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Weak effects of geolocators on small birds: A meta- analysis 

controlled for phylogeny and publication bias
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Abstract

1. Currently, the deployment of tracking devices is one of the most frequently used 

approaches	to	study	movement	ecology	of	birds.	Recent	miniaturization	of	light-
level geolocators enabled studying small bird species whose migratory patterns 

were widely unknown. However, geolocators may reduce vital rates in tagged 

birds and may bias obtained movement data.

2. There is a need for a thorough assessment of the potential tag effects on small 

birds,	as	previous	meta-analyses	did	not	evaluate	unpublished	data	and	impact	of	
multiple	 life-history	 traits,	 focused	mainly	 on	 large	 species	 and	 the	 number	 of	
published studies tagging small birds has increased substantially.
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3.	 We	quantitatively	reviewed	549	records	extracted	from	74	published	and	48	
unpublished studies on over 7,800 tagged and 17,800 control individuals to 

examine	 the	 effects	 of	 geolocator	 tagging	 on	 small	 bird	 species	 (body	mass	
<100	g).	We	calculated	 the	effect	of	 tagging	on	apparent	survival,	condition,	
phenology and breeding performance and identified the most important pre-
dictors of the magnitude of effect sizes.

4. Even though the effects were not statistically significant in phylogenetically 

controlled models, we found a weak negative impact of geolocators on appar-
ent survival. The negative effect on apparent survival was stronger with in-
creasing relative load of the device and with geolocators attached using elastic 

harnesses.	Moreover,	tagging	effects	were	stronger	in	smaller	species.
5.	 In	conclusion,	we	found	a	weak	effect	on	apparent	survival	of	tagged	birds	and	
managed	 to	pinpoint	key	aspects	and	drivers	of	 tagging	effects.	We	provide	
recommendations for establishing matched control group for proper effect size 

assessment in future studies and outline various aspects of tagging that need 

further investigation. Finally, our results encourage further use of geolocators 

on small bird species but the ethical aspects and scientific benefits should al-
ways be considered.

K E Y WO RD S
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1  | INTRODUCTION

Tracking devices have brought undisputed insights into the ecology 

of birds. The use of these tags has enabled researchers to gather 

valuable information about the timing of life events across annual 

cycles,	 the	 year-	round	 geographic	 distribution	 of	 populations	 and	
other important ecological patterns in many species whose move-
ment	ecology	was	widely	unknown	(e.g.	Patchett,	Finch,	&	Cresswell,	
2018;	Stanley,	MacPherson,	Fraser,	McKinnon,	&	Stutchbury,	2012;	
Weimerskirch	et	al.,	2002).	A	significant	proportion	of	recently	pub-
lished	tracking	studies	use	light-	level	geolocators	on	small	bird	spe-
cies	(body	mass	up	to	100	g;	Bridge	et	al.,	2013;	McKinnon	&	Love,	
2018); however, the increasing use of these tags on small birds raises 

questions about ethics of tagging and how representative the be-
haviour	of	tagged	individuals	is	(Jewell,	2013;	Wilson	&	McMahon,	
2006).

Studies	using	tracking	devices	such	as	archival	 light-	level	geo-
locators	 (hereafter	 “geolocators”)	 frequently	 report	 the	 effect	 of	
tagging. The published results on the effects of geolocator tag-
ging are equivocal: Some found reduced apparent survival, breed-
ing	 success	 and	 parental	 care	 (Arlt,	 Low,	&	Pärt,	 2013;	 Pakanen,	
Rönkä,	Thomson,	&	Koivula,	2015;	Scandolara	et	al.,	2014;	Weiser	
et	al.,	2016)	while	others	report	no	obvious	effects	(Bell,	Harouchi,	
Hewson,	 &	 Burgess,	 2017;	 Fairhurst	 et	al.,	 2015;	 Peterson	 et	al.,	
2015;	 van	 Wijk,	 Souchay,	 Jenni-	Eiermann,	 Bauer,	 &	 Schaub,	
2015).	Recent	meta-	analyses	evaluating	the	effects	of	geolocators	
(Costantini	 &	 Møller,	 2013)	 and	 other	 tracking	 devices	 (Barron,	
Brawn,	&	Weatherhead,	2010;	Bodey	et	al.,	2018a)	showed	slightly	
negative effects on apparent survival, breeding success and paren-
tal care. These studies also discussed relative load as an aspect af-
fecting	the	tagged	birds	(Costantini	&	Møller,	2013),	or	suggested	
multiple	 threshold	 values	 of	 relative	 load	 on	 birds	 (Barron	 et	al.,	
2010;	Bodey	et	al.,	2018a).	However,	these	studies	involved	mainly	
large bird species where the same additional relative load will more 

negatively affect surplus power and thus the flight performance 

than	in	smaller	species	(Caccamise	&	Hedin,	1985).	Moreover,	pre-
vious	studies	did	not	control	 for	 the	effect	of	small-	sample	stud-
ies,	or	phylogenetic	non-	independence	and	 its	uncertainty.	There	
is	thus	a	 lack	of	systematic	and	complex	evaluation	of	geolocator	
effects	on	small	birds	including	species’	life-	history	and	ecological	
traits, geolocator design, and type of attachment.

Almost	 all	 prior	 meta-	analyses	 reporting	 effects	 of	 tagging	
relied only on published sources and could thus be affected by 

publication	 bias	 (Koricheva,	 Gurevitch,	 &	 Mengersen,	 2013),	 as	
omitting	unpublished	 sources	 in	meta-	analyses	may	obscure	 the	
result	 (see,	 e.g.	 Sánchez-	Tójar	 et	al.,	 2018).	 The	 main	 source	 of	
publication bias in movement ecology could be a lower probability 

of publishing studies based on a small sample size, including stud-
ies where no or only few tagged birds were successfully recovered 

due	 to	 a	 strong	 tagging	 effect.	 Additionally,	 geolocator	 effects	
most frequently rely on comparisons between tagged and con-
trol birds and a biased choice of control individuals may directly 

lead to the misestimation of the tagging effect sizes. The bias in 

the control groups can be due to selection of smaller birds, birds 

being caught in different spatiotemporal conditions, including 

non-	territorial	individuals,	or	different	effort	put	into	recapturing	
control and tagged individuals.

The number of studies tagging small birds is rapidly increasing 

each year even though our understanding of tag effects is incom-
plete. In this study, we evaluated the effects of tagging on apparent 

survival, condition, phenology and breeding performance for small 

bird	species	(<100	g)	in	a	robust	dataset	of	both	published	and	unpub-
lished	studies	to	minimize	the	impact	of	publication	bias.	Moreover,	
we assess whether the tagging effects are related to species’ ecolog-
ical	and	life-	history	traits,	type	of	control	treatment	as	well	as	geolo-
cator	and	attachment	designs.	We	build	on	the	most	recent	advances	
in	 meta-	analytical	 statistical	 modelling	 to	 get	 unbiased	 estimates	
of the geolocator deployment effects controlled for phylogenetic 

non-	independence	 and	 its	 uncertainty	 (Doncaster	 &	 Spake,	 2018;	
Guillerme	&	Healy,	2017;	Hadfield,	2010;	Viechtbauer,	2010).

2  | PREDICTIONS

1. Geolocators will negatively affect apparent survival, condition, 

phenology and breeding performance of small birds.

2.	 Negative	effects	will	be	stronger	 in	unpublished	studies	than	 in	
published studies.

3. Deleterious effects will be most prominent in studies establishing 

matched control groups compared to studies with potentially bi-
ased control groups.

4. Geolocators which constitute a higher relative load will imply 

stronger negative effects.

5. Geolocators with a longer light stalk/pipe will cause stronger neg-
ative effects because of increased drag in flight and thus increased 

energetic	 expenditure	 (Bowlin	 et	al.,	 2010;	 Pennycuick,	 Fast,	
Ballerstädt,	&	Rattenborg,	2012).	These	effects	will	be	stronger	in	
aerial	foragers	than	in	other	foraging	guilds	(Costantini	&	Møller,	
2013).

6.	 Non-elastic	harnesses	will	 cause	stronger	negative	effects	 than	
elastic	harnesses,	which	better	adjust	to	intra-annual	body	mass	
changes	and	avoid	flight	restriction	(Blackburn	et	al.,	2016).

3  | MATERIALS AND METHODS

3.1 | Data search

We	conducted	a	comprehensive	search	for	both	published	and	un-
published studies deploying geolocators on bird species with body 

mass	up	to	100	g.	We	searched	the	Web	of	Science	Core	Collection	
(search	terms:	TS	=	(geoloc*	AND	(bird*	OR	avian	OR	migra*)	OR	ge-
ologg*))	 and	Scopus	databases	 (search	 terms:	TITLE-	ABS-	KEY	 (ge-
oloc*	AND	(bird*	OR	migra*)	OR	geologg*)),	to	find	published	studies	
listed	to	18	February	2018.	Moreover,	we	searched	reference	lists	
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of studies using geolocators on small birds and included studies 

from	previous	 comparative	 studies	 (Bridge	 et	al.,	 2013;	Costantini	
&	Møller,	2013;	Weiser	et	al.,	2016).	In	order	to	obtain	information	
from unpublished studies, we inquired geolocator producers and 

the	Migrant	Landbird	Study	Group	 to	disseminate	our	 request	 for	
unpublished study details among their customers and members, re-
spectively. In addition, we asked the corresponding authors of the 

published studies to share any unpublished data. The major geoloca-
tor	producers—Biotrack,	 Lotek,	Migrate	Technology	and	 the	Swiss	
Ornithological	 Institute—sent	 our	 request	 to	 their	 customers.	 To	
find whether the originally unpublished studies were published over 

the course of this study, we inspected their status on 1 December 

2018. The entire process of search and selection of studies and 

records	 (described	below)	 is	presented	 in	a	 flow	chart	 (Supporting	
Information Figure S1).

3.2 | Inclusion criteria; additional data requesting

We	included	studies	that	met	the	following	criteria:

1.	 The	 study	 reported	 response	 variables	 (e.g.	 return	 rates,	 body	
masses) necessary for effect size calculation.

2. The study included a control group of birds alongside the geoloca-
tor-tagged	 individuals	 or	 reported	 a	 pairwise	 comparison	 of	
tagged birds during geolocator deployment and recovery.

3.	 As	 a	 control	 group,	 the	 study	 considered	 birds	 marked	 on	 the	
same	site,	of	the	same	sex	and	age	class	without	any	indication	of	
a difference in recapture effort between tagged and control 

groups.

4. For pairwise comparisons, the study presented correlation coef-
ficients or raw data.

5. The variable of interest was presented outside the interaction 

with another variable.

In order to obtain robust and unbiased results, we asked the cor-
responding authors for missing data or clarification when the criteria 

were not met or when it was not clear whether the study complied 

with	the	criteria	(70%	response	rate	[n = 115]).	In	addition,	we	excluded	
birds that had lost geolocators before subsequent recapture as we did 

not	know	when	the	bird	lost	the	geolocator,	and	excluded	all	individu-
als	tagged	repeatedly	over	years	because	of	possible	interannual	carry-	
over	effects	of	the	devices.	VBr	assessed	all	studies	for	eligibility	and	
extracted	data;	the	final	dataset	was	cross-	checked	by	JK	and	PP.	A	list	
of	all	published	studies	included	in	the	meta-	analysis	is	provided	in	the	
Published Data Sources section.

3.3 | Trait categories; effect size calculation; 
explanatory variables

We	divided	all	collected	data	into	four	trait	categories:	apparent	sur-
vival, condition, phenology and breeding performance based on the 

response	variables	reported	(e.g.	interannual	recapture	rates,	body	
mass changes, arrival dates or clutch sizes; Supporting Information 

Table S2). These categories represent the main traits possibly af-
fected	in	the	geolocator-	tagged	individuals.	Subsequently,	analyses	
were	 run	separately	 for	each	 trait	 category.	We	calculated	 the	ef-
fect sizes for groups of tagged birds from the same study site and 

year	of	attachment,	of	the	same	sex	(if	applicable)	and	specific	ge-
olocator and attachment type accompanied with the corresponding 

control groups. For simplicity, we call these units records throughout 

the	 text.	 For	 each	 record,	we	 extracted	 a	 contingency	 table	with	
the	 treatment	 arm	 continuity	 correction	 (Schwarzer,	 Carpenter,	 &	
Rücker, 2014) or mean, variance, and sample size, to calculate the 

unbiased	 standardized	 mean	 difference—Hedges’	 g	 (Borenstein,	
Hedges,	Higgins,	&	Rothstein,	2009)—and	its	variance	with	correc-
tion	for	the	effect	of	small	sample	sizes	(Doncaster	&	Spake,	2018).	
We	used	the	equation	from	Sweeting,	Sutton,	and	Lambert	(2004)	to	
calculate	variance	in	pairwise	comparisons.	When	raw	data	were	not	
provided,	we	used	the	reported	test	statistics	(F, t or χ2) and sample 

sizes to calculate the effect size using the r	package	compute.es	(Del	
Re,	2013).	Besides	the	effect	size	measures,	we	extracted	additional	
variables	of	potential	 interest—ecological	and	life-	history	traits	per	
species, methodological aspects of the study, geolocator and attach-
ment	designs	and	harness	material	elasticity	(Table	1).

3.4 | Accounting for dependency

We	accounted	 for	data	non-	independence	on	 several	 levels.	When	
multiple	 records	 shared	 one	 control	 group	 (e.g.	 several	 geolocator	
types and attachment designs used in one year), we split the sample 

size in the shared control group by the number of records to avoid 

a	 false	 increase	 in	 record	 precision.	When	multiple	measures	were	
available for the same individuals, we randomly chose one effect size 

measure	in	each	trait	category	(n = 8). If the study provided both re-
capture	and	re-	encounter	rates,	we	chose	the	re-	encounter	rate	as	a	
more	objective	measure	of	apparent	survival.	Re-	encounters	included	
captures and observations of tagged birds, and thus, the bias towards 

the tagged birds caused by the potentially higher recapture effort to 

retrieve the geolocators should be lower. Finally, we accounted for 

phylogenetic	 non-	independence	 between	 the	 species	 and	 the	 un-
certainty	 of	 these	 relationships	 using	 100	phylogenetic	 trees	 (Jetz,	
Thomas,	 Joy,	 Hartmann,	 &	 Mooers,	 2012)	 downloaded	 from	 the	
BirdTree.org	(www.birdtree.org)	using	the	backbone	of	Hackett	et	al.	
(2008).	 Moreover,	 we	 used	 the	 random	 intercepts	 of	 species	 and	
study	sites	in	all	models,	the	latter	to	account	for	possible	site-	specific	
differences	 (such	as	different	netting	effort	or	other	 field	methods	
used by particular research teams).

3.5 | Overall effect sizes and heterogeneity

We	calculated	the	overall	effect	size	for	each	trait	category	from	all	
available	 records	 using	meta-	analytical	 null	models.	We	employed	
the MCMCglmm	function	from	the	MCMCglmm	package	(Hadfield,	
2010) to estimate overall effect sizes not controlled for phylogeny 

(model	1,	Supporting	Information	Table	S3).	We	then	used	the	mul-

Tree	function	from	the	mulTree	package	(Guillerme	&	Healy,	2017)	to	

http://www.birdtree.org
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automatically	fit	a	MCMCglmm	model	on	each	phylogenetic	tree	and	
summarised the results from all these models to obtain phylogeneti-
cally	 controlled	 overall	 effect	 size	 estimates	 (model	 2,	 Supporting	
Information	Table	S3).	We	used	weakly	informative	inverse-	Gamma	
priors	(V	=	1,	nu	=	0.002)	in	all	models.	All	fitted	MCMCglmm	mod-
els converged and Gelman–Rubin statistic was always <1.1 for all 

parameters.	As	our	data	contained	many	effect	sizes	based	on	small	
sample sizes, which could lead to a biased estimate of the overall 

effect	 size	variance,	 all	 effect	 sizes	were	weighted	by	 their	mean-	
adjusted	sampling	variance	(Doncaster	&	Spake,	2018).	We	consid-
ered	effect	sizes	(Hedge's	g)	of	0.2,	0.5	and	0.8	weak,	moderate	and	
large	effects,	respectively.	Moreover,	we	calculated	the	amount	of	

Description N

Methodological	aspect

Published data Published—data	from	published	studies	(for	details	see	
Methods),	data	from	unpublished	sources	from	years	
following an already published study or data initially 

collected	as	unpublished	but	published	by	31	August	2018

303

Unpublished—data	from	unpublished	studies 123

Control group Matched—birds	handled	in	the	exactly	same	way	as	
geolocator-	tagged	birds	except	for	geolocator	deployment

102

Marked	only—birds	of	the	same	sex,	age,	from	the	same	year	
and study site or birds from the same site, from different 

years

324

Species trait

Foraging 

strategyb,c

Aerial	forager 122

Non-	aerial	forager 304

Sex Males 195

Females 120

Geolocator specification

Relative load %	of	geolocator	mass	(including	the	harness)	of	the	body	mass	
of the tagged birds

418

Stalk/pipe lengtha Length	(mm)	of	the	stalk/pipe	holding	the	light	sensor	or	
guiding	the	light	towards	the	sensor	(0	mm	for	stalkless	
models)

371

Attachment	specification

Attachment	type Leg-	loop	harness 304

Full-	body	harness 80

Leg-	flag	attachment 42

Material	elasticitya Elastic—elastan,	ethylene	propylene,	neoprene,	rubber,	
silicone,	silastic	or	Stretch	Magic

235

Non-	elastic—cord,	kevlar,	nylon,	plastic,	polyester	or	teflon 146

Ecological trait

Life	histories Great circle distance between geolocator deployment site and 

population-	specific	centroid	of	the	non-	breeding	(or	
breeding) range

426

Male	body	mass	(g) 426

Female	body	mass	(g) 426

Nest	type—open/close 426

Clutch	size	(number	of	eggs) 426

Number	of	broods	per	year 426

Dense	habitat	preference	(species	occurs	especially	in	dense	
habitats,	e.g.	reeds	or	scrub)—yes/no

426

Egg	mass	(g)—mean	fresh	massd 426

Clutch	mass	(g)—egg	mass	×	clutch	size 426
aOnly used for harness attachments. bCramp	&	Perrins,	1977–1994.	cRodewald,	2015.	dSchönwetter, 

1960–1992.	

TABLE  1 Explanatory	variables	used	in	
the	multivariate	meta-	analysis	of	apparent	
survival	extracted	from	published	and	
unpublished geolocator studies or from 

the literature. N presents the number of 

records specified as the groups of tagged 

birds from the same study site, year of 

attachment,	of	the	same	sex	and	the	
specific geolocator and the attachment 

type accompanied with the corresponding 

control groups
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between-	study	heterogeneity	 in	all	null	models	using	the	equation	
described	in	Nakagawa	and	Santos	(2012).	Phylogenetic	heritability	
(H2)	 expressing	 the	phylogenetic	 signal	was	estimated	as	 the	 ratio	
of	 phylogenetic	 variance	 (σ2

phylogeny) against the sum of phyloge-
netic	 and	 species	 variance	 (σ2

species)	 from	 the	models	 (Supporting	
Information	Table	S3;	Hadfield	&	Nakagawa,	2010):

3.6 | Multivariate meta- analysis

To unveil the most important dependencies of the geolocator effects, 

we calculated three types of multivariate models: a full trait model 

(model	 3),	 an	 ecological	model	 (model	 4)	 and	models	 of	 publication	
bias	(model	5,	Supporting	Information	Table	S3).	In	the	full	trait	model,	
we used methodological, species, geolocator specification and attach-
ment	variables	(Table	1)	to	estimate	their	impact	on	apparent	survival	
(model	3).	We	did	not	compare	the	tagging	effects	of	different	attach-
ment	types	due	to	their	use	in	specific	groups	of	species	(e.g.	the	leg-	
flagged	attachment	in	shorebirds	or	the	full-	body	harnesses	in	nightjars	
and swifts only). Prior to fitting the ecological model, we employed a 

principal	component	analysis	of	the	intercorrelated	log	continuous	life-	
history	traits	and	extracted	the	two	most	important	ordination	axes—
PC1	and	PC2	(Table	1).	The	PC1	explained	54.4%	of	the	variability	and	
expressed	 a	 gradient	 of	 species	 characterized	 mainly	 by	 increasing	
body	mass,	egg	mass	and	clutch	mass	(Supporting	Information	Figure	
S4).	The	PC2	explained	18.7%	of	variance	and	was	characterized	mainly	
by increasing clutch sizes, number of broods and decreasing migration 

distances	(Supporting	Information	Figure	S4).	These	axes	together	with	
the	categorical	 ecological	 traits	 (Table	1)	were	 then	entered	 into	 the	
ecological	model	to	estimate	their	effect	on	apparent	survival	(model	
4). Finally, we tested for differences in effect sizes between published 

and unpublished results in each trait category using all available records 

(model	5).	In	these	models,	we	employed	the	rma.mv function from the 

R	package	metafor	(Viechtbauer,	2010)	weighted	by	the	mean-	adjusted	
sampling	error	(Doncaster	&	Spake,	2018).	Continuous	predictors	were	
scaled	and	centred.	None	of	the	model	residuals	violated	the	assump-
tions	of	normal	distribution.	Because	the	phylogenetic	relatedness	of	
the	species	explained	only	a	small	amount	of	variation	and	the	phyloge-
netic	relatedness	correlates	with	the	life-	history	and	ecological	traits,	
we did not control for phylogeny in the multivariate models but incor-
porated	the	random	intercepts	of	species	and	study	site.	We	calculated	
R2	for	the	full	trait	and	ecological	models	using	the	residual	between-	
study	variability	(τ2

residual)	and	the	total	between-	study	variability	(τ
2

total) 

according	 to	 the	 equation	 (López-	López,	 Marín-	Martínez,	 Sánchez-	
Meca,	Van	den	Noortgate,	&	Viechtbauer,	2014):

3.7 | Publication bias; body mass manipulation

We	 used	 funnel	 plots	 to	 visually	 check	 for	 potential	 asymme-
try	 caused	 by	 publication	 bias	 in	 each	 trait	 category	 (Supporting	
Information	Figure	S5).	To	quantify	the	level	of	asymmetry	in	each	
trait	category,	we	applied	the	Egger's	regression	tests	of	the	meta-	
analytical	residuals	from	all	null	models	of	the	trait	categories	(cal-
culated using the rma.mv function) against effect size precision  

(1/mean-	adjusted	 standard	 error;	 Nakagawa	 &	 Santos,	 2012).	 An	
intercept significantly differing from zero suggests the presence of 

publication bias. In order to find differences in log body mass be-
tween the tagged and control individuals during the tagging and 

marking,	we	applied	a	 linear	mixed-	effect	model	with	 species	 and	
study	site	as	a	random	intercept	weighted	by	the	sample	sizes.	We	
considered	all	effect	sizes	significant	when	the	95%	credible	 inter-
val	(CrI;	using	MCMCglmm	function)	or	confidence	interval	(CI;	using	
rma.mv	function)	did	not	overlap	zero.	All	analyses	were	conducted	
in r	version	3.3.1	(R	Core	Team,	2018).

4  | RESULTS

We	assessed	854	records	for	eligibility	of	effect	size	calculation	and	
excluded	36%	of	these	records	mainly	due	to	a	missing	control	group	
(59%	of	ineligible	records)	or	missing	essential	values	for	effect	size	
calculation	(21%;	Supporting	Information	Figure	S1).	Finally,	a	total	
of	 122	 studies	 containing	 549	 effect	 sizes	 were	 included	 in	 our	
meta-	analysis	wherein	35%	effect	sizes	originated	from	unpublished	
sources	(Table	2).	The	vast	majority	of	the	analysed	effect	sizes	origi-
nated	from	Europe	or	North	America	(94%;	Supporting	Information	
Figure	S6)	and	the	data	contained	 information	about	7,829	tagged	
and	17,834	control	individuals	of	69	species	from	27	families	and	7	
orders	(Supporting	Information	Table	S7).

We	found	a	weak	overall	negative	effect	(Hedges’	g:	−0.2;	95%	
CrI	−0.29,	−0.11;	p < 0.001) only on apparent survival in the model 

not	controlled	for	phylogeny	(model	1).	Although	we	found	no	sta-
tistically significant overall tagging effects in any trait category 

when controlling for phylogenetic relatedness, the estimates were 

H
2=�

2
phylogeny

∕(�2
phylogeny

+�
2
species

).

R
2= (1−�

2
residual

∕�2
total

) × 100.

Trait category

Unpublished (%) Egger’s regression

Effect sizes N Intercept t SE p

Apparent	survival 28.9 426 0.12 1.53 0.08 0.121

Condition 63.3 79 −0.36 −1.70 0.21 0.088

Phenology 59.1 22 −0.26 −1.28 0.21 0.217

Breeding	performance 27.3 22 −0.01 −0.01 0.61 0.993

TABLE  2 Number	of	unpublished	
effect sizes included in the analysis and 

Egger's	regression	tests	of	the	null	model	
residuals against their precision to assess 

the presence of publication bias
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similar	 to	 those	 not	 controlled	 for	 phylogeny	 (model	 2,	 Figure	1).	
The	phylogenetic	signal	(H2	=	59%)	was	statistically	significant	only	
for apparent survival, suggesting that closely related species have 

more similar response to tagging than less related species, but the 

variances	explained	by	phylogeny	and	species	were	very	low	for	all	
models	(Supporting	Information	Table	S8).

The full trait model of apparent survival revealed that tagging 

effects were stronger with increasing load on tagged individuals 

and that geolocators with elastic harnesses affected birds more 

negatively	 than	 geolocators	 with	 non-	elastic	 harnesses	 (Table	3,	
Figure 2). However, we found no statistically significant effect on 

apparent	survival	for	control	group	type,	sex,	stalk	length,	foraging	
strategy or the interaction between stalk length and foraging strat-
egy	(model	3,	Table	3).	The	ecological	model	suggested	a	relationship	
of apparent survival with the PC1, with negative effects being stron-
ger	with	decreasing	body,	 egg	 and	 clutch	mass	 (model	4,	Table	3).	

F IGURE  1 Overall effects of 

geolocators in the four trait categories, 

circles give means, horizontal lines 

represent	95%	CrI.	Filled	symbols	present	
the phylogenetically controlled overall 

effects, open symbols give the value from 

null models not accounting for phylogeny. 

N presents the number of effect sizes 

analysed. For the detailed description 

of	the	trait	categories,	see	Methods	and	
Supporting Information Table S2

Trait Estimate SE Z 95% CI p

Full trait model

Intercept −0.25 0.10 −2.59 (−0.44;	−0.06) 0.010

Published	(published) 0.14 0.10 1.39 (−0.06;	0.34) 0.164

Control	type	(matched) −0.05 0.09 −0.61 (−0.23;	0.12) 0.542

Foraging strategy 

(aerial)
−0.09 0.14 −0.61 (−0.36;	0.19) 0.540

Sex	(males) −0.07 0.05 −1.30 (−0.17;	0.03) 0.192

Relative load −0.12 0.05 −2.36 (−0.23;	−0.02) 0.018

Stalk/pipe length 0.07 0.04 1.77 (−0.01;	0.15) 0.077

Material	elasticity	
(non-	elastic)

0.19 0.08 2.21 (0.03;	0.35) 0.026

Foraging strategy 

(aerial)	×	stalk	length
−0.10 0.07 −1.40 (−0.25;	0.04) 0.161

Ecological model

Intercept −0.26 0.08 −3.20 (−0.42;	−0.10) 0.001

PC1 0.06 0.03 2.32 (0.01;	0.11) 0.026

PC2 0.02 0.03 0.47 (−0.05;	0.08) 0.638

Dense	habitat	(yes) 0.03 0.13 0.21 (−0.22;	0.27) 0.834

Nest	type	(open) 0.14 0.11 1.27 (−0.08;	0.36) 0.205

TABLE  3 Summary of the full trait 

model	(n = 281;	model	3)	and	the	
ecological	model	(n = 426;	model	4)	of	the	
geolocator effects on apparent survival. 

Levels	contrasted	against	the	reference	
level are given in parentheses
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The	full	trait	model	explained	21.1%	and	the	ecological	model	11.8%	
of	the	between-	study	variance.

We	did	not	find	any	evidence	for	publication	bias	in	any	of	the	trait	
categories,	either	visually	in	the	funnel	plots	(Supporting	Information	
Figure	S5),	or	using	Egger's	regression	tests	(Table	2).	Moreover,	there	
were no statistically significant differences in tagging effects between 

published	and	unpublished	studies	(model	5,	Supporting	Information	
Table	S9).	The	geolocator-	tagged	birds	were	on	average	3.8%	heavier	
than control individuals prior to the geolocator deployment and mark-
ing	(LMM:	estimate	0.008	±	0.003,	t = 2.47, p = 0.014).

5  | DISCUSSION

Geolocator	 deployment	 has	 a	 potential	 to	 reduce	 a	 bird's	 apparent	
survival, condition, breeding performance or may delay events of 

the	annual	cycle	leading	to	biases	in	movement	data.	By	conducting	
a quantitative review of published studies deploying geolocators on 

small bird species and incorporating unpublished data, we revealed 

only a weak overall effect of geolocators on apparent survival of 

tagged birds while we found no clear overall effect on condition, 

phenology	and	breeding	performance.	Moreover,	we	found	no	statis-
tically significant effects of tagging in any of trait categories when ac-
counting for phylogenetic relationships. Tagging effects on apparent 

survival were stronger with a higher relative load, when the geoloca-
tors	were	attached	with	elastic	harnesses	and	in	small-	bodied	species.

5.1 | Overall tag effects

A	negative	overall	effect	of	geolocator	tagging	on	apparent	survival	
found in this study seems to be prevalent across previous compara-
tive	 studies	 of	 tagging	 effects	 (Barron	 et	al.,	 2010;	 Bodey	 et	al.,	
2018a,	2018b;	Costantini	&	Møller,	2013;	Trefry,	Diamond,	&	Jesson,	
2012;	Weiser	 et	al.,	 2016).	 However,	 unlike	 previous	 comparative	
(Barron	et	al.,	2010;	Bodey	et	al.,	2018a,	2018b)	and	primary	stud-
ies	 (e.g.	Adams	et	al.,	2009;	Arlt	et	al.,	2013;	Snijders	et	al.,	2017),	

we found no overall negative effects of tagging on variables asso-
ciated	with	breeding	performance	 in	our	analysis.	We	also	did	not	
find evidence for overall effects of tagging on body condition and 

phenology, which was consistent with equivocal results of previous 

studies:	 Some	 found	 reduced	 body	 condition	 (Adams	 et	al.,	 2009;	
Elliott	 et	al.,	 2012)	 or	 delayed	 timing	 of	 annual	 cycle	 events	 (Arlt	
et	al.,	2013;	Scandolara	et	al.,	2014),	while	others	found	no	evidence	
for	tagging	effects	on	these	traits	(Bell	et	al.,	2017;	Fairhurst	et	al.,	
2015;	Peterson	et	al.,	2015;	van	Wijk	et	al.,	2015).

Tagged individuals that returned to the study site are potentially 

in	better	condition	than	the	tagged	individuals	that	did	not	return—
this potentially contributes to the weak tagging effects on condition, 

phenology and breeding performance. However, the lack of effect we 

found on phenology and breeding performance could also be an ar-
tefact of the small sample sizes, as collecting these data is probably 

more challenging in small avian species, which are more difficult to 

re-	sight	and	recapture	and	have	shorter	life	spans	than	the	relatively	
heavier species included in the previous studies. Similarly, effects of 

tagging on condition could be underestimated in our analysis due to 

the initial differences we found between the body mass of tagged and 

control	birds.	Additionally,	the	intra-	annual	body	mass	changes	could	
be biased in studies where timing of geolocator deployment and geo-
locator recovery differs. Unfortunately, the timing of captures and re-
captures was rarely reported and could not be analysed in our study. 

Overall, the weak effects of tagging we found support several primary 

studies	 (e.g.	 Bell	 et	al.,	 2017;	 Fairhurst	 et	al.,	 2015;	 Peterson	 et	al.,	
2015;	van	Wijk	et	al.,	2015),	indicating	that	geolocator	tagging	is	both	
ethical and provides credible information on bird movements. On the 

other hand, care should be taken as the tagging effect may be specific 

to	populations	or	species.	For	example,	Weiser	et	al.	 (2016)	found	a	
negligible overall effect but significant reduction of return rates in the 

smallest	species	in	their	meta-	analysis.	The	negative	effect	of	geolo-
cators	can	also	vary	between	years	(Bell	et	al.,	2017;	Scandolara	et	al.,	
2014),	or	be	induced	by	occasional	bad	weather	conditions	(Snijders	
et	al.,	 2017),	 or	 food	 shortages	 (Saraux	 et	al.,	 2011;	 Wilson,	 Sala,	
Gómez-	Laich,	Ciancio,	&	Quintana,	2015).

F IGURE  2 Relationship between 

relative load and the effect of geolocator 

deployment on the apparent survival of 

tagged birds. Size of the circles reflects 

the	precision	(1/mean-	adjusted	SE) of the 

effect sizes, the shaded area and dashed 

lines	depict	the	95%	CI	of	the	regression
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5.2 | Inferring unbiased overall effect sizes

We	minimized	publication	bias	in	our	estimates	of	overall	effects	by	
including	substantial	amount	of	unpublished	results	 (192	records	of	
38	species)	and	contacting	authors	of	published	studies	for	additional	
data. Still, some of these studies might get published in the future 

despite the delay between our data collation and the final analysis. 

We	did	not	find	any	evidence	that	tagging	effects	differed	between	
published and unpublished studies, suggesting that the tagging effect 

may not be a critical consideration for publishing a study.

Moreover,	we	found	no	support	for	stronger	tag	effects	in	stud-
ies with matched control individuals compared to studies with less 

strict control treatments. However, this result is potentially con-
founded by the fact that tagged birds were on average larger and in 

potentially better condition than control birds, which would under-
estimate	the	negative	effects	of	tagging.	We	thus	suggest	establish-
ing carefully matched control groups in all future studies to enable 

a more reliable estimation of tagging effects. Such a control group 

should	include	the	following:	(a)	randomly	selected	individuals	of	the	
same	species,	sex	and	age	class;	 (b)	 individuals	caught	at	the	same	
time	of	the	season	and	year;	(c)	at	the	same	time	of	the	day;	(d)	of	
similar	size	and	condition	as	tagged	individuals;	and	(e)	exclude	non-	
territorial birds or individuals passing through the site.

5.3 | Influence of relative load and species’ 
life histories

Our	results	support	the	current	evidence	(Bodey	et	al.,	2018a,	2018b;	
Weiser	et	al.,	2016)	 for	 reduced	apparent	 survival	 in	 studies	with	a	
relatively	higher	tag	load	on	treated	individuals.	Moreover,	we	found	
an increasing negative effect in studies tagging smaller species with 

smaller eggs and clutch masses. The lower body mass in these species 

is likely accompanied with a higher relative tag load due to techni-
cal	constraints	of	lower	tag	weights.	Although	recent	miniaturization	
has led to the development of smaller tags, these tags have been pre-
dominantly applied to smaller species instead of reducing tag load in 

larger	 species	 (Portugal	 &	White,	 2018).	 The	 various	 relative	 loads	
used	without	observed	tagging	effects	(e.g.	Bell	et	al.,	2017;	Peterson	
et	al.,	2015;	van	Wijk	et	al.,	2015)	indicate	the	absence	of	a	generally	
applicable	rule	for	all	small	bird	species	(Schacter	&	Jones,	2017),	and	
we thus recommend the use of reasonably small tags despite potential 

disadvantages	(e.g.	reduced	battery	life	span	or	light	sensor	quality).

5.4 | Harness material

Contrary to our prediction, we found higher apparent survival in birds 

tagged	with	 harnesses	made	 of	 non-	elastic	materials.	 Non-	elastic	 har-
nesses are usually individually adjusted on each individual, whereas elastic 

harnesses	are	often	prepared	before	attachment	to	fit	the	expected	body	
size	of	the	tagged	individuals	according	to	allometric	equations	(e.g.	Naef-	
Daenzer,	2007).	As	pre-	sized	elastic	harnesses	cannot	match	perfectly	the	
size of every captured individual, they may be in the end more frequently 

tightly fitted as some researches might tend to tag larger individuals or 

avoid	 too	 loose	 harnesses	 to	 prevent	 geolocator	 loss.	Non-	elastic	 har-
nesses may also be more frequently looser than elastic harnesses as re-
searchers	try	to	reduce	the	possibility	of	non-	elastic	harness	getting	tight	
when birds accumulate fat. Tight harnesses significantly reduced the re-
turn	rates	in	whinchat	(Saxicola rubetra;	Blackburn	et	al.,	2016),	and	it	may	
be difficult to register whether elastic harnesses are restricting physical 

movement	 of	 birds	 when	 deploying	 tags.	 In	 contrast,	 non-	elastic	 har-
nesses, which are more commonly tailored according to the actual size, 

are often made sufficiently loose to account for body mass changes in 

each individual. Prepared elastic harnesses are usually used to reduce the 

handling	time	during	the	geolocator	deployment	(Streby	et	al.,	2015)	but	
this advantage may be outweighed by the reduced apparent survival of 

geolocators	with	tied	elastic	harnesses.	We	thus	suggest	to	consider	stress	
during geolocator deployment together with the potentially reduced ap-
parent survival and the risk of tag loss when choosing harness material.

5.5 | Variables without statistically significant 
impact on tagging effect

Migratory	distance	did	not	affect	the	magnitude	of	the	effect	sizes,	
contrasting	with	some	previous	findings	(Bodey	et	al.,	2018a,	2018b;	
Costantini	 &	 Møller,	 2013).	 However,	 none	 of	 these	 studies	 used	
population-	specific	 distances	 travelled;	 instead,	 they	 used	 latitudi-
nal	spans	between	ranges	of	occurrence	(Costantini	&	Møller,	2013)	
or	travelled	distance	categorized	into	three	distances	groups	(Bodey	
et al., 2018a, 2018b). These types of distance measurements could 

greatly affect the results especially in species that migrate mainly in an 

east–west	direction	(Lislevand	et	al.,	2015;	Stach,	Kullberg,	Jakobsson,	
Ström,	 &	 Fransson,	 2016)	 or	 in	 species	 whose	 populations	 largely	
differ	 in	 their	 travel	 distances	 (Bairlein	 et	al.,	 2012;	 Schmaljohann,	
Buchmann,	Fox,	&	Bairlein,	2012).	Moreover,	 light-	level	 geolocators	
were	most	frequently	deployed	to	the	long-	distance	migrants	in	our	
study and the result can be thus applicable to these species only.

Additionally,	we	found	no	overall	effect	of	species’	foraging	strategy,	
contrary to the strong overall negative effect found for aerial foraging 

species	(Costantini	&	Møller,	2013).	Despite	the	tag	shape	altering	the	
drag	 and	 thus	 energy	 expenditure	 during	 flight	 (Bowlin	 et	al.,	 2010;	
Pennycuick et al., 2012), apparent survival tended to be better in individ-
uals fitted with stalked geolocators and we found no interaction between 

stalk length and foraging strategy on the tagging effect size. Geolocators 

with longer stalks have been more frequently used in heavier birds with 

low	relative	load	where	the	expected	tag	effect	is	weak.	Moreover,	previ-
ous results of strong negative effects in aerial foragers led to a preferen-
tial use of stalkless geolocators in these species and probably minimized 

the	tagging	effect	in	this	foraging	guild	(Morganti	et	al.,	2018;	Scandolara	
et	al.,	2014).	However,	the	evidence	for	the	negative	effects	in	non-	aerial	
foragers is low as there is only one field study focusing on stalk length 

effects	on	the	return	rates	(Blackburn	et	al.,	2016).

5.6 | Future considerations

Future studies evaluating the use of geolocators on birds should 

focus on assessing interannual differences in tagging effects, effects 
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of varying relative loads, different stalk lengths or different attach-
ment	methods	to	minimize	the	negative	effects	of	tagging.	We	also	
suggest to focus on the impact of various movement strategies such 

as	fattening	and	moulting	schedules	on	the	tagging	effect.	All	future	
studies should carefully set matched controls and transparently re-
port on tagging effects. Finally, our results encourage use of geolo-
cators on small bird species but the ethical and scientific benefits 

should always be considered.
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