
Analysis of Modular Arithmetic

Markus Müller-Olm1 and Helmut Seidl2

1 Universität Dortmund, Fachbereich Informatik, LS 5,
Baroper Str. 301, 44221 Dortmund, Germany
markus.mueller-olm@cs.uni-dortmund.de
2 TU München, Institut für Informatik, I2,

80333 München, Germany
seidl@in.tum.de

Abstract. We consider integer arithmetic modulo a power of 2 as pro-
vided by mainstream programming languages like Java or standard im-
plementations of C. The difficulty here is that the ring Zm of integers
modulo m = 2w, w > 1, has zero divisors and thus cannot be embedded
into a field. Not withstanding that, we present intra- and inter-procedural
algorithms for inferring for every program point u, affine relations be-
tween program variables valid at u. Our algorithms are not only sound
but also complete in that they detect all valid affine relations. Moreover,
they run in time linear in the program size and polynomial in the number
of program variables and can be implemented by using the same modular
integer arithmetic as the target language to be analyzed.

1 Introduction

Analyses for automatically finding linear invariants in programs have been stud-
ied for a long time [6, 3, 4, 7, 12, 11, 9]. With the notable exception of Granger
[3], none of these analyses can find out, that the linear invariant 21 · x − y = 1
holds upon termination of the following Java program:

class Eins {
public static void main(String [] argv) {

int x = 1022611261; int y = 0;
if (argv.length > 0) {

x = 1; y = 20;
}
System.out.println("" + (21*x-y));

}
}

Why is this? In order to allow implementing arithmetic operations by the efficient
instructions provided by processors, Java, like other common programming lan-
guages, performs arithmetic operations for integer types modulo m = 2w where
w = 32, if the result expression is of type int, and w = 64, if the result ex-
pression is of type long [2–p. 32]. The invariant 21 · x − y = 1 is valid because
21 ∗ 1022611261 = 1 modulo 232. In order to work with mathematical structures

M. Sagiv (Ed.): ESOP 2005, LNCS 3444, pp. 46–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Analysis of Modular Arithmetic 47

Fig. 1. Zp interpretation is unsound

with nice properties analyses for finding linear invariants typically interpret vari-
ables by members from a field, e.g., the set Q of rational numbers [6, 11, 8], or
Zp = Z/(pZ) for prime numbers p [4]. Even worse: analyses based on Zp for a
fixed prime p alone may yield unsound results.1 In the small flow graph in Fig. 1,
for instance, x is a constant at program point 2 if variables take values in Zp for
a prime number p > 2, but it is not a constant if variables take values in Zm.
Interestingly, the given problem is resolved by Granger’s analysis which not only
detects all affine relations between integer variables but also all affine congruence
relations. On the other hand, Granger’s analysis is just intra-procedural, and no
upper complexity bound to his algorithm is known.

In this paper we present intra- and inter-procedural analyses that are sound
and, up to the common abstraction of guarded to non-deterministic branching,
complete with respect to arithmetic modulo powers of 2. Our analyses are thus
tightly tailored for the arithmetic used in mainstream programming languages.
For this arithmetic, our analyses are more precise than analyses based on com-
puting over Q, or Zp and, in contrast to analyses based on computing over Zp

with a fixed prime p, they are sound w.r.t. the arithmetic used in mainstream
programming languages. Technically, our new analyses are based on the meth-
ods from linear algebra that we have studied previously [8, 11]. The major new
difficulty is that unlike Q and Zp, Zm is no longer a field. In particular, Zm has
zero divisors implying that not every non-zero element is invertible. Therefore,
results from linear algebra over fields do not apply to sets of vectors and matrices
over Zm. However, these sets are still modules over Zm. An extensive account
of linear algebra techniques for modules over abstract rings can, e.g., be found
in [5, 13]. Here, we simplify the general techniques to establish the properties of
Zm which suffice to implement similar algorithms as in [8, 11]. Interestingly, the
new analyses provide extra useful information beyond analyses over Q alone, for
instance, whether or not a variable is always a multiple of 2.

Besides the soundness and completeness issues discussed above, there is an-
other advantage of our analyses that is perhaps more important from a practical
point of view than precision. For any algorithm based on computing in Q, we
must use some representation for rational numbers. When using floating point

1 If the primes of the analysis are chosen randomly, the resulting analysis is at least
“probabilistically sound” [4].

48 M. Müller-Olm and H. Seidl

numbers, we must cope with rounding errors and numerical instability. Alter-
natively, we may represent rational numbers as pairs of integers. Then we can
either rely on integers of bounded size as provided by the host language. In
this case we must cope with overflows. Or we represent integers by arbitrarily
long bit strings. In this case the sizes of our representations may explode. On
the other hand, when computing over Zp, p a prime, special care is needed to
get the analysis right. The algorithms proposed in this paper, however, can be
implemented using the modulo arithmetic provided by the host language itself.
In particular, without any additional effort this totally prevents explosion of
number representations, rounding errors, and numerical instability.

Our paper is organized as follows. In Section 2, we investigate the properties
of the ring Zm for powers m = 2w and provide basic technology for dealing
with generating systems of Zm-modules. In particular we show how to compute
a (finite description of) all solutions of a system of linear equations over Zm.
In Section 3, we show how these insights can be used to construct sound and
complete program analyses. We introduce our basic notion of programs together
with their concrete semantics. We introduce affine relations and adapt the basic
technology provided in [11] for fields to work for rings Zm. Finally, we sketch
how to obtain highly efficient intraprocedural analyses of affine relations over
Zm. In Section 4, we summarize and explain further directions of research.

2 The Ring Zm for Powers m = 2w

In [5, 13], efficient methods are developed for computing various normal forms of
matrices over principal ideal rings (PIR’s). Here, we are interested in the residue
class ring Zm for prime powers m which is a special case of a PIR. Accordingly,
the general methods from [5, 13] are applicable. It turns out, however, that for
prime powers m, the ring Zm has a very special structure. In this section, we
show how this structure can be exploited to obtain specialized algorithms in
which the computation of (generalized) gcd’s is (mostly) abandoned. Since the
abstract values of our program analyses will be submodules of ZN

m for suitable
N , we also compute the exact maximal length of a strictly ascending chain of
such submodules. Since we need effective representations of modules, we provide
algorithms for dealing with sets of generators. In particular, we show how to solve
homogeneous systems of linear equations over Zm without gcd computations. In
the sequel, let m = 2w, w ≥ 1. We begin with the following observation.

Lemma 1. Assume a ∈ Zm is different from 0. Then we have:

1. If a is even, then a is a zero divisor, i.e., a · b = 0 (modulo m) for some
b ∈ Zm different from 0.

2. If a is odd, then a is invertible, i.e., a · b = 1 modulo m for some b ∈ Zm.
Using arithmetic modulo m, the inverse b can be computed in time O(w).

Proof. Assume a = 2 · a′. Then a · 2w−1 = 2w · a′ = 0 (modulo m). If, on the
other hand, a is odd, then a and m are relative prime. Therefore, we can use the

Analysis of Modular Arithmetic 49

Euclidean algorithm to determine integers x and y such that 1 = a · x + m · y.
Accordingly, b = x (modulo m) is the inverse of a. This algorithm, however,
cannot be executed modulo m. In the case where w = 1, we know that Zm is
in fact the field Z2. Thus, the inverse of a �= 0 (modulo 2) is given by a. If on
the other hand w > 1, we can use the Euclidean algorithm to determine odd
integers x1 and y1 with 1 = a · x1 + 2w−1 · y1. By computing the square of both
sides of this equation, we obtain:

1 = a2x2
1 + 2 · ax12w−1y1 + 2(w−1)2y2

1

Every summand of the right-hand side except the first contains 2w as a factor
and thus equals 0 (modulo m). Hence, b = ax2

1 (modulo m). Since the Euclidean
algorithm uses O(log(m)) operations, the complexity statement follows. ��

Example 1. Consider w = 32 and a = 21. We use the familiar notation of Java int
values as elements in the range [−231, 231 − 1]. The Euclidean algorithm applied
to a and m′ = 231 (or: −231 in signed notation) gives us x1 = −1124872387 and
y1 = 11. Then b = 21 · x2

1 = 1022611261 modulo 232 is the inverse of a. ��

Since computing inverses can be rather expensive, we will avoid these whenever
possible. For a ∈ Zm, we define the rank of a as r ∈ {0, . . . , w} iff a = 2r · a′ for
some invertible element a′. In particular, the rank is 0 iff a itself is invertible, and
the rank is w iff a = 0 (modulo m). Note that the rank of a can be computed by
determining the length of suffix of zeros in the bit representation of a. If there
is no hardware support for this operation, it can be computed with O(log(w))
arithmetic operations using a variant of binary search.

A subset M ⊆ Zk
m of vectors2 (x1, . . . , xk)t with entries xi in Zm is a Zm-

module iff it is closed under vector addition and scalar multiplication with ele-
ments from Zm. A subset G ⊆ M is a set of generators of M iff M = {∑l

i=1 rigi |
l ≥ 0, ri ∈ Zm, gi ∈ G}. Then M is generated by G and we write M = 〈G〉.

For a non-zero vector x = (x1, . . . , xk)t, we call i the leading index iff xi �= 0
and xi′ = 0 for all i′ < i. In this case, xi is the leading entry of x. A set of
non-zero vectors is in triangular form iff for all distinct vectors x, x′ ∈ G, the
leading indices of x and x′ are distinct. Every set G in triangular form contains
at most k elements. We define the rank of a triangular set G of cardinality s as
the sum of the ranks of the leading entries of the vectors of G plus (k − s) ·w (to
account for k − s zero vectors). Note that this deviates from the common notion
of the rank of a matrix.

Assume that we are given a set G in triangular form together with a new
vector x. Our goal is to construct a set Ḡ in triangular form generating the same
Zm-module as G∪{x}. If x is the zero vector, then we simply can choose Ḡ = G.
Otherwise, let i and 2rd (d invertible) denote the leading index and leading entry
of x, respectively. We distinguish several cases:

1. The i-th entry of all vectors x′ ∈ G are 0. Then we choose Ḡ = G ∪ {x}.

2 The superscript “t” denotes the transpose operation which mirrors a matrix at the
main diagonal and changes a row vector into a column vector (and vice versa).

50 M. Müller-Olm and H. Seidl

2. i is the leading index of some y ∈ G where the leading entry equals 2r′
d′ (d′

invertible).
(a) If r′ ≤ r, then we compute x′ = d′ · x − 2r−r′

d · y. Thus, the i-th entry
of x′ equals 0, and we proceed with G and x′.

(b) If r′ > r, then we construct a new set G′ by replacing y with the vector
x. Furthermore, we compute y′ = d · y − 2r′−rd′ · x. Thus, the i-th entry
of y′ equals 0, and we proceed with G′ and y′.

Eventually, we arrive at a set Ḡ having the desired properties. Moreover, either
the resulting Ḡ equals G or the rank of Ḡ is strictly less than the rank of G.

Overall, computing a triangular set for a given triangular set and a new vector
amounts to at most O(k) computations of ranks together with O(k2) arithmetic
operations. On the whole, it therefore can be done with O(k · (k + log(w)))
operations. Accordingly, we obtain the following theorem:

Theorem 1. 1. Every Zm-module M ⊆ Zk
m is generated by some set G of

generators of cardinality at most k.
2. Given a set G′ of generators of cardinality n, a set G of cardinality at most

k can be computed in time O(n · k · (k + log(w))) such that 〈G〉 = 〈G′〉.
3. Every strictly increasing chain of Zm-modules M0 ⊂ M1 ⊂ . . . ⊂ Ms ⊆ Zk

m,
has length s ≤ k · w.

Proof. The second statement follows from our construction of triangular sets
of generators. Starting from the empty set, which is triangular by definition,
we successively add the vectors in G′ with the procedure described above. The
complexity is then estimated by summing up the operations of these n inclusions.

The first statement trivially follows from the second because M is a finite
generator of itself. It remains to consider the third statement. Assume that
Mi ⊂ Mi+1 for i = 0, . . . , s − 1. Consider finite sets Gi of generators for Mi. We
construct a sequence of triangular sets generating the same modules as follows.
G′

0 is the triangular set constructed for G0. For i > 0, G′
i is obtained from G′

i−1
by successively adding the vectors in Gi to the set G′

i−1. Since Mi−1 �= Mi, the
triangular set G′

i−1 is necessarily different from the set G′
i for all i = 1, . . . , s.

Therefore, the ranks of the G′
i are strictly decreasing. Since the maximal possible

rank is k · w and ranks are non-negative, the third statement follows. ��
Example 2. In order to keep the numbers small, we choose here and in the
following examples of this section w = 4, i.e., m = 16. Consider the vectors
x = (2, 6, 9)t and y = (0, 2, 4)t with leading indices 1 and 2 and both with
leading entry 2. Thus, the set G = {x, y} is triangular. Let z = (1, 2, 1)t. We
want to construct a triangular set of generators equivalent to G ∪ {z}. Since the
leading index of z equals 1, we compare the leading entries of x and z. The ranks
of the leading entries of x and z are 1 and 0, respectively. Therefore, we exchange
x in the generating set with z while continuing with x′ = x−2 ·z = (0, 2, 7)t. The
leading index of x′ has now increased to 2 . Comparing x′ with the vector y, we
find that the leading entries have identical ranks. Thus, we can subtract a suitable
multiple of y to bring the second component of x′ to 0 as well. We compute
x′′ = x′ − 1 · y = (0, 0, 3)t. As triangular set we finally return Ḡ = {z, y, x′′}. ��

Analysis of Modular Arithmetic 51

For a set of generators G being triangular, does not imply being a minimal
set of generators. For w = 3 consider, e.g., the triangular set G = {x, y} where
x = (4, 1)t, y = (0, 2)t. Multiplying x with 2 results in: 2·x = (8, 2)t = (0, 2)t = y.
Thus {x} generates the same module as G implying that G is not minimal.

It is well-known that the submodules of Zk
m are closed under intersection.

Ordered by set inclusion they thus form a complete lattice Sub(Zk
m), like the

linear subspaces of Fk for a field F. However, while the height of the lattice of
linear subspaces of Fk is k for dimension reasons, the height of the lattice of
submodules of Zk

m is precisely k · w. By Theorem 1, k · w is an upper bound for
the height and it is not hard to actually construct a chain of this length. The
least element of Sub(Zk

m) is {0}, the greatest element is Zk
m itself. The least

upper bound of two submodules M1, M2 is given by
M1 � M2 = 〈M1 ∪ M2〉 = {m1 + m2 | mi ∈ Mi} .

We turn to the computation of the solutions of systems of linear equations in k
variables over Zm. Here, we consider only the case where the number of equations
is at most as large as the number of variables. By adding extra equations with
all coefficients equal to zero, we can assume that every such system has precisely
k equations. Such a system can be denoted as Ax = b where A is a square
(k × k)-matrix A = (aij)1≤i,j≤k with entries aij ∈ Zm, x = (x1, . . . ,xk)t is a
column vector of unknowns and b = (b1, . . . , bk)t is a column vector of elements
bi ∈ Zm. Let L denote the set of all solutions of Ax = b. Let L0 denote the
set of all solutions of the corresponding homogeneous system Ax = 0 where
0 = (0, . . . , 0)t. It is well-known that, if the system Ax = b has at least one
solution x, then the set of all its solutions can be obtained from x by adding
solutions of the corresponding homogeneous system, i.e.,

L = {x + y | y ∈ L0}
Let us first consider the case where the matrix A is diagonal, i.e., aij = 0 for all
i �= j. The following lemma deals completely with this case.

Lemma 2. Assume A is a diagonal (k × k)-matrix over Zm where the diagonal
elements are given by aii = 2widi for invertible di (wi = w means aii = 0).

1. Ax = b has a solution iff for all i, wi does not exceed the rank of bi.
2. If Ax = b is solvable, then one solution is given by: x = (x1, . . . , xk)t with

xi = 2w′
i−wi · d−1

i b′
i where bi = 2w′

ib′
i for invertible elements b′

i.
3. The set of solutions of the homogeneous system A x = 0 is the Zm-module

generated from the vectors: e(j) = (e1j , . . . , ekj)t, j = 1, . . . , k, where eij =
2w−wi if i = j and eij = 0 otherwise. ��

In contrast to equation systems over fields, a homogeneous system Ax = 0
thus may have non-trivial solutions — even if all entries aii are different from
0. Note also, that in contrast to inhomogeneous systems, sets of generators for
homogeneous systems can be computed without computing inverses.

Example 3. Let w = 4, i.e., m = 16, and

A =
(

2 0
0 8

)

52 M. Müller-Olm and H. Seidl

Then the Zm-module of solutions of Ax = 0 is generated by the two vectors
e(1) = (8, 0)t and e(2) = (0, 2)t. ��
For the case where the matrix A is not diagonal, we adapt the concept of invert-
ible column and row transformations known from linear algebra to bring A into
diagonal form. More precisely, we have:

Lemma 3. Let A denote an arbitrary (k × k)-matrix over Zm. Then we have:

1. A can be decomposed into matrices: A = L · D · R where D is diagonal and
L, R are invertible (k × k)-matrices over Zm.

2. W.r.t. this decomposition, x is a solution of A x = b iff x = R−1x′ for a
solution x′ of the system D x = b′ for b′ = L−1b.

3. The matrix D together with the matrix R−1 and the vector b′ = L−1 b can
be computed in time O(log(w) · k3). In particular, computation of inverses
is not needed for the decomposition.

Proof. In order to prove that every matrix A can indeed be decomposed into
a product A = L · D · R for a diagonal matrix D and invertible matrices L, R
over Zm, we recall the corresponding technique over fields from linear algebra.
Recall that the idea for fields consisted in successively selecting a non-zero Pivot
element (i, j) in the current matrix. Since every non-zero element in a field is
invertible, the entry d at (i, j) has an inverse d−1. By multiplying the row with
d−1, one can bring the entry (i, j) to 1. Then one can apply column and row
transformations to bring all other elements in the same column or row to zero.
Finally, by exchanging suitable columns or rows, one can bring the former Pivot
entry into the diagonal. In contrast, when computing in the ring Zm, we do
not have inverses for all non-zero elements, and even if there are inverses, we
would like to avoid their construction. Therefore, we refine the selection rule
for Pivot elements by always selecting as a Pivot element the (i, j) where the
entry d = 2rd′ of the current matrix has minimal rank r, and d′ is invertible
over Zm. Since r has been chosen minimal, still all other elements in row i and
column j are multiples of 2r. Therefore, all these entries can be brought to 0
by multiplying the corresponding row or column with d′ and then subtracting a
suitable multiple of the i-th row or j-th column, respectively. These elementary
transformations are invertible since d′ is invertible. Finally, by suitable exchanges
of columns or rows, the entry (i, j) can be moved into the diagonal. Proceeding
with the classical construction for fields, the inverses of the chosen elementary
column transformations are collected in the matrix R while the inverses of the
chosen elementary row transformations are collected in the matrix L. Since the
elementary transformations which we apply only express exchange of columns
or rows, multiplication with an invertible element or adding of a multiple of one
column / row to the other, these transformations are also invertible over Zm.

Now it should be clear how the matrix D together with the matrix R−1

and the vector b′ = L−1b can be computed. The matrix R−1 is obtained by
starting from the unit matrix and then performing the same sequence of column
operations on it as on A. Also, the vector b′ is obtained by performing on b the

Analysis of Modular Arithmetic 53

same sequence of row transformations as on A. In particular, this provides us
with the complexity bound as stated in item (3). ��
Putting lemmas 2 and 3 together we obtain:

Theorem 2. 1. A representation of the set L0 of a homogeneous equation sys-
tem A x = 0 over Zm can be computed without resorting to the computation
of inverses in time O(log(w) · k3).

2. A representation of the set L of all solutions of an equation system A x = b
over Zm can be computed in time O(w · k + log(w) · k3).

Example 4. Consider, for w = 4, i.e., m = 16, the equation system with the two
equations

12x1 + 6x2 = 10
14x1 + 4x2 = 8

We start with
A0 =

(
12 6
14 4

)
, b0 =

(
10
8

)
, R0 =

(
1 0
0 1

)

We cannot use (1, 1) with entry 12 as a Pivot, since the rank of 12 exceeds the
ranks of 14 and 6. Therefore we choose (1, 2) with entry 6. We bring the entry
at (2, 2) to 0 by multiplying the second row with 3 and subtracting the first row
twice in A0 and in b0:

A1 =
(

12 6
2 0

)
, b1 =

(
10
4

)
, R1 =

(
1 0
0 1

)

By subtracting twice the second column from the first in A1 and R1, we obtain:

A2 =
(

0 6
2 0

)
, b2 =

(
10
4

)
, R2 =

(
1 0
14 1

)

Now, we exchange the columns 1 and 2 in A3 and R3:

A3 =
(

6 0
0 2

)
, b3 =

(
10
4

)
, R3 =

(
0 1
1 14

)

Since 3 · 11 = 1 mod 16, we can easily read off x′
0 =

(11·5
2

)
=

(7
2

)
as a solution of

A3 x = b3. We also see that the two vectors x′
1 =

(8
0

)
and x′

1 =
(0

8

)
generate the

module of solutions of the homogeneous system A3x = 0. Consequently, x0 =
R3 x′

0 =
(2

3

)
is a solution of A0 x = b0 and the two vectors x1 = R3 x′

1 =
(0

8

)
and

x1 = R3 x′
2 =

(8
0

)
generate the module of solutions of the homogeneous system

A0 x = 0. We conclude that the set of solutions of A0 x = b0 (over Z16) is

L =
{(

2+8a
3+8b

)
| a, b ∈ Z16

}
=

{(2
3

)
,
(2

11

)
,
(10

3

)
,
(10

11

)}
��

3 Affine Program Analysis

In the last section, we have proposed algorithms for reducing sets of generators of
Zm-modules and for solving systems of (homogeneous) linear equations over Zm.
In this section, we show how these algorithms can be plugged into the algorithmic
skeletons of the sound and complete analyses of affine relations over fields as,
e.g., presented in [11] to obtain sound and complete analyses of affine relations
over Zm. For the sake of an easier comparison, we use the same conventions as in

54 M. Müller-Olm and H. Seidl

Fig. 2. An inter-procedural program

[11] which we recall here briefly in order to be self-contained. Thus, programs are
modeled by systems of non-deterministic flow graphs that can recursively call
each other as in Figure 2. Let X = {x1, . . . ,xk} be the set of (global) variables
the program operates on. We use x to denote the column vector of variables
x = (x1, . . . ,xk)t. In this paper, we assume that the variables take values in
the ring Zm. Thus, a state assigning values to the variables is modeled by a k-
dimensional (column) vector x = (x1, . . . , xk)t ∈ Zk

m; xi being the value assigned
to variable xi. For a state x, a variable xi and a value c ∈ Zm, we write x[xi → c]
for the state (x1, . . . , xi−1, c, xi+1, . . . , xk)t as usual.

We assume that the basic statements in our programs either are affine as-
signments of the form xj := t0 +

∑k
i=1 tixi (with ti ∈ Zm for i = 0, . . . , k and

xj ∈ X) or non-deterministic assignments of the form xj := ? (with xj ∈ X).
We annotated the edges in Fig. 2 with sequences of assignments just in order
to reduce the number of program points. Since assignments xj := xj have no
effect onto the program state, they are skip-statements and omitted in pictures.
Skip-statements can be used to abstract guards. This amounts to replacing con-
ditional branching in the original program with non-deterministic branching. It
is relative to this common abstraction when we say an analysis is complete.

Non-deterministic assignments xj := ? can be used as a safe abstraction of
statements our analysis cannot handle precisely, for example of assignments
xj := t with non-affine expressions t or of read statements read(xj).

In this setting, a program comprises a finite set Proc of procedure names
together with one distinguished procedure Main. Execution starts with a call
to Main. Each procedure q ∈ Proc is specified by a distinct edge-labeled control
flow graph with a single start point stq and a single return point retq where each
edge is either labeled with an assignment or a call to some procedure.

The key idea of [11] which we take up here for the analysis of modular arith-
metic, is to construct a precise abstract interpretation of a constraint system
characterizing the program executions that reach program points. For that, pro-
gram executions or runs are represented by sequences r of affine assignments:

r ≡ s1; . . . ; sm

where si are assignments of the form xj := t, xj ∈ X and t ≡ t0 +
∑k

i=1 tixi

for some t0, . . . , tk ∈ Zm. (Non-deterministic assignments give rise to multiple

Analysis of Modular Arithmetic 55

runs.) We write Runs for the set of runs. Every assignment statement xi := t
induces a state transformation [[xj := t]] : Zk

m → Zk
m given by

[[xj := t]]x = x[xj �→ t(x)] ,

where t(x) is the value of term t in state x. This definition is inductively extended
to runs: [[ε]] = Id, where Id is the identical mapping and [[ra]] = [[a]] ◦ [[r]].

A closer look reveals that the state transformation of an affine assignment
xj := t0 +

∑k
i=1 tixi is in fact an affine transformation. As a composition of

affine transformations, the state transformer of a run is therefore also an affine
transformation — no matter whether we compute over fields or some Zm. Hence,
for any run r, we can choose Ar ∈ Zk2

m and br ∈ Zk
m such that [[r]]x = Arx + br.

The definition of affine relations over Zm is completely analogous to affine
relations over fields. So, an affine relation over Zk

m is an equation a0 + a1x1 +
. . . + akxk = 0 for some ai ∈ Zm. As for fields, we represent such a relation by
the column vector a = (a0, . . . , ak)t. Instead of a vector space, the set of all affine
relations now forms a Zm-module isomorphic to Zk+1

m . We say that the vector
y ∈ Zk

m satisfies the affine relation a iff a0 + a′ · y = 0 where a′ = (a1, . . . , ak)t

and “·” denotes the scalar product. This fact is denoted by y |= a.
We say that the affine relation a is valid after a single run r iff [[r]]x |= a for

all x ∈ Zk
m, i.e., iff a0 + a′ · [[r]]x = 0 for all x ∈ Zk

m; x represents the unknown
initial state. Thus, a0 + a′ · [[r]]x = 0 is the weakest precondition for validity of
the affine relation a after run r. In [11], we have shown in the case of fields, that
the weakest precondition can be computed by a linear transformation applied
to the vector a. The very same argumentation works as well in the more general
case of arbitrary rings. More specifically, this linear transformation is given by
the following (k + 1)2 matrix Wr:

Wr =
(

1 btr

0 At
r

)
(1)

Also over Zm, the only affine relation which is true for all program states is the
relation 0 = (0, . . . , 0)t. Since the initial state is arbitrary, an affine relation a is
thus valid at a program point u iff Wr a = 0 for all runs r that reach u.

This is good news, since it shows that as in the case of fields, we may use the
set W = {Wr | r reaches u} to solve the validity problem for affine relations by
setting up and solving the linear equation system Wa = 0, W ∈ W. While in our
case this set is finite because Zm is finite, it can be large. We are thus left with
the problem of representing W compactly. In the case of fields, we could observe
that the set of (k + 1) × (k + 1) matrices forms a vector space. Over Zm this is
no longer the case. However, this set is still a Zm-module isomorphic to Z

(k+1)2
m .

We observe that as in the case of fields we can use a generating system of the sub-
module 〈W〉 instead of W to set up this linear equation system without changing
the set of solutions. By Theorem 1, 〈W〉 can be described by a generating system
of at most (k+1)2 matrices. Therefore, in order to determine the set of all affine
relations at program point u, it suffices to compute a set of generators for the
module 〈{Wr | r reaches u}〉. This is the contents of the next theorem:

56 M. Müller-Olm and H. Seidl

Theorem 3. Assume we are given a generating system G of cardinality at most
(k + 1)2 for the set 〈{Wr | r reaches u}〉. Then we have:

a) The affine relation a ∈ Zk+1
m is valid at u iff W a = 0 for all W ∈ G.

b) A generating system for the Zm-submodule of all affine relations valid at
program point u can be computed in time O(k4 · (k + log(w))).

Proof. We only consider the complexity estimation. By statement a), the affine
relation a is valid at u iff a is a solution of all the equations∑k

j=0 wijaj = 0

for each matrix W = (wij) ∈ G and i = 0, . . . , k. The generating system G
contains at most (k + 1)2 matrices each of which contributes k + 1 equations.
First, we can bring this set into triangular form. By Theorem 1, this can be done
in time O(k4 ·(k+log(w))). The resulting system has at most k+1 equations. By
Theorem 2, a generating system for the Zm-module of solutions of this system
can be computed with O(log(w) ·k3) operations. The latter amount, however, is
dominated by the former, and the complexity statement follows. ��
As in the case of fields, we are left with the task of computing, for every program
point u, a generating system for 〈{Wr | r reaches u}〉. Following the approach
in [11], we compute this submodule of Z

(k+1)2
m as an abstract interpretation of

a constraint system for set of runs reaching u. From Section 2 we know that
Sub(Z(k+1)2

m) is a complete lattice of height O(k2 ·w) such that we can compute
fixpoints effectively. The desired abstraction of run sets is given by α : 2Runs →
Sub(Z(k+1)2

m), α(R) = 〈{Wr | r ∈ R}〉. Indeed, the mapping α is monotonic
(w.r.t. subset ordering on sets of runs and submodules) and commutes with
arbitrary unions. Similar to the case of fields, we set up a constraint system. The
variables in the new constraint system take submodules of Z

(k+1)2
m as values:

[Sα1] Sα(q) ⊇ Sα(retq)
[Sα2] Sα(stq) ⊇ 〈{Ik+1}〉
[Sα3] Sα(v) ⊇ Sα(u) ◦ 〈{Wxj :=t}〉 for an edge (u, v) labeled xj := t

[Sα4] Sα(v) ⊇ Sα(u) ◦ 〈{Wxj :=0, Wxj :=1}〉 for an edge (u, v) labeled xj := ?
[Sα5] Sα(v) ⊇ Sα(u) ◦ Sα(q) for an edge (u, v) calling q

[Rα1] Rα(Main) ⊇ 〈{Ik+1}〉
[Rα2] Rα(q) ⊇ Rα(u) for an edge (u,) calling q

[Rα3] Rα(u) ⊇ Rα(q) ◦ Sα(u) if u is a program point of q

The variable Sα(q) is meant to capture the abstract effect of the procedure q.
By the constraints Sα1, this value is obtained as the module of transformations
Sα(retq) accumulated for the return point retq of q. According to Sα2, this ac-
cumulation starts at the start point stq with (the module generated by) the
identity transformation. The constraints Sα3 and Sα4 deal with affine and non-
deterministic assignments, respectively, while the constraints Sα5 correspond to
calls. The abstract effects of procedures are then used in the second part of the

Analysis of Modular Arithmetic 57

constraint system to determine for every procedure and program point the mod-
ule of transformations induced by reaching runs. The constraint Rα1 indicates
that we start before the call to Main with the identity transformation. The con-
straints Rα2 indicate that transformations reaching a procedure should comprise
all transformation reaching its calls. Finally, the constraints Rα3 state that the
transformations for a program point u of some procedure q should contain the
composition of transformations reaching q with the transformation accumulated
for u from the start point stq of q.

In this constraint system, the operator “◦” abstracts concatenation of run
sets. As in the case of fields, it is defined in terms of matrix multiplication by

M1 ◦ M2 = 〈{A1A2 | Ai ∈ Mi}〉
for sets of matrices M1, M2 ⊆ Z

(k+1)2
m . An edge annotated by xj := ? induces

the set of all runs xj := c, c ∈ Zm. As in the case of fields, however, the module
spanned by the matrices Wxj :=c, c ∈ Zm, is generated by the two matrices Wxj :=0
and Wxj :=1. Therefore, these two suffice to abstract the effect of xj := ?.

Again as in the case of fields, the constraint system from above can be solved
by computing on generating systems. In contrast to fields, however, we no longer
have the notion of a basis available. Instead, we rely on sets of generators in
triangular form. In order to avoid the need to solve a system of equations over
Zm fully whenever a new vector is added to a set of generators, we use our
algorithm from Theorem 1 to bring the enlarged set again into triangular form.
A set of generators, thus, may have to be changed — even if the newly added
vector is implied by the original one. The update, however, then decreases the
rank of the set of generators implying that ultimately stabilization is detected.

We assume that the basic statements in the given program have size O(1).
Thus, we measure the size n of the given program by |N | + |E|. We obtain:

Theorem 4. For every program of size n with k variables the following holds:

a) The values: 〈{Wr | r reaches X}〉, X a procedure or program point, equal the
components of the least solution of the constraint system for the Rα(X).

b) These values can be computed in time O(w · n · k6 · (k2 + log(w))).
c) The sets of all valid affine relations at program point u, u ∈ N , can be

computed in time O(w · n · k6 · (k2 + log(w))). ��
A full proof of Theorem 4 can be found in [10]. In our main application, w
equals 32 or 64. The term log(w) in the complexity estimation accounts for
the necessary rank computations. In our application, log(w) equals 5 or 6 and
thus is easily dominated by k2. We conclude that the extra overhead over the
corresponding complexity from [11] for the analysis over fields (w.r.t. unit cost
for basic arithmetic operations) essentially consists in one extra factor w = 32 or
64 which is due to the increased height of the lattice used. We expect, however,
that fixpoint computations in practice will not exploit full maximal lengths of
ascending chains in the lattice but stabilize much earlier.

Example 5. Consider the inter-procedural program from Figure 2 and assume
that we want to infer all valid affine relations modulo Zm for m = 232, and let

58 M. Müller-Olm and H. Seidl

c abbreviate 7654321. The weakest precondition transformers for s1 ≡ x1 :=
7654321 · x1;x2 := x1 + x2 and s2 ≡ x1 := 69246289 · x1;x2 := x1 + x2 are:

B1 =
(

1 0 0
0 c c
0 0 1

)
B2 =

(
1 0 0
0 c−1 c−1

0 0 1

)

since c · 69246289 = 1 mod 232. For Rα(q), we find the matrices Ik+1 and

P1 = B1 · B2 =
(

1 0 0
0 1 c + 1
0 0 1

)

None of these is subsumed by the other where the corresponding triangular set
of generators is given by G1 = {Ik+1, P} where

P =
(

0 0 0
0 0 c + 1
0 0 0

)

The next iteration then results in the matrix

P2 = B1 · P1 · B2 =
(

1 0 0
0 1 (c + 1)2

0 0 1

)

Since P2 = Ik+1 +(c+1) ·P , computing a triangular set G2 of generators for G1
together with P2 will result in G2 = G1, and the fixpoint iteration terminates.

In order to obtain the weakest precondition transformers, e.g., for the end-
point 6 of Main, we additionally need the transformation B0 for x1 := 5;x2 := 0:

B0 =
(

1 5 0
0 0 0
0 0 0

)

Using the set {Ik+1, P} of generators for Sα(q), we thus obtain for Rα(6) the
generators:

W1 = B0 · Ik+1 =
(

1 5 0
0 0 0
0 0 0

)
W2 = B0 · P =

(
0 0 5c + 5
0 0 0
0 0 0

)

This gives us the following equations for the affine relations at the exit of Main:

a0 + 5a1 = 0
(5c + 5)a2 = 0

Solving this equation system over Zm according to Theorem 2 shows that the
set of all solutions is generated by:

a =
(−5

1
0

)
a′ =

(
0
0
231

)

The vector a means −5 + x1 = 0 or, equivalently, x1 = 5. The vector a′ means
that 231 · x2 = 0 or, equivalently, x2 is even. Both relations are non-trivial and
could not have been derived by using the corresponding analysis over Q. ��

Analysis of Modular Arithmetic 59

The runtime of our inter-procedural analysis is linear in the program size n
but polynomial in the number of program variables k of a rather high degree.
In [8], we have presented an efficient algorithm which in absence of procedures,
computes all valid affine relations in time O(n · k3) — given that all arithmetic
operations count for 1. This algorithm improves on the original algorithm by Karr
[6] for the same problem by one factor of k. Due to lack of space we will neither
rephraze this nor Karr’s original algorithm but remark that both algorithms
assume that the program variables take values in a field, namely Q — but any
other field Zp (p prime) would do as well. Similar to the algorithm from [11],
they compute with finite-dimensional vector spaces represented through sets of
generators. Just as in our exposition for the interprocedural analysis, we obtain
a sound and complete intraprocedural analysis if we replace the vector spaces of
the algorithm in [8] with the corresponding Zm-modules and use the algorithms
from Section 2 for reducing the cardinalities of sets of generators and solving
sets of homogeneous equations. Summarizing, we obtain:

Theorem 5. Consider an affine program of size n with k variables but without
procedures. Then for m = 2w, the set of all affine relations at all program points
which are valid over Zm can be computed in time O(w · n · k2 · (k + log(w))). ��

4 Conclusion

We have presented sound and complete inter- and intraprocedural algorithms
for computing valid affine relations in affine programs over rings Zm where m =
2w. These techniques allow us to analyze integer arithmetic in programming
languages like Java precisely (upto abstraction of guards). Our new algorithms
were obtained from the corresponding algorithms in [11] and [8] by replacing
techniques for vector spaces with techniques for Zm-modules. The difficulty here
is that for w > 1, the ring Zm has zero divisors — implying that not every
element in the ring is invertible. Since we maintained the top-level structure of
the analysis algorithms, we achieved the same complexity bounds as in the case of
fields — upto one extra factor w due to the increased height of the used complete
lattices. We carefully avoid explicit computation of inverses in our algorithms for
reducing sets of generators and for solving homogeneous linear equation systems.
Otherwise the complexity estimates for the algorithms would be worse because
computation of inverses cannot reasonably be assumed constant time.

Our algorithms have the clear advantage that their arithmetic operations
can completely be performed within the ring Zm of the target language to be
analyzed. All problems with excessively long numbers are thus resolved. In [10]
we also show how to extend the analyzes to Zm for an arbitrary m > 2.

We remark that in [11], we also have shown how the linear algebra methods
over fields can be extended to deal with local variables and return values of
procedures besides just global variables. These techniques immediately carry
over to arithmetic in Zm. The same is true for the generalization to the inference
of all valid polynomial relations up to a fixed degree bound.

60 M. Müller-Olm and H. Seidl

One method to deal with inequalities instead of equalities is to use polyhedra
for abstracting sets of vectors [1]. It is a challenging question what kind of impact
modular arithmetic has on this abstraction.

Acknowledgments. We thank Martin Hofmann for pointing us to the topic of an-
alyzing modular arithmetic and the anonymous referees for valuable comments.

References

1. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among
Variables of a Program. In 5th ACM Symp. on Principles of Programming Lan-
guages (POPL), pages 84–97, 1978.

2. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

3. P. Granger. Static Analysis of Linear Congruence Equalities among Variables of
a Program. In Int. Joint Conf. on Theory and Practice of Software Development
(TAPSOFT), pages 169–192. LNCS 493, Springer-Verlag, 1991.

4. S. Gulwani and G. Necula. Discovering Affine Equalities Using Random Interpre-
tation. In 30th ACM Symp. on Principles of Programming Languages (POPL),
pages 74–84, 2003.

5. J. Hafner and K. McCurley. Asymptotically Fast Triangularization of Matrices
over Rings. SIAM J. of Computing, 20(6):1068–1083, 1991.

6. M. Karr. Affine Relationships Among Variables of a Program. Acta Informatica,
6:133–151, 1976.

7. J. Leroux. Algorithmique de la Vérification des Systèmes à Compteurs: Approxi-
mation et Accélération. PhD thesis, Ecole Normale Supérieure de Cachan, 2003.

8. M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In 31st Int. Coll.
on Automata, Languages and Programming (ICALP), pages 1016–1028. Springer
Verlag, LNCS 3142, 2004.

9. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Infor-
mation Processing Letters (IPL), 91(5):233–244, 2004.

10. M. Müller-Olm and H. Seidl. Interprocedural Analysis of Modular Arithmetic.
Technical Report 789, Fachbereich Informatik, Universität Dortmund, 2004.

11. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear
Algebra. In 31st ACM Symp. on Principles of Programming Languages (POPL),
pages 330–341, 2004.

12. T. Reps, S. Schwoon, and S. Jha. Weighted Pushdown Systems and their Appli-
cation to Interprocedural Dataflow Analysis. In Int. Static Analysis Symposium
(SAS), pages 189–213. LNCS 2694, Springer-Verlag, 2003.

13. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH Zürich,
Diss. ETH No. 13922, 2000.

	Introduction
	The Ring \mathbb{Z}_m for Powers $m = 2^{w}$
	Affine Program Analysis
	Conclusion
	References

