in Appendix B.

First, the essential parameters for the asymmetric band

modulation [60] are given by T̃ MF
x α1, as shown in Ap-

pendix B 1. The result is consistent with the eigenvalues in

Eq. (7).

Next, the essential model parameters for σxxx [61] (see also

Appendix B 2) are given by

σxxx =α1T̃ MF
x

[

t2
1F(t1, t2, t3, α1, α2, T̃

MF
x )

+t2F′(t1, t2, t3, α1, α2, T̃
MF
x )
]

, (15)

where F and F′ represent the arbitrary functions. Note that

only the even power of α1 and T̃ MF
x appears in F and F′. Thus,

one finds that the coupling of α1 and T̃ MF
x is always necessary

to induce σxxx, which is consistent with the numerical result

presented in Sec. IV A. Moreover,σxxx is closely related to the

asymmetric band modulation because both of them are char-

acterized by the same essential model parameters.

Similarly, the essential model parameters of σxzz are given

by

σxzz = α1T̃ MF
x

[

α2
2t2F(t1, t2, t3, α1, α2, T̃

MF
x )
]

, (16)

where the even power of α1, α2, and T̃ MF
x appears in F. Equa-

tion (16) shows that the coupling of α1 and T̃ MF
x is essential

to induce σxzz as similar to σxxx, which is consistent with the

numerical result in Sec. IV B. Moreover, Eq. (16) indicates

that t2 and even power of α2 are also necessary for σxzz in the

present model in Eq. (1).

In a similar way, the essential model parameters to induce

αyz and σxz are given by

αyz = α2T̃ MF
x

[

t3F(t1, t2, t3, α1, α2, T̃
MF
x )
]

, (17)

σxz = α1α2Hy

[

t3F(t1, t2, t3, α1, α2,Hy, T̃
MF
x )
]

. (18)
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This indicates that nonzero αyzσxz needs nonzero α1α
2
2
T̃ MF

x ,

which shows a good agreement with the condition for σxzz.

The common essential model-parameter dependence in small

parameter region was already confirmed in Secs. IV B and

IV C.

It is noteworthy that the above approach to extract the es-

sential model parameters can be straightforwardly applied

even when introducing the other model parameters. For exam-

ple, let us consider the additional interlayer A-B hopping t4 in

the model Hamiltonian. In this situation, one finds that there

is no longer simple correlation between σxzz and σxzαyz; the

essential model parameters for the former are α1T̃ MF
x rather

than α1α
2
2
T̃ MF

x , while those for the latter still remains the same

as α1α
2
2
T̃ MF

x as discussed in Appendix B. In other words, the

factor α2
2
t2 in the square bracket in Eq. (16) is not truly the

essential factor. Indeed, the numerical results in the presence

of t4 give a different temperature dependence from each other,

as shown in Appendix C. Thus, the correspondence between

σxzz and σxzαyz occurs depending on the hopping in the ef-

fective model, which is clarified by performing a procedure in

Appendix B.

TABLE I. Model parameters necessary for the asymmetric band

modulation and response tensors indicated by the checkmark (X).

In the last two columns, model parameters are decomposed into the

essential and semi-essential parts.

t2 t3 α1 α2 T̃ MF
x Hy essential semi-essential

asymmetric X X α1T̃ MF
x

band modulation

σxxx (t4 = 0) X X α1T̃ MF
x t2

1
, t2

σxxx (t4 , 0) X X α1T̃ MF
x t2

1
, t2, t4

σxzz (t4 = 0) X X X X α1T̃ MF
x α2

2
t2

σxzz (t4 , 0) X X α1T̃ MF
x α2

2
t2, t4

αyz (t4 = 0) X X X α2T̃ MF
x t3

αyz (t4 , 0) X X α2T̃ MF
x t3, t4

σxz (t4 = 0) X X X X α1α2Hy t3

σxz (t4 , 0) X X X α1α2Hy t3, t4

B. Quantitative evaluation

Finally, we discuss the order estimate of the nonlinear con-

ductivity for α1 = 0.5 and α2 = 0.1 by the ratio σxxx/(σxx)
2

with being independent of the relaxation time in the clean

limit. By putting the typical values as a ∼ 0.5 [nm] and |t2| =

0.2 eV, we obtain σxxx/(σxx)2 ∼ 10−3
~a2e−1|t2|

−1 ∼ 10−18 [m3

A−1] for T → 0 and 10−17 [m3 A−1] near TN, which is compa-

rable to the value in the 2D nonmagnetic Rashba system under

the magnetic field [51]. Further enhancement can be achieved

by tuning the model parameters and electron filling.

VI. SUMMARY

In summary, we investigated the microscopic essence for

the second-order nonlinear conductivity in thePT -symmetric

collinear AFM with the MT moment on a two-dimensionally

stacked zigzag chain by focusing on the role of the MT mo-

ment. Based on the nonlinear Kubo formula in the clean limit,

we found that the effective coupling between the ASOI and

the MT moment is essential for the nonlinear conductivity.

By analyzing both the longitudinal and transverse components

of the nonlinear conductivity while changing the ASOI and

the temperature, we showed that their large enhancement can

be achieved near the transition temperature, provided that the

AFM molecular field is comparable to the ASOI in a multi-

band system. We also discussed the similarity and difference

between the transverse nonlinear transport and the combined

response consisting of the linear magnetoelectric and Hall co-

efficients.

The present result elucidates the essential model param-

eters for MT-related physical phenomena, such as the non-

linear conductivity and the linear magnetoelectric effect, in

PT -symmetric collinear AFMs. The similar analysis can

be applied to examine the role of the MT moment for

any collinear AFMs with the MT moment in the zigzag

structure, e.g., CeRu2Al10 [62, 63], Ce3TiBi5 [17, 18],

and α-YbAl1−xMnxB4 [64], and other ferrotoroidal met-

als/semiconductors with locally noncentrosymmetric crystal

structures, such as Mn2Au [46, 65], RB4 (R =Dy, Er) [66, 67],

CuMnAs [45, 68], PrMnSbO [69], NdMnAsO [70], and

XyFe2−xSe2 (X =K, Tl, Rb) [71–73], once the model Hamil-

tonian is given. The measurements of the linear magnetoelec-

tric effect and the nonlinear conductivity for these materials

are also useful to investigate their microscopic mechanisms.

Moreover, the analysis is straightforwardly extended to the

AFMs with the other odd-parity magnetic-type multipole mo-

ments, such as the MT octupole, since they are characterized

by the same spatial inversion and time-reversal symmetries.

Our study will stimulate a further investigation of the multifer-

roic and conductive phenomena in the PT -symmetric AFM

metals.
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Appendix A: Expressions of multipoles

We show the functional form of multipoles with rank 0–3

except the normalization constant: the rank 0 (monopole) is

X0 ∝ 1, (A1)

the rank 1 (dipole) is

(Xx, Xy, Xz) ∝ (x, y, z), (A2)
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the rank 2 (quadrupole) is

Xu ∝ 3z2 − r2, (A3)

Xv ∝ x2 − y2, (A4)

(Xyz, Xzx, Xxy) ∝ (yz, zx, xy), (A5)

the rank 3 (octupole) is

Xxyz ∝ xyz, (A6)

(Xαx , X
α
y , X

α
z ) ∝

(

x(5x2 − 3r2), y(5y2 − 3r2), z(5z2 − 3r2)
)

,

(A7)

(X
β
x , X

β
y , X

β
z ) ∝
(

x(y2 − z2), y(z2 − x2), z(x2 − y2)
)

, (A8)

where X represents the types of multipoles. When X corre-

sponds to the time-reversal-odd polar (axial) tensor, it stands

for T (M) for MT (magnetic) multipole.

By using the multipole notation, the collinear AFM with

q = 0 on a zigzag chain are represented by the MT dipole Tz

when the AFM moment is along the x direction as

Tz =
1

2

∑

l=A,B

(

Rx
lσ

y

l
− R

y

l
σx

l

)

→
1

2

(

σx
B − σ

x
A

)

, (A9)

whereσ
µ

l
and R

µ

l
(µ = x, y, z) are the magnetic moment and the

position vector at lth atom, respectively [74]. Similarly, the

AFM with the moment along the y direction is characterized

by the magnetic quadrupole Mu as

Mu =
∑

l=A,B

(

2Rz
l
σz

l
− Rx

lσ
x
l − R

y

l
σ

y

l

)

→
1

2

(

σ
y

B
− σ

y

A

)

, (A10)

and that along the z direction is by the MT dipole Tx as

Tx =
1

2

∑

l=A,B

(

R
y

l
σz

l
− Rz

l
σ

y

l

)

→
1

2

(

σz
A
− σz

B

)

. (A11)

Moreover, the dipole and octupole components of σµνλ in

Eq. (10) are related to the MT dipoles in Eq. (A2) and MT

octupoles in Eqs. (A6)–(A8) as follows:

Tx ↔
1

15

∑

ν=x,y,z

(σxνν + 2σννx) (cyclic), (A12)

Txyz ↔ σxyz, (A13)

Tαx ↔
1

10

















5σxxx − 3
∑

ν=x,y,z

σxνν

















(cyclic), (A14)

T
β
x ↔

1

2

(

σxyy − σzzx

)

(cyclic). (A15)

Appendix B: Essential model parameters in response tensors

We show the essential model parameters for the asymmet-

ric band modulation, the longitudinal and transverse nonlinear

conductivities, and the linear Hall and magnetoelectric coeffi-

cients, by using the systematic analysis method in Refs. [60]

and [61]. The results are summarized in Table I.

1. Asymmetric band modulation

First, we give the essential model parameters for the asym-

metric band modulation. Following the method for extracting

the essential model parameters in the thermal average of an

hermitian operator [60, 61], we obtain the momentum distri-

bution of the band modulation and its parameter dependences

by analytically evaluating the low-order contributions of the

following quantity,

Ωi(k) = Tr
[

hi+1(k)
]

. (B1)

Here hi+1(k) denotes the (i + 1)-th power of the Hamiltonian

matrix at wave vector k, i.e., H in Eq. (1) is represented as

H =
∑

k h(k). The 0th- and 1st-order contributions Ω0(k)

and Ω1(k) are explicitly given by

Ω0(k) = −8 (t2 cos kx + t3 cos kz) , (B2)

Ω1(k) = −8α1T̃ MF
x sin kx + 4

[

(

T̃ MF
x

)2
+ α2

1 sin2 kx + α
2
2 sin2 kz + 2t2

1(1 + cos kx) + 4 (t2 cos kx + t3 cos kz)
2
]

. (B3)

The odd function of kx appears only in the first term of

Eq. (B3) in the form proportional to α1T̃ MF
x , which means that

the asymmetric band structure is induced by the coupling be-

tween the nonzero T̃ MF
x and α1. It is confirmed at least to

the 6th order. Note that the odd functions of kx included in

the higher-order terms in Eq. (B1) are always proportional to

α1T̃ MF
x . Thus, both α1 and T̃ MF

x are the essential model param-

eters for the asymmetric band structure, and their coupling is

also crucial for nonlinear conductivities.

2. Second-order nonlinear conductivity

Next, we elucidate the essential model parameters in the

longitudinal and transverse nonlinear conductivities. The es-

sential model parameters in the Drude-type nonlinear con-

ductivities can be extracted by evaluating the following quan-
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tity [61],

Re
[

Γ
i jk

µνλ

]

=
∑

k

Re
{

Tr
[

3̂µkhi(k)3̂νkh j(k)3̂λkhk(k)
]}

, (B4)

where 3̂µk denotes the µ component of the velocity operator at

k.

Here, we introduce the interlayer hopping between the

sublattices A and B [Fig. 5(a)]. The effect of the addi-

tional hopping is taken into account by replacing εAB(k) as

−2t1 cos (kxa/2) → −2[t1 + 2t4 cos (kzc)] cos (kxa/2). The re-

sults of the evaluations are given as follows.

- Longitudinal nonlinear conductivity σxxx

As the essential model parameters are included in any

pairs of (i, j, k) in Eq. (B4), we here show two low-order

contributions to Eq. (B4) in the (i, j, k) = (0, 0, 1) and

(0, 1, 3) terms as representative examples, which are ex-

plicitly given by

Re
[

Γ001
xxx

]

= α1T̃ MF
x

(

t2
1 + 2t2

4

)

, (B5)

Re
[

Γ013
xxx

]

= 4α1T̃ MF
x

(

t2

{

α2
1α

2
2 + t2

1

[

4
(

T̃ MF
x

)2
+ 7α2

1 + 2α2
2 + 3t2

1

]}

+ t4

[

−4
(

T̃ MF
x

)2
t1t3 + 5α2

1t1t3 − α
2
2t1t3 − 16t3

1t3 − 12t1t2
2t3 − 12t1t3

3

+8
(

T̃ MF
x

)2
t2t4 + 14α2

1t2t4 + 2α2
2t2t4 + 36t2

1t2t4 − 48t1t3t3
4 + 18t2t3

4

])

. (B6)

Then, the essential model parameters in the longitudinal nonlinear conductivity σxxx are α1 and T̃ MF
x , which is consistent

with the fact that the nonzero σxxx is closely related to the asymmetric band structure under T MF
x , 0. Since all the terms

in Eq. (B4) are always proportional to α1T̃ MF
x , σxxx is written in the form:

σxxx = α1T̃ MF
x

[

t2
1F(t1, t2, t3, t4, α1, α2, T̃

MF
x ) + t2F′(t1, t2, t3, t4, α1, α2, T̃

MF
x ) + t4F′′(t1, t2, t3, t4, α1, α2, T̃

MF
x )
]

, (B7)

where the even power of α1 and T̃ AF
x appears in F, F′,

and F′′, e.g., α2
1

and (T̃ MF
x )2 in Eq. (B6). By introduc-

ing t4 , 0, the additional contribution appears, which

results in the alternative behavior of σxxx.

- Transverse nonlinear conductivity σxzz

Similar to σxxx, we show two low-order contributions

to Eq. (B4) in the (i, j, k) = (0, 1, 0) and (0, 1, 1) terms

for example. The expressions are given by

Re
[

Γ010
xzz

]

= −
242

25
α1T̃ MF

x t2
4, (B8)

Re
[

Γ011
xzz

]

=
121

25
α1T̃ MF

x

[

α2
2t2 + t4 (4t1t3 + 8t2t4)

]

. (B9)

Similar to this result, we find that all the terms in

Eq. (B4) are always proportional to α1T̃ MF
x , then σxzz

is expressed as

σxzz =α1T̃ MF
x

[

α2
2t2F(t1, t2, t3, t4, α1, α2, T̃

MF
x )

+t4F′(t1, t2, t3, t4, α1, α2, T̃
MF
x )
]

, (B10)

where the second term proportional to t4 does not vanish

even for α2 = 0.

3. Linear responses

We further clarify the essential model parameters for the

linear Hall and magnetoelectric coefficients. The essen-

tial model parameters in the inter-band contribution of the

electric-field induced response tensors can be extracted by

evaluating the following quantity [61],

Im
[

Γ
i j
µν

]

=
∑

k

Im
{

Tr
[

Âµkhi(k)3̂νkh j(k)
]}

, (B11)

where Âµk denotes the µ component of an arbitrary hermitian

operator at k.

- Magnetoelectric coefficient αyz

The magnetoelectric coefficient αyz corresponds to the

case with Âµk = σy in Eq. (B11). Similar to the nonlin-

ear conductivities, the essential model parameters are

included in any pairs of (i, j) in Eq. (B11). We show

two cases by taking (i, j) = (0, 2) and (1, 3), which are

given by
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FIG. 5. (a) Schematic picture of the interlayer hopping t4 between A and B sublattices. (b), (c) The T dependence of (b) σ̄xzz and (c) σ̄xzᾱyz

for (t4, α2) = (0.1, 0), (0.1, 0.1), and (0.05, 0.1).

Im
[

Γ02
yz

]

= −
44

5
α2T̃ MF

x t3, (B12)

Im
[

Γ13
yz

]

=
11

5
α2T̃ MF

x

{

t3

[

4
(

T̃ MF
x

)2
+ 6α2

1 + α
2
2 + 8t2

1 − 24t2
2 − 12t2

]

+ t4 (16t1t2 + 24t3t4)

}

. (B13)

We also find that all the terms in Eq. (B11) are always

proportional to α2T̃ MF
x , then αyz is expressed as

αyz =α2T̃ MF
x

[

t3F(t1, t2, t3, t4, α1, α2, T̃
MF
x )

+t4F′(t1, t2, t3, t4, α1, α2, T̃
MF
x )
]

. (B14)

Therefore, the essential model parameters are α2 and

T̃ MF
x , while αyz also depends on the spin-independent

hopping process t3 or t4.

- Hall coefficient σxz

In order to discussσxz, we introduce the small magnetic

field along the y direction Hy. Then, we evaluate the

essential model parameters for the Hall coefficient σxz

with Âµk = 3̂xk in Eq. (B11). We show two low-order

contributions to Eq. (B11) in the (i, j) = (0, 3) and (1, 3)

terms for example, which are given by

Im
[

Γ03
xz

]

=
44

5
α1α2Hy (3t2t3 + 5t1t4) , (B15)

Im
[

Γ13
xz

]

=
88

5
α1α2Hy

[

2t2
1t3 + t4 (8t1t2 + 7t3t4)

]

. (B16)

All the terms in Eq. (B11) are always proportional to

α1α2Hy, then σxz is expressed as

σxz =α1α2Hy

[

t3F(t1, t2, t3, t4, α1, α2,Hy, T̃
MF
x )

+t4F′(t1, t2, t3, t4, α1, α2,Hy, T̃
MF
x )
]

. (B17)

Therefore, the essential model parameters are α1, α2, and Hy,

whileσxz also depends on the spin-independent hopping along

the z direction, t3 or t4.

By combining the results, Eqs. (B14) and (B17), σxzαyz has

the form:

σxzαyz = α1α
2
2T̃ MF

x Hy

[

t2
3F(t1, t2, t3, t4, α1, α2,Hy, T̃

MF
x ) + t2

4F′(t1, t2, t3, t4, α1, α2,Hy, T̃
MF
x ) + t3t4F′′(t1, t2, t3, t4, α1, α2,Hy, T̃

MF
x )
]

,

(B18)

which clearly shows that σxzαyz ∝ α1α
2
2
T̃ MF

x Hy irrespective of the additional parameter of t4.
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When t4 = 0, we find that both σxzz and σxzαyz are propor-

tional to α1α
2
2
T̃ MF

x . On the other hand, such relation does not

hold when t4 , 0; σxzz ∝ α1T̃ MF
x , whereas σxzαyz ∝ α1α

2
2
T̃ MF

x .

Appendix C: Effect of additional interlayer hopping

We compare the transverse component of the nonlinear con-

ductivity σxzz and the quantity σxzαyz in the presence of the

interlayer hopping t4 between the sublattices A and B.

Figures 5(b) and 5(c) show σ̄xzz and σ̄xzᾱyz as functions

of T , respectively, for t4 = 0.1, 0.05 and α2 = 0, 0.1, where

α1 = 0.4 is used. As shown by the red dashed line in Fig. 5(b),

σ̄xzz still remains nonzero even for α2 = 0, while σ̄xzᾱyz

in Fig. 5(c) vanishes. Furthermore, the nonzero t4 enhances

σ̄xzz, while it suppresses σ̄xzᾱyz while increasing t4. This is

because the essential model parameters discussed in the pre-

vious section are different for σxzz and σxzαyz. Indeed, in

the presence of t4 and α2, the essential model parameter of

σxzz is represented as α1T̃ MF
x [α2

2
t2F(t1, t2, t3, t4, α1, α2, T̃

MF
x ) +

t4F′(t1, t2, t3, t4, α1, α2, T̃
MF
x )], which clearly shows that σxzz

has the additional contribution from t4 and does not van-

ish for α2 = 0. On the other hand, the essential model

parameters of σxz and αyz does not show the change from

σxz → α1α2HyF(t1, t2, t3, t4, α1, α2,Hy, T̃
MF
x ) and αyz →

α2T̃ MF
x F(t1, t2, t3, t4, α1, α2, T̃

MF
x ), respectively; the hopping t4

is not the essential model parameter for σxz and αyz. Thus,

there is no simple relation between them.
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