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IMPORTANCE A major change has occurred in the evaluation of epilepsy with the availability
of robotic stereoelectroencephalography (SEEG) for seizure localization. However, the
comparative morbidity and outcomes of this minimally invasive procedure relative to
traditional subdural electrode (SDE) implantation are unknown.

OBJECTIVE To perform a comparative analysis of the relative efficacy, procedural morbidity,
and epilepsy outcomes consequent to SEEG and SDE in similar patient populations and
performed by a single surgeon at 1 center.

DESIGN, SETTING, AND PARTICIPANTS Overall, 239 patients with medically intractable epilepsy
underwent 260 consecutive intracranial electroencephalographic procedures to localize their
epilepsy. Procedures were performed from November 1, 2004, through June 30, 2017, and
data were analyzed in June 2017 and August 2018.

INTERVENTIONS Implantation of SDE using standard techniques vs SEEG using a stereotactic
robot, followed by resection or laser ablation of the seizure focus.

MAIN OUTCOMES AND MEASURES Length of surgical procedure, surgical complications, opiate
use, and seizure outcomes using the Engel Epilepsy Surgery Outcome Scale.

RESULTS Of the 260 cases included in the study (54.6% female; mean [SD] age at evaluation,
30.3 [13.1] years), the SEEG (n = 121) and SDE (n = 139) groups were similar in age (mean [SD],
30.1[12.2] vs 30.6 [13.8] years), sex (47.1% vs 43.9% male), numbers of failed anticonvulsants
(mean [SD], 5.7 [2.5] vs 5.6 [2.5]), and duration of epilepsy (mean [SD], 16.4 [12.0] vs17.2 [12.1]
years). A much greater proportion of SDE vs SEEG cases were lesional (99 [71.2%] vs 53
[43.8%]; P < .001). Seven symptomatic hemorrhagic sequelae (1 with permanent
neurological deficit) and 3 infections occurred in the SDE cohort with no clinically relevant
complications in the SEEG cohort, a marked difference in complication rates (P = .003).

A greater proportion of SDE cases resulted in resection or ablation compared with SEEG cases
(127 [91.4%] vs 90 [74.4%]; P < .001). Favorable epilepsy outcomes (Engel class | [free of
disabling seizures] or Il [rare disabling seizures]) were observed in 57 of 75 SEEG cases
(76.0%) and 59 of 108 SDE cases (54.6%; P = .003) amongst patients undergoing resection
or ablation, at 1year. An analysis of only nonlesional cases revealed good outcomes in 27 of 39
cases (69.2%) vs 9 of 26 cases (34.6%) at 12 months in SEEG and SDE cohorts, respectively
(P = .006). When considering all patients undergoing evaluation, not just those undergoing
definitive procedures, favorable outcomes (Engel class | or Il) for SEEG compared with SDE
were similar (57 of 121 [47.1%] vs 59 of 139 [42.4%] at 1year; P = 45).

CONCLUSIONS AND RELEVANCE This direct comparison of large matched cohorts undergoing
SEEG and SDE implantation reveals distinctly better procedural morbidity favoring SEEG.
These modalities intrinsically evaluate somewhat different populations, with SEEG being
more versatile and applicable to a range of scenarios, including nonlesional and bilateral
cases, than SDE. The significantly favorable adverse effect profile of SEEG should factor into
decision making when patients with pharmacoresistant epilepsy are considered for
intracranial evaluations.
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atients with pharmacoresistant epilepsy constitute ap-

proximately one-third of the population with epi-

lepsy. This population has a high incidence of acciden-
tal injuries, status epilepticus, and sudden unexpected death.!
Three randomized prospective trials?>*# have shown that epi-
lepsy surgery is of great benefit in pharmacoresistant epi-
lepsy, but epilepsy surgery continues to be underused. Al-
though the reasons are multifactorial, an important factor is
the perceived risk of surgical procedures, particularly in non-
lesional cases or those that need intracranial evaluations to
clarify the role of a lesion in a patient’s epilepsy. Overall, in-
tracranial electroencephalographic (EEG) recordings are nec-
essary to localize the epileptogenic zone®>” in 30% to 50% of
candidates for epilepsy surgery.®°

Subdural electrode (SDE) implantation via a craniotomy
has been the principal approach for intracranial EEG record-
ings in North America, the United Kingdom, and Germany.'°”
In contrast, the French,'®18-2° Italian,'®-2'24 and Brazilian®® ap-
proaches to the evaluation of epilepsy follow the Talairach ste-
reoelectroencephalographic (SEEG) approach,?®2” in which
depth electrodes are inserted into the brain to desired targets
without requiring a craniotomy.?®3° SEEG is optimized to rec-
ord electrical activity from deep brain structures and sulci and
in cases where bilateral evaluations are necessary.>!*>? Both ap-
proaches have existed in parallel, relatively isolated from each
other, for the better part of a half-century, until the recent ad-
vent of SEEG in North America,3°-33-3> 3 development driven
principally by the availability of stereotactic robots with
3- dimensional (3D) navigational platforms.3¢-3” Although SDE
and SEEG techniques have specific relative advantages, in most
patients needing intracranial EEG, either approach could be
used, although bilateral SDE implantations are challenging.

Mounting evidence during the last few years?83338-43 gug-
gests that SEEG procedures are safer than SDE implantations. The
reported rates of complications after SDE implantations range
from 5% to 17% per procedure.**>” In comparison, the compli-
cation rate per SEEG procedure is less than 1%, as revealed in a
large recent metanalysis.* Given that intracranial monitoring is
adiagnostic technique for determining candidacy for and the tar-
gets of resection, the morbidity of these procedures detracts from
the larger goal of improving the quality of life of patients with
medically intractable epilepsy*&-4°->8-61 and contributes to the
underuse of epilepsy surgery.®?

The relatively abrupt transition from SDE to SEEG in se-
lect centers in North America allows for a comparative analy-
sis of outcomes using these 2 distinct techniques. The surgi-
cal outcomes and procedural morbidity are ideally evaluated
in the context of a relatively homogenous population and by
the same team involved in the decision-making process re-
garding the candidacy and strategies for epilepsy surgery. At
our center, we switched from performing chiefly SDE evalua-
tions to SEEG in 2013. No appreciable change in the types of
patients referred to us for evaluation and treatment of epi-
lepsy has occurred. Therefore, although this study is retro-
spective, the populations being compared are similar and
roughly equal in number, allowing for evaluations of the effi-
cacy of SDE vs SEEG in localizing the epileptogenic focus
vis-a-vis their adverse effect profiles.
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Key Points

Question Does stereoelectroencephalography change the
landscape around the management of medically intractable
epilepsy?

Findings This comparative analysis of 239 patients undergoing
260 consecutive intracranial evaluations of intractable epilepsy
found that stereoelectroencephalography implantation took less
time and was less painful and less morbid for patients compared
with subdural electrode implantations. Despite being less likely to
have lesions on magnetic resonance imaging, patients who had
definitive procedures had better outcomes at 1year if they
underwent evaluation using stereoelectroencephalography

(57 of 75 [76.0%]) compared with subdural grid electrode
evaluation (59 of 108 [54.6%)]).

Meaning Stereoelectroencephalography has distinctly better
procedural morbidities and, in selected cases, may have better
outcomes than subdural grid electrodes, features that should
influence decision making and lower the barrier to candidacy for
resection or ablation among patients with intractable epilepsy.

Methods

All patients undergoing implantation of intracranial elec-
trodes by a single neurosurgeon from November 1, 2004,
through June 30, 2017, were included (ensuring at least
12 months of follow-up in each case). The patient history, video-
EEG, imaging, and neuropsychological evaluation as re-
viewed at a multidisciplinary patient management confer-
ence drove surgical decision making in each case. Written
informed consent for prospective data collection was ob-
tained from all patients undergoing electrode implantation. All
research data collection was performed after approval by the
local committee on the protection of human subjects at the Uni-
versity of Texas Health Science Center at Houston.

We used the electronic medical record to compile demo-
graphics, age at epilepsy onset, number of anticonvulsant drugs
failed, duration of epilepsy, type of implantation (SDE vs SEEG),
duration of the surgical procedure, number of contacts implanted,
blood products transfused during implantation, opiate require-
ments after surgery (a surrogate for pain and discomfort), dura-
tion of intracranial monitoring, definitive procedure performed
(resection, neuromodulation, or ablation), complications, and
postoperative seizure outcome. All patients underwent magnetic
resonance imaging (MRI) at 3 T (213 [81.9%]) or 1.5 T (47 [18.1%])
with sequences specifically designed to optimize detection of epi-
leptogenic foci. All preoperative MRI findings were evaluated by
aboard-certified neuroradiologist (E.R.F.) blinded to the proce-
dure and outcomes. In all cases where focal abnormalities were
identified in the surgical specimen by the neuropathologist, a sec-
ondary unblinded review was performed by the neuroradiolo-
gist to evaluate any subtle cortical abnormalities that might have
been missed initially. A handful of cases were recharacterized as
lesional based on this second look, but given the importance of
imaging for outcome after epilepsy surgery, we believed it was
important to categorize all cases in which imaging abnormalities
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were detected at any point in time and therefore these were con-
sidered lesional.

Choices of implant type and locations for electrode place-
ment were motivated in each case by the putative epileptogenic
zone as implicated by noninvasive data. The SDE implantations
were performed using standard techniques,®® via a craniotomy
to implant platinum iridium electrodes (PMT Corp) embedded
in polymericsilicone sheets placed in the subdural space, coupled
with dural expansion. SEEG implantations were performed in
most cases (>95%) using a ROSA robot (Medtech) registered to
each patient’s head using stereotactic skull screws and guided
by a computed tomographic angiogram coregistered to a high-
resolution 3D-contrasted T1-weighted MRI scan.?°:38:64:65 We im-
planted 0.8-mm diameter electrodes (PMT Corp). The earliest pa-
tients in this series underwent SEEG implantation using a stereo-
tacticarm (Vertek; Medtronic Neuronavigation) or a coordinate
frame (Leksell; Elekta).

A major contributor to use of medical resources, in addi-
tion to length of hospital stay, is the duration of surgical time.
Use of the operating room (OR) was computed as the total OR
time (“wheels-in to wheels-out”) and the time of the actual pro-
cedure (incision to closure time). All patients underwent a post-
operative computed tomographic scan after electrode implan-
tation to localize electrodes®® and to detect hemorrhagic
complications. Patients were monitored via 24-hour video-
EEG in the epilepsy monitoring unit after implantation. The
duration of monitoring depended on the time taken to obtain
adequate ictal recordings to localize the epileptogenic zone or
to conclude that localization was unlikely to be accom-
plished.

Doses of narcotics administered postoperatively were con-
verted to oral morphine milligram equivalents (MME) using
standardized conversion tables from the Centers for Disease
Control and Prevention for oral opioids®” and GlobalRxPh
(https://www.globalrph.com) for intravenous opioids.®®
Postoperative seizure outcomes were assessed using the Engel
Epilepsy Surgery Outcome Scale.*® Unpaired ¢ tests for
numerical data and Pearson x? tests for categorical data were
used to evaluate distinctions between the 2 groups. An a priori
alevel of .05 was used such that any result with 2-sided P < .05
was deemed statistically significant (eMethods in the
Supplement). Unless otherwise indicated, data are expressed
as mean (SD).

Statistical Analysis

Statistical tests used included the Pearson x? test, paired and
unpaired t tests, Wilcoxon rank sum test, and log-rank test. An
a priori level of significance of .05 was used throughout and
hypothesis tests were 2-sided. MATLAB with the Statistics and
Machine Learning Toolbox (version (version R2018b; Math-
Works) was used to run these tests.

. |
Results

Population
A total of 239 patients underwent 260 intracranial evalua-
tions during a 150-month interval (260 cases; 118 male [45.4%]
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and 142 female [54.6%]; mean age at evaluation, 30.3 [13.1]
years). The SDE group included 139 SDE implantations in 136
patients (3 patients had 2 distinct SDE implantations in 2 hos-
pital stays). Six of these 136 patients underwent additional SDE
electrode placements during the same hospital stay, which was
therefore attributed as a single evaluation. The mean age at sur-
gery in the SDE cohort was 30.6 (13.8) years; 78 cases (56.1%)
were female and 61 (43.9%) were male. Mean age at onset of
epilepsy was 13.4 (11.9) years; mean epilepsy duration was 17.2
(12.1) years; and these patients had experienced preoperative
failure of anticonvulsant therapy with a mean of 5.6 (2.5) an-
ticonvulsants. Ninety-nine cases (71.2%) were lesional by MRI
and 44 had hippocampal sclerosis of varying severity (Inter-
national League Against Epilepsy types 1-3).°

The SEEG group included 121 cases in 116 patients (5 pa-
tients had 2 distinct SEEG implantations in 2 hospital stays).
Six of the 116 patients underwent additional SEEG electrode
placements performed during the same hospital stay and at-
tributed to as a single hospital procedure. Mean age at sur-
gery was 30.1 (12.2) years; 64 (52.9%) were female and 57
(47.1%) were male; mean age at epilepsy onset was 13.7 (11.6)
years. The mean duration of epilepsy was 16.4 (12.0) years, and
they had experienced preoperative failure of a mean of 5.7
(2.5) anticonvulsant drugs. Fifty-three cases (43.8%) were le-
sional, and 22 had hippocampal sclerosis of varying degrees
of severity. Thus, the 2 cohorts were not significantly differ-
ent in demographics or epilepsy severity (Table 1); however, a
larger proportion of the SDE cases (71.2% vs 43.8%) were le-
sional (P < .001). This difference reflects the tendency to evalu-
ate nonlesional cases more readily with SEEG than with SDE
implantation and affects the likelihood of these patients un-
dergoing resection.

Distinctions in Utilization and Morbidity
By all measures, SEEG procedures took significantly less time
(mean total OR time, 322.0 [75.7] minutes; mean actual sur-
gery time, 121.3 [48.2] minutes) than SDE procedures (mean
total OR time, 429.4 [68.1] minutes; mean actual surgery
time, 308.2 [62.5] minutes; P < .001). The OR times for SDE
and SEEG procedures trended to decrease over time (Figure 1),
indicating greater surgical efficiency with experience. To ac-
count for this secular (long-term temporal) trend, we com-
pared mean total OR times and implantation times for the last
50 SDE procedures (426.3 [67.4] and 302.1 [59.3] minutes, re-
spectively) vs the last 50 SEEG procedures (297.7 [39.2] and
96.9 [20.3] minutes, respectively), and both were signifi-
cantly shorter (P < .001). Even with these shorter surgical times,
a greater number of electrode contacts were implanted in SEEG
vs SDE cases (mean, 186.9 [38.6] vs 114.3 [30.9]; P < .001). The
median number of SEEG probes implanted per patient was 15
(range, 9-20), and the median time for implantation of each
SEEG electrode was 5.3 minutes (range, 2.1-23 minutes).
Blood transfusions were administered to correct acute ane-
mia due to blood loss, coagulopathy, or both, intraopera-
tively or in the acute postoperative period. One SEEG proce-
dure needed platelet transfusion (0.8%, due to a preexisting
thrombocytopenia) in contrast to the 19 SDE procedures (13.7%)
requiring intraoperative transfusions (P < .001) (Table 1). Of
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Table 1. Comparison of the 2 Groups

Study Group

Statistical

Characteristic SDE (n = 139) SEEG (n = 121) Comparison P Value?®

Male, No. (%) 61 (43.9) 57 (47.1) X2 Test .60

Age at surgery, mean (SD), y 30.6 (13.8) 30.1(12.2) Unpaired t test .75

No. of failed anticonvulsants, 5.6 (2.5) 5.7 (2.5) Rank sum test .99

mean (SD)

Age at onset, mean (SD), y 13.4(11.9) 13.7 (11.6) Unpaired t test .86

Duration of epilepsy, mean (SD),y 17.2 (12.1) 16.4 (12.0) Unpaired t test .60

Implant OR time, mean (SD), min ~ 429.4 (68.1) 322.0(75.7) Unpaired t test <.001

Implant surgery time, mean (SD), 308.2 (62.5) 121.3 (48.2) Unpaired t test <.001

min

No. of electrodes per patient, 114.3 (30.9) 186.9 (38.6) Unpaired t test <.001

mean (SD)

Patients receiving transfusions, 19 (13.7) 1(0.8) X2 Test <.001

No. (%)

Duration of monitoring, mean 8.1(2.8) 7.7 (3.9) Unpaired t test .29

(SD), d

Narcotic use, mean (SD), MME 356 (233) 201 (176) Unpaired t test <.001

Major complications, No. (%) 10(7.2) 0 X2 Test .003

Lesional, No. (%) 99 (71.2) 53(43.8) X2 Test <.001

Hippocampal sclerosis, No. (%) 44 (31.7) 22(18.2) X2 Test 013 Abbreviations: MME, milligram

— = morphine equivalents; OR, operating

Definitive procedures, No. (%) room; SDE, subdural grid electrode;
Resection or ablative surgery 127 (91.4) 90 (74.4) X2 Test <.001 SEEG, stereoelectroencephalography.
Mesial temporal vs neocortical 58 vs 69 42 vs 46 X2 Test 77 ? P < .05 indicates significance.
locus, No. of cases Hippocampal sclerosis was defined
No cranial intervention 12 (8.6) 17 (14.0) ¥ Test 17 as any subtle (type 3) to prominent
Pending intervention 0 5(4.1) X2 Test .02 (type 1) imaging change that met

ILAE defined criteria.®®

Figure 1. Overall Comparison of Numbers of Study Cases and Operating Room (OR) Times
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Data were acquired in consecutive cases from November 1, 2004, through June 30, 2017. SDE indicates subdural electrode; SEEG, stereoelectroencephalography.

these 19 procedures, 5 involved a second SDE implantation or
the management of an intracranial hematoma in the same
hospital stay. Transfusions occurred in 7 of the last 50 SDE cases
and 1 of the last 50 SEEG cases (P = .03).

Seven symptomatic hemorrhagic sequelae and 3 infec-
tions related to SDE implantation occurred, and 1 of these
cases experienced long-term neurologic sequelae. Two
hematomas and 1 infection occurred in the last 50 SDE
cases. No symptomatic complications of any kind occurred
in the SEEG cohort, a very significant difference in compli-

jamaneurology.com

cation rates (P = .003) (Table 1). Two patients in the SEEG
cohort had small asymptomatic subdural hematomas (<3
mm thick), incidentally identified on postimplantation
computed tomographic scans with no clinical correlate.
Patients in the SDE cohort received significantly greater
dosages of narcotics (mean, 356 [233] MME/patient) com-
pared with those in the SEEG cohort (mean, 201 [176] MME/
patient; P < .001). The mean MME used in the last 50 SDE
cases was 394 (249) per patient; in the last 50 SEEG cases,
199 (196) per patient (P < .001) (Table 1).
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Figure 2. Overview of Characteristics and Management of Subdural Electrode (SDE) and Stereoelectroencephalography (SEEG) Groups

6 (4.3%) Additional
electrodes

3 Second SDE

7 (5.8%) Additional
electrodes

5 Second SEEG

10 Failed prior SDE with or
without intervention

|
139 SDE cases
]

4 SDE to SEEG

9 SEEG to SDE ‘

|

|

e |

|

|

12 (8.6%) No resection
or ablation

127 (91.4%) Resection
or ablation

90 (74.4%) Resection
or ablation

26 (21.5%) No resection
or ablation

5 (4.1%) Pending
intervention

Ilor IV

40 (33.9%) Engel class | |

78 (66.1%) Engel class | |

lorll

118 (92.9%) 6-mo
Outcome

87 (96.7%) 6-mo
Outcome

| | 73 (83.9%) Engelclass |

lorll

14 (16.1%) Engel class
Ilor IV

!

!

49 (45.4%) Engel class | |
Illor IV

59 (54.6%) Engelclass | |
lorll

108 (91.5%) 12-mo
Outcome

75 (86.2%) 12-mo | | 57 (76.0%) Engelclass | |
Outcome lorll

18 (24.0%) Engel class
Il or IV

!

!

42 (45.6%) Engelclass | |
Illor IV

50 (54.3%) Engelclass | |
lorll

92 (85.2%) 24-mo
Outcome

54 (72.0%) 24-mo | | 44 (81.5%)Engelclass = |
Outcome lorll

10 (18.5%) Engel class
Il or IV

Outcomes were measured with the Engel Epilepsy Surgery Outcome Scale, where class | indicates free of disabling seizures; Il, rare disabling seizures; Ill, worthwhile

improvement; and IV, no worthwhile improvement.

Comparative Epilepsy Outcomes
A significantly greater proportion of SDE cases underwent re-
section or ablative (laser interstitial thermal therapy [LITT])
surgery compared with SEEG cases (127[91.4%] vs 90 [74.4%];
P <.001). Of thelast 50 cases of each type, 48 SDE cases (96.0%)
vs 36 SEEG cases (72.0%) underwent resection or LITT
(P = .001). Twelve SDE cases (8.6%) and 17 SEEG cases (14.0%)
were thought to not be candidates for focal resection or abla-
tion after evaluation. Of the last 50 cases, 8 (4.0%) SDE cases
and 16 (8.0%) SEEG cases were not thought to be candidates
for further intracranial intervention. In addition, 5 SEEG cases
(4.1%) were not willing (due to concerns of cognitive decline)
or not able (due to lapse in medical insurance coverage) to un-
dergo a definitive procedure or are still awaiting interven-
tion. Thus, the SEEG and SDE cohorts were significantly dif-
ferent in the proportions of cases that were lesional, suggesting
that these modalities were used to evaluate somewhat differ-
ent populations, although the same group of physicians at the
same center managed and referred these cases. However, this
shift in the patient pool would be expected to bias outcomes
against SEEG, because these patients generally have less fa-
vorable outcomes. Definitive procedures performed in each
group are summarized in Table 1 and Figure 2. We analyzed
these 2 groups in the following 3 ways: all those who under-
went resection, the subgroup of nonlesional cases (the most
challenging class of patients in epilepsy surgery), and all cases
undergoing evaluation by either modality.

A significantly greater proportion of the SEEG cohort had
a good outcome (Engel class I [free of disabling seizures] or II
[rare disabling seizures]) compared with the SDE cohort at 6
months (73 of 87 [83.9%] vs 78 of 118 [66.1%]; P = .004) and
12 months (57 of 75 [76.0%] vs 59 0f 108 [54.6%]; P = .003) af-
ter resection. When comparing just the last 50 cases in each

JAMA Neurology June2019 Volume 76, Number 6

group at 1 year, 23 of 30 SEEG cases (83.3%) had a good out-
come (Engel classIor IT) compared with 26 of 41 of the last SDE
cases (63.4%) of the last 50 SDE cases (P = .07). Survivor func-
tion analysis of good outcomes (Engel class I or II) at 1 year was
70.6% for SEEG vs 53.4% for SDE; at 2 years, 70.6% and 50.2%
respectively (log-rank P = .16; 95% CI, 0.9046-2.1997). Survi-
vor functions for seizure freedom (Engel class I) at 1 year were
58.4% for SEEG and 45.7% for SDE cases. At 2 years, survivor
functions were 56.6% for SEEG cases and 43.6% for SDE cases
(significantly different log-rank P = .03; 95% CI, 1.0844-
2.4719). The relatively recent introduction of SEEG implies a
shorter follow-up duration, and so the Kaplan-Meier curves are
plotted to end at 30 months (Figure 3).

Given the differences in the proportion of cases in the 2
cohorts that were lesional, we also performed subgroup analy-
ses based on the presence of imaging abnormalities. Com-
pared with the lesional SDE cohort, a significantly greater pro-
portion of the lesional SEEG cohort had good outcomes (Engel
classes I and II) at 6 months (36 of 40 [90.0%] vs 64 of 87
[73.6%]; P = .04) and at 1 year (30 of 36 [83.3%] vs 50 of 79
[63.3%]; P =.03). The distinction was more significant for non-
lesional cases; good outcomes were seen at 6 months (37 of 47
[78.7%] vs 13 0f 28 [46.4%]; P = .004) and 12 months (27 of 39
[69.2%] vs 9 of 26 [34.6%]; P = .006) in the cohorts.

As mentioned above, 91.4% of the SDE group and 74.4%
of the SEEG group underwent resections or LITT. A substan-
tial component of these were patients with bitemporal epilep-
sies, preferentially undergoing evaluation with SEEG, who were
unlikely to undergo resections. Even so, to demonstrate non-
inferiority of SEEG relative to SDE, we evaluated outcomes in
all patients (not just those in whom definitive procedures were
performed) undergoing intracranial evaluations. In this analy-
sis, favorable outcomes (Engel class I or II) for SEEG com-
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Figure 3. Kaplan-Meier Survivor Analysis
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good outcomes (Engel Epilepsy
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Time Since Surgery, mo disabling seizures]) in subdural
. electrode (SDE) and
No. at risk
SDE 127 124 118 108 92 stereoelectroencephalography
SEEG 90 89 87 75 54 (SEEG) groups. No follow-up was

recorded at 18 months.

Table 2. Engel Class at 12 Months for the Entire Cohort Undergoing Electrode Placement and for Those Patients

Deemed Appropriate Candidates for Resection or Ablation

Study Group
Engel Class® SDE SEEG P Value®
Cases Undergoing Resection or Ablation o .
Abbreviations: SDE, subdural grid
No. of cases 108 75 electrode; SEEG, stereoelectroen-
Class lor Il 59 (54.6) 57 (76.0) .003 cephalography.
Class 111 41 (38.0) 16 (21.3) .02 @ Measured on the Engel Epilepsy
Class IV 8(7.4) 202.7) 17 Surgery Outcome Scale, where class
- = lindicates free of disabling seizures;
Cases Evaluated Using SDE or SEEG Il, rare disabling seizures;
No. of cases 139 121 111, worthwhile improvement; and
Class | or II 59 (42.4) 57 (47.1) 45 IV, no worthwhile improvement.
b H 2
Class Il 41(29.5) 16 (13.2) 002 _Cal_culated_u5|.n.gx test. P<.05
indicates significance.
Class IV 8(5.8) 2(1.7) .09

< Performed at 12 months.

pared with SDE were noninferior at 6 months (73 of 121
[60.3%] vs 78 of 139 [56.1%]; P = .49) and at 1 year (57 of 121
[47.1%] vs 59 of 139 [42.4%]; P = .45) (Table 2 and eResults in
the Supplement).

|
Discussion

Implantation of SDEs has been the criterion standard** for
delineating epileptogenic zones, especially in North America,
but SEEG techniques are being increasingly adopted.”® Im-
plantation of SDEs allow for precise functional mapping of brain
surfaces relative to epileptogenic zones.>* On the other hand,
the improved coverage and precise targeting of deeper struc-
tures gives SEEG an advantage in sampling deep lesions and
bilateral explorations.!®:28:29:34 In addition, the ability of the
SEEG method to map distributed epileptic networks in-
volved in epileptic activity has been hypothesized to be re-
sponsible for improved outcomes in patients with epilepsy that
is difficult to localize.'®2842 During the course of our institu-

jamaneurology.com

tion’s rapid adoption of SEEG, we noticed a marked distinc-
tion in patient tolerance for this procedure compared with SDE
placement and also that outcomes in patients who under-
went resection or LITT after SEEG tended to be better. This
analysis of a large series of patients undergoing intracranial EEG
quantifies both of these impressions.

The availability of surgical robots, such as the ROSA and
NeuroMate,’! allows for a combination of accuracy and
efficiency®® in the placement of depth electrodes for SEEG.
With recent and ongoing advancements in robotic surgical
assistance,”? the time taken for the placement of intracranial
electrodes has diminished significantly. Mean surgical time was
121.3 (48.2) minutes for SEEG cases vs 308.2 (62.5) minutes for
SDE (P < .001). When comparing the most recent 50 cases,
these differences are further amplified at 96.9 (20.3) minutes
for SEEG vs 302.1(59.3) minutes for SDE placement (P < .001).

Implantation of SDEs can be associated with an increased
risk of hemorrhage,” specifically subdural hematomas.3-3%:40:74
Our SDE cohort had 7 hemorrhage-related complications and 3
infections, significantly higher than the complication rate in the
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SEEG cohort (P = .003). We found a secular trend in complica-
tions after SDE implantation; 7 occurred in the first 70 cases and
3inthelast 69 cases, suggesting that increasing surgical exper-
tise results in diminishing complications with SDE implanta-
tions. However, the morbidity between the 2 groups was no-
table even in the last 50 cases of each type (3 [6.0%] vs O;
P =.08). The absence of intracerebral bleeding associated with
depth electrode placement”® is attributable to meticulous ste-
reotactic techniques.®?

Implantation of SDEs is also associated with an increased
need for blood products compared with SEEG.®® In our se-
ries, 1 SEEG procedure and 19 SDE procedures involved the use
of blood products during implantation. The SEEG cases also
required significantly lower amounts of narcotics (P < .001),
which reduces downstream sequelae such as vomiting, con-
stipation, somnolence, and respiratory depression.”

Significantly distinct proportions of SEEG and SDE co-
horts were lesional, suggesting that despite not being con-
sciously aware of this, our group evolved to expand the pool
of patients being referred for surgical consideration. Given that
nonlesional cases generally have worse outcomes, this evo-
lution would be expected to bias the seizure outcomes against
SEEG, but this was not borne out in the results. Also, in keep-
ing with other SEEG series, a smaller percentage of SEEG cases
underwent resection than SDE cases. The purpose of intracra-
nial recordings is to determine candidacy for resection proce-
dures. Indeed, if this investigative technique allows for bet-
ter selection of the best candidates for such approaches, it
should result in a lower rate of patients undergoing resection
and a higher rate of good outcomes, thereby limiting the num-
bers of “double losers,” that is, those who lose cognitive func-
tion but continue to have seizures.”® Indeed, the type of pa-
tient evaluated and the proclivity to perform a resection are
intrinsic to each of these modalities and cannot be further dis-
ambiguated. Thus, all these caveats should factor into deriv-
ing interpretations from the comparisons between epilepsy
outcomes in these 2 groups.

Our evaluation of seizure outcomes included the entire
data set and the last 50 cases in each cohort, followed up at 6
and 12 months, in addition to a survivor analysis. These analy-
ses significantly favored SEEG, trended toward SEEG, or, when
looking at all patients undergoing intracranial evaluations,
showed that SEEG is noninferior. Fifty-seven of 75 SEEG case
(76.0%) had good outcomes at 1 year after resection, com-
pared with 59 of 108 SDE cases (54.6%) (P = .003) and 48 of
75 case (64.0%) vs 48 of 108 cases (44.4%) were seizure free.
These outcomes (or lack of inferiority when considering all pa-
tients undergoing implantation) in SEEG vs SDE cohorts are es-
pecially striking when considering that only 43.8% of the SEEG
cases were lesional by MRI, compared with 71.2% of the SDE
cohort. This better outcome despite lack of lesions, a major con-
tributor to good outcomes in prospectively validated
nomograms,’” argues for superiority of SEEG relative to SDE.

One factor that could contribute to the differences in surgi-
cal outcomes is the propensity in most centers to be biased to-
ward resection in cases with equivocal data after SDE monitor-
ing. These patients have already had a craniotomy, and a second
operative procedure is necessary to remove the SDEs. This bias

JAMA Neurology June2019 Volume 76, Number 6

Morbidity and Outcomes of Subdural Grids vs Stereoelectroencephalography in Intractable Epilepsy

may be responsible for some of the poor outcomes in the SDE co-
hort but is an intrinsic and likely immutable aspect of this sur-
gical approach.

In our series, a relatively high percentage of the SEEG co-
hort underwent resection or LITT after SEEG (74.4%; com-
pared with 67% in Serletis et al”®; 45% in Mullin et al”°; 68%
in Gonzalez-Martinez et al®4; and 74% in Cardinale et al*>®) with
outcomes as favorable or better than those reported in recent
SEEG case series.32:4:79:80 This discrepancy could be ac-
counted for by some diversity between patient populations at
different institutions, the greater number of electrodes im-
planted per case at our center, or perhaps by a more judicious
sampling of the putative epileptogenic sites.

To conclude, SEEG methods are better tolerated and are
likely less resource intensive. Although superior outcomes are
seen in those patients with SEEG who undergo resection or
LITT compared with outcomes after SDE, especially marked
in nonlesional cases, distinctions in patient characteristics in
these 2 cohorts should temper conclusions that can be drawn
from these observations. These features have clear import
when there is equipoise in considering the use of a modality
for invasive intracranial monitoring and should predispose us
to consider SEEG preferentially over SDE placement to local-
ize epileptogenic networks in those cases. Last, the mini-
mally invasive nature of SEEG allows for its integration with
laser ablation of mesial temporal structures or heterotopia, 32
that makes the entire surgical approach—localization plus
therapy—minimally invasive.

A question that emerges from this work is, which
patients should undergo SDE and SEEG? Our transition from
SDE to SEEG, which mirrored in the experience at other
North American centers, was incremental, with SEEG ini-
tially used mostly in bilateral cases, deep lesions, or patients
with prior surgery. However, after this initial learning
period, and driven by the availability of robotic technology,
SEEG became the predominant modality for intracranial
recordings to localize epilepsy. This process was driven by
experience, observations of the distinct difference in the
patient experience, and a major cognitive transition on the
part of the neurosurgeon and the team of epilepsy neurolo-
gists in learning to evaluate these data. In centers such as
ours that have reached maturation in their use of SEEG,
SDEs are now used chiefly to evaluate neocortical epilepsy
located around eloquent cortex and in young children,
whose skull is too thin to hold the anchor bolts for SEEG.

Limitations

Certain limitations are inherent to a retrospective analysis such
as this. Although a prospective randomized trial comparing
these 2 approaches would be ideal, whether such a study is
practically feasible, given poor accrual rates in prior prospec-
tive trials in epilepsy surgery, is unclear. Further, given the
vastly different complication rates, whether equipoise or the
possibility of randomizing patients to evaluate these differ-
ences prospectivelyis also unclear. Data sets such as these are
therefore crucial because they provide the best evidence pos-
sible for us to compare intracranial recording techniques used
to evaluate intractable epilepsy.
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Conclusions

The SEEG method is associated with less narcotic use for pain
management and lower rates of complications and is generally
far better tolerated than SDEs. Comparing populations studied
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