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ABSTRACT  
Motivation   
Protein abundance is related to mRNA expression through many different cellular processes. Up to 
now, there have been conflicting results on how correlated the levels of these two quantities are. 
Given that expression and abundance data are significantly more complex and noisy than the 
underlying genomic sequence information, it is reasonable to simplify and average them in terms of 
broad proteomic categories and features (e.g. functions or secondary structures), for understanding 
their relationship.  Furthermore, it will be essential to integrate, within a common framework, the 
results of many varied experiments by different investigators. This will allow one to survey the 
characteristics of highly expressed genes and proteins. 
 
Results To this end, we outline a formalism for merging and scaling many different gene 
expression and protein abundance data sets into a comprehensive reference set, and we develop an 
approach for analyzing this in terms of broad categories, such as composition, function, structure 
and localization.  As the various experiments are not always done using the same set of genes, 
sampling bias becomes a central issue, and our formalism is designed to explicitly show this and 
correct for it.  We apply our formalism to the currently available gene expression and protein 
abundance data for yeast. Overall, we found substantial agreement between gene expression and 
protein abundance, in terms of the enrichment of structural and functional categories. This 
agreement, which was considerably greater than the simple correlation between these quantities for 
individual genes, reflects the way broad categories collect many individual measurements into 
simple, robust averages.   In particular, we found that in comparison to the population of genes in 
the yeast genome, the cellular populations of transcripts and proteins (weighted by their respective 
abundances) were both enriched in: (i) the small amino acids Val, Gly, and Ala; (ii) low molecular 
weight proteins; (iii) helices and sheets relative to coils; (iv) cytoplasmic proteins relative to 
nuclear ones; and (v) proteins involved in "protein synthesis," "cell structure," and "energy 
production".  
 
Supplementary Information http://genecensus.org/expression/translatome 
Contact mark.gerstein@yale.edu 
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INTRODUCTION  
With the recent popularity of high-throughput experimentation, biologists have begun to create a 
large inventory of scientific data (Claverie 1999; Einarson & Golemis 2000; Epstein & Butow 
2000; Shapiro & Harris 2000). Much of this has come from expression experiments, partially 
fueled by the advent and continuous evolution of the microarray and Gene Chip systems. These 
experiments allow for large scale, comprehensive scans of gene expression within the cell (Schena 
et al. 1995; Eisen & Brown 1999; Ferea & Brown 1999; Lipshutz 1999). Expression data sets are 
currently the single richest source of information in genomics, and for yeast, expression 
information now dwarfs that in the sequence alone. However, "theory" has not kept up with 
experimentation in this area, and how to best interpret the vast amount of data generated by these 
experiments is still a very open question (Bassett et al. 1996; Wittes & Friedman 1999; Zhang 
1999; Gerstein & Jansen 2000; Searls 2000; Sherlock 2000). 
 
Genome-wide experimentation has also been used to directly measure the cellular population of 
proteins (protein abundance).  (Anderson & Seilhamer 1997; Futcher et al. 1999; Gygi et al. 1999; 
Ross-Macdonald et al. 1999)  Understanding how protein abundance is related to mRNA transcript 
levels is essential for interpreting gene expression and also, more generally, for understanding the 
interactions, structures and functions in a cellular system (Hatzimanikatis et al. 1999).   Moreover, 
as protein concentration, rather than transcript population, is the more relevant variable with respect 
to enzyme activity, it is this quantity that connects genomics to the physical chemistry and 
dynamics of the cell (Kidd et al 2001). Finally, protein abundance levels may become invaluable 
for diagnostic methods as well as for determining new drug targets (Corthals 2000). High-
throughput two-dimensional gel electrophoresis (2-DE), in conjunction with mass spectrometry, 
has been used to identify proteins that can then be quantified to determine protein abundance 
(Futcher et al. 1999; Gygi et al. 1999; Harry et al. 2000). Other technologies include using random 
integration of reporter transposons in yeast (Ross-Macdonald et al. 1999), and modifying the 
microarray concept for use with proteins (Lopez 2000; MacBeath & Schreiber 2000; Nelson et al. 
2000; Zhu et al. 2000).   
 
Gene expression is indirectly related to cellular protein abundance through the process of 
translation. The cell connects mRNA expression and protein abundance through translational 
control, which is primarily regulated at the initiation of translation (Lindahl & Hinnebusch 1992; 
Jackson & Wickens 1997; Day & Tuite 1998; McCarthy 1998). Much of this control is the result of 
multiple cis-acting elements in the mRNA (Jacobs Anderson & Parker 2000).  There are large non-
coding regions in each mRNA species devoted to regulation of that mRNA as well as its stability 
and degradation properties, including 5` and 3` UTRs, uORFs and uAUGs (Vilela et al. 1998; 
Vilela et al. 1999; Morris & Geballe 2000). 
 
Previously, we surveyed the population of protein features -- such as folds, amino acid 
composition, and functions -- in yeast, and a number of the other recently sequenced genomes 
(Gerstein 1997; Gerstein 1998; Gerstein 1998; Gerstein & Hegyi 1998; Hegyi & Gerstein 1999; 
Das & Gerstein 2000; Lin & Gerstein 2000). Others have also done related work (Frishman & 
Mewes 1997; Tatusov et al. 1997; Jones 1998; Wallin & von Heijne 1998; Frishman & Mewes 
1999; Wolf et al. 1999). Recently, we extended this concept to compare the population of features 
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in the yeast transcriptome to that in the genome (Drawid, et al. 2000, Jansen and Gerstein 2000).  
Here, we present a new methodology to compare the features of the mRNA expression population 
with the protein abundance population. 
 
Precise terminology is essential for this comparison to be readily understandable. Unfortunately, 
one of the terms that immediately come to mind in relation to protein populations, “proteome”, has 
in the past been used inconsistently.  In particular, the term proteome can logically be used to 
describe all the distinctly different proteins in the genome (Qi et al. 1996; Cavalcoli et al. 1997; 
Fey et al. 1997; Garrels et al. 1997; Gaasterland 1999; Jones 1999; Sali 1999; Tekaia et al. 1999; 
Bairoch 2000; Cambillau & Claverie 2000; Doolittle 2000; Pandey & Mann 2000; Rubin et al. 
2000) and, in this context, it is equivalent to what others may refer to as the coding part of the 
genome. However, in papers on 2D electrophoresis, it is often used to describe the sum total of 
proteins in a cell, taking into account the different levels of protein abundance for different proteins 
(Shevchenko et al. 1996; Gygi et al. 2000; Lopez 2000; Washburn & Yates 2000).  In an effort to 
be clear, we propose the term “translatome” for this second usage of proteome.  
 
With this definition, we are able to refer compactly to three different cellular populations. These are 
illustrated in figure 1.  
 

(i) We use the term genome when we refer to the population of open reading frames, where 
each ORF counts once. 

(ii) We use the term transcriptome when we refer to the population of mRNA transcripts. 
This term was originally coined by Velculescu et al. (1997). Note that each ORF may 
give rise to different numbers of transcripts.  Consequently, the transcriptome is 
essentially the same as the genome but with each ORF weighted by its expression level. 

(iii) The next level is the cellular population of proteins. As each protein represents a 
translated transcript, we make an analogy with the term transcriptome and use the term 
translatome as described above to describe this third population. Thus, the translatome 
is a subset of the genome where each ORF is weighted by its associated level of protein 
abundance.  

 
Note that one could also less compactly call the translatome a "weighted proteome". However, 
doing so assumes one of the two aforementioned definitions of proteome. To avoid ambiguity, we 
studiously avoid the use the proteome altogether in the paper.  
 
Differences between the translatome and the transcriptome exist given that transcripts from 
different genes can give rise to different numbers of proteins, due to different rates of translation 
and protein degradation.  Post-transcriptional modifications further affect the translatome. 

Although there are gene expression and protein abundance data sets for multiple organisms, we 
have chosen to work specifically on yeast.  Besides having its whole genome sequenced (Goffeau 
1996), yeast is also a powerful tool in genetics (Carlson 2000) due to, among other things, the two 
hybrid system, a robust and versatile technique used in discerning protein-protein interactions 
(Luban & Goff 1995; Young 1998; Ito et al. 2000). 
 
In our analysis of the transcriptome and translatome, we focus on global protein features rather than 



Greenbaum et al 5

the comparison of individual genes.  Previous analyses have shown that differences between 
mRNA expression and protein abundance level can be quite dramatic for individual genes. This 
may either be due to the noise in the data or to fundamental biological processes. However, our 
analyses show that the variation between transcriptome and translatome is much smaller for global 
properties that are computed by averaging over the properties of many individual genes. 
 

METHODS 

Data Sources Used  
For our analysis we culled many divergent data sets, representing protein abundance and mRNA 
expression experiments and also other sources of genome annotation. These are all summarized in 
Table 1. Briefly, they included two protein abundance sets, measured via 2-dimensional gel 
electrophoresis and mass spectrometry.  We termed these 2-DE #1 (Gygi et al. 1999) and 2-DE #2 
(Futcher et al. 1999).  These sets, while admittedly small in comparison to the size of expression 
data sets, represent the largest amount of information on protein abundance publicly available at the 
present. We also apply our methodology, with limited success, to the semi-quantitative Transposon 
insertion data set that measures the LacZ expression of fusion proteins (Ross-Macdonald et al. 
1999).  Although this set contains many more genes than either of the gel electrophoresis sets, and 
thus is an appealing source of protein abundance information, the more qualitative nature of the 
data makes comparisons with other data sets difficult. 
 
Our mRNA expression data came from multiple laboratories that used either Gene Chip or SAGE 
technology.  The Gene Chip sets included the Young Expression Set (Holstege et al. 1998), the 
Church Expression Set (Roth et al. 1998) and the Samson Expression Set (Jelinsky & Samson 
1999).  We used data representing the vegetative state of yeast from all of the above experiments. 
We also compiled two reference sets to be used in our comparisons, one for protein abundance and 
another for mRNA expression (summarized below).  Finally, we used many different types of 
genome annotation in our analysis, which are summarized in Table1.  In particular, the Munich 
Information Center for Protein Sequences (MIPS), a site containing a large number of databases 
(Mewes et al. 2000), proved to be an invaluable source of data specifically in regard to functional 
categories. 

Biases in the Data 
There is a caveat to the usage of data from high-throughput experimentation (i.e. microarrays and 
two-dimensional gel electrophoresis).  With all high throughput expression studies there always 
exists the difficulty of maintaining consistent biological and processing conditions across the assay.  
Moreover, the databases that annotate the specific genes may not always be accurate (Ishii et al 
2000).  Gene chip experiments suffer with regard to cross hybridization and the saturation of probes 
for the highly expressed genes.  SAGE data is not always reliable for assessing ORFs with low 
expression levels.  With regard to 2D gels, although the technology has undergone many 
improvements since its introduction over a quarter century ago (Klose 1975; O'Farrell 1975), there 
remain many aspects of the procedure that introduce biases into the data.  These include the 
inability to resolve membrane proteins (approximately 30% of the genome) and basic proteins 
(Gerstein 1998; Krogh et al 2001).  Moreover, there exist some biases in the data that, as in any 
compilation, reflect the tendencies of the investigator.  These include the lack of low abundance 
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proteins (Fey & Larsen 2001; Gygi et al  2000; Harry et al  (2000)) and the differences between 
labs in sample preparation. In addition, the procedures for identification (i.e. MALDI-TOF) and 
quantification (i.e. ICAT) (Gygi et al. 1999) of the protein spots are much more recent and 
themselves subject to problems and uncertainties (Haynes & Yates 2000). 
 
We are trying to correct for these biases in our analysis in two ways.  First, we create reference 
mRNA expression and protein abundance datasets as a starting point for our analysis.  We achieve 
this by scaling and averaging different mRNA and protein datasets into a combined reference, in an 
attempt to obtain a better estimate of the normal expression state of a yeast cell (we explain this 
procedure in more detail in the following section).  This results in a correction of the biases that 
might be found in individual datasets.  Second, in analyzing the reference datasets, we use a 
formalism and a graphical representation that shows the dependency of the results on the subset of 
genes for which experimental data is available, thus making sampling or selection biases explicit. 
 

Data Set Scaling 

A Reference set for mRNA Expression 
With many different mRNA expression data sets available, it is worthwhile to integrate them into a 
single unified reference set, with the intention of reducing the noise and errors contained in the 
individual data sets and to obtain a unified estimate of the normal expression state in a cell.  
 
We adopt an iterative scaling and merging formalism, which we summarize below. We present a 
more detailed review of the methods at the following web site: genecensus.org/expression/translatome.  
 
We start with the values of one Gene Chip data set Ui where i is used throughout as a subscript to 
denote gene number. We then transform the values of the next Gene Chip data set Xi to Yi with the 
following non-linear regression: 
 

( )∑ −
i

ii UY 2min  with B
ii AXY =  

 
where A and B are the parameters of the regression. Note that two Gene Chip sets may not be 
defined for the same set of genes, so we have to perform the fit only over the genes common to 
both sets.  The motivation for scaling is that the dynamic range of observed expression levels varies 
somewhat between different data sets, although cell types and growth conditions are very similar.  
Reasons for disparity may include different calibration procedures for relating fluorescence 
intensity to a cellular concentration (measured in copies of transcripts per cell) or different 
protocols for harvesting and reverse-transcribing the cellular mRNA.  
 
We then merge and average the data to create a new reference set V as follows: 
 

 If Ui and Yi are both defined for gene i and α<
+
−
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Then ( )iii
UYV +=

2
1  

 Else if only Yi exists, Vi = Yi 
Else Vi = Ui 

 
As presented above, where only one data set has a value for the corresponding ORF, we 
incorporated that value and did not exclude it. When both data sets have values for an ORF, we 
averaged the values if they were within 15% of each other; otherwise, we just stayed with the 
original chip data set Ui. We used α = 15% in order to prevent outliers from skewing the result. 
This 15% value is a reasonable threshold for excluding outliers though other values (e.g. 10% or 
20%) would give similar results (data not shown). Other data sets are subsequently included in the 
same procedure, continuing the iteration from the new expression values Vi.  The initial iteration 
starts with the Young Expression Set as Ui since we have the highest confidence in its accuracy. 
 
The SAGE data was not included in the above procedure since it is of a fundamentally different 
nature. An advantage of the SAGE technology over Gene Chips is that there is no possible signal 
saturation for high expression levels, as is possible for chips (Futcher et al. 1999).  Conversely, 
SAGE values are less reliable for lowly expressed genes since there is a chance that one might not 
sequence a SAGE tag corresponding to such a gene altogether.  Therefore, if after the last iteration, 
the average Gene Chip expression level Vi was both above a certain threshold β  and below the 
SAGE expression level Si for the same gene, it was replaced with the SAGE value; otherwise the 
average Gene Chip value was kept. This gave us our final expression set wmRNA. Our treatment of 
the SAGE data is modeled after that in Futcher et al. (1999), and like them, we used β = 16. 
This incorporation of the SAGE data into the reference data set ensures that the highly expressed 
outliers are as accurate as possible. 
  
Rather than plain arithmetic averaging, this overall scaling procedure with the α cutoff avoids 
“artificial averages” that combine very different values for a particular gene. Some expression 
values might be statistical outliers. In addition, it may be possible that the expression levels of a 
variety of genes can only be within mutually exclusive ranges or modes, such as when two 
alternative pathways are switched on or off. Simply averaging these would give values that are less 
representative of the particular mode values. This situation is analogous to that in averaging 
together an ensemble of protein structures, say from an NMR structure determination. Each 
structure in the ensemble could be stereochemically correct, with all side-chain atoms in predefined 
rotamer configurations. However, an average of all structures in the ensemble could yield one that 
is stereochemically incorrect if this involved averaging over particular side-chains in different 
rotameric states. 
 
With regard to our regression analysis, we have investigated both non-linear and linear fits but 
found a non-linear procedure to be more advantageous.  The non-linear relationship between 
different expression datasets perhaps reflects saturation in one or more of the gene chips -- not an 
uncommon phenomenon.  This non-linearity is immediately evident on scatter plots of two datasets 
against one another (see website).  Accordingly, the non-linear fit produces a smaller residual than 
the linear fit: 98297 (non-linear) versus 122182 (linear) for the scaling of the Church dataset and 
59828 (non-linear) versus 67462 (linear) for the Samson dataset. 
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A Reference Set for Protein abundance 
We followed a similar procedure to calculate a reference protein abundance set from the two gel 
electrophoresis data sets.  We first scaled the two data sets against the mRNA expression reference 
data set, getting regression parameters Cj and Dj: 
 

( )∑ −
i

D
imRNAjji

jwCP
2

,,min  

 
where the subscript j indicates the data set 2-DE #1 or 2-DE #2 respectively; Pi,j is the protein 
abundance value in data set j, and wmRNA,i the corresponding reference expression value, and Cj and 
Dj are the parameters of the non-linear regression. 
 
Using these parameters, we transformed the values of set 2-DE #2 onto 2-DE #1.  Then we 
combined both sets into the reference protein set wProt by averaging them, if both values existed. 
Otherwise, by using the existing value, viz: 
 

21

2

2,
12,

DD
i

i C
P

CQ 







=  

 
wProt,i = (Pi,1 + Qi,2 )/2 if both Pi,1 and Qi,2 exist. 
Else if only Pi,1 exists, wProt,i = Pi,1 
Else if Qi,2 exists, wProt,i = Qi,2. 

 

Comparison of mRNA expression and protein abundance 
Figure 2 shows a comparison of our two reference data sets for transcripts and proteins on a log-log 
graph.  The correlation coefficient is 0.67.  A previous study (Futcher et al. 1999), in which the 
data set 2-DE #2 was investigated, reported a higher correlation coefficient of 0.76.  The disparity 
may be due to the fact that we are looking at a larger number of points.  Inspection of Figure 2 also 
shows that the correlation for the data values, which were derived from averaging values from both 
2-DE sets, is larger.  It should be emphasized that there are many limitations in this analysis as both 
2-DE sets represent relatively homogenous sets of proteins and there are only a small number of 
proteins in each set. 
 
Figure 2b shows the outliers from Figure 2a from both above and below the dashed line.  These 
outliers are representative of those genes for which their mRNA expression differs significantly 
from their protein abundance (i.e. either there is little mRNA expression yet significant protein 
abundance or significant mRNA expression yet minimal protein abundance).   For each, we present 
a description of its function.  With one exception all outliers are associated with the MIPS category: 
cellular organization (MIPS category 30).    



Greenbaum et al 9

 

Enrichment of Features 

Formalism 
Figure 2 focuses on individual proteins. In the next part of our analysis, we want to group a number 
of proteins together into various categories based on common features and characterize those 
features that are enriched in one population relative to another, i.e. the translatome population of 
proteins as measured by 2D gels relative to the transcriptome population of transcripts or the 
genome population of genes.  To this end, we set up a formalism that could be applied universally 
to all the attributes that we were interested in. Due to the limitations of the experiments, the 
translatome, transcriptome, and genome populations are defined on different sets of genes, and 
sometimes we want to remove this “selection bias” by forcing them to be compared on exactly the 
same set of genes.  This is a key aspect of our formalism as presented in figure 1. 

We call an entity like [w, G] a "population", where G is a set describing a particular 
selection of genes from the genome and w is vector of weights associated with each element of this 
population. In particular, we focus on three main populations here: 

(i)  [1,GGen] is the population of genes in the genome, all 6280 genes weighted once (w = 1).  
(ii)  [wmRNA, GmRNA] is the observed population of the transcripts in the transcriptome, i.e. 

the 6249 genes in the reference expression set weighted by their reference expression 
value. 

(iii)[wProt, GProt] is the observed cellular population of the proteins in the translatome, i.e. 
the 181 genes in the reference abundance set weighted by their reference abundance 
value. 

(The set of genes in the genome GGen is approximately equal to the genes in set GmRNA, such that we 
can use both symbols interchangeably.) We can also use this notation to describe specific 
experiments -- e.g. [wlacZ, GlacZ] describes the gene set and weights relating to the Transposon 
Abundance set.  

 
Furthermore, we define Fj as the value of a feature F in ORF j.  For example, F could be the 

composition of leucine (a real number) or a binary value (0 or 1) indicating whether an ORF 
contains a trans-membrane segment. Given these definitions, the weighted average of feature F in 
population [w, G] is: 

 

∑

∑

∈

∈≡

Gj
j

Gj
jj

w

Fw
GF ]),[,( wµ  

The weighted averages of two populations [w, G] and [v, S] can be compared by simply looking at 
their relative difference ∆: 
 

]),[,(
]),[,(]),[,(]),[],,[,(

GF
GFSFGSF

w
wvwv

µ
µµ −=∆  

 
where v and w are weights for the sets of ORFs S and G respectively.  We call ∆ the "enrichment" 
of feature F because it indicates whether F is enriched (if ∆ is positive) or depleted (if ∆ is 



Greenbaum et al 10

negative) in population [v, S] relative to [w, G].  
 
Usually, the gene set G is defined by the particular experiment, for which the weight w was 
measured.  However, it is also possible to combine the gene set associated with one experiment 
with expression levels from another set. One may want to do this to compute the enrichment only 
on the genes common to both populations, for which there are defined values for both w and v, viz: 
, ∆(F, [v, S ∩ G],[w, S ∩ G]). In practice, this is most relevant for comparing GProt and GmRNA. 
Since GProt is completely a subset of GmRNA, we need not explicitly deal with intersections if we 
calculate all statistics directly over GProt. 
 
One can adjust the weight vectors to take into account different types of averaging. For instance, 
when computing the amino acid composition (F = aa) from the amino acid compositions of 
individual ORFs Fj = aaj )( Gj ∈∀ , we weight by ORF length. In the case of expression weights, 
we have:   
 
wj = Nj wmRNA,j  Gj ∈∀  
 
where Nj is a measure of the length of ORF j (such as the number of amino acids.) 
 
On the other hand, when computing the average molecular weight per amino acid, we need to 
normalize by the number of amino acids per ORF, which is equivalent to choosing the following 
weights:   
 

j

jmRNA
j N

w
w ,=   Gj ∈∀  

 

Application of Methodology to Quantitative Abundance Sets 
Having defined our formalism, we applied it to a diverse set of protein features in yeast. 

Amino Acid Enrichment 
As shown in Figure 3a, we used our methodology to measure the enrichment of individual amino 
acids in both the translatome and the transcriptome relative to the genome.  The horizontal axis lists 
the amino acids while the vertical axis shows their percent enrichment. We list enrichments for 
both the reference protein abundance and mRNA expression sets in relation to the genome 
population.  We found that three amino acids -- Valine, Glycine and Alanine -- were consistently 
enriched in both transcriptome and translatome populations.    
 
In Figure 3a we compare different gene sets. In Figure 3b we focus mainly on the variation in 
enrichments when all the comparisons are restricted to the set of 181 genes (GProt ∩ GmRNA = GProt) 
common to all data sets. Thus, the differences between the populations now only reflect the effects 
of differential transcription of certain genes and differential translation of certain transcripts. We 
find here an enrichment specifically of Cysteine in the translatome in relation to the transcriptome. 
This enrichment may be the result of the stability associated with sulfur bridges. 
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To measure the statistical significance of the results on amino acid enrichment, we have performed 
a control analysis on a randomized dataset (Figure 3D). We randomly permutated the expression 
values of the ORFs 1000 times and then recomputed the enrichments.  This allowed us to compute 
distributions for the amino acid enrichments and, from integrating these, one-sided p-values 
indicating the significance of the observed enrichments.  

Biomass Enrichment 
A corollary to amino acid enrichments is the determination of the average biomass of the 
transcriptome and translatome populations.  We show this in Figure 3C.  We found that the average 
molecular weight of a protein in both populations was, on average, lower than in the genome 
population.  These preliminary observations suggest a cell preference to use less energetically 
expensive proteins for those that are highly transcribed or translated. However, we also found that 
the average molecular weight per amino acid differed much less between the transcriptome and the 
translatome on the one hand, and the genome on the other hand (though it was still slightly less). 
This finding indicates that lower molecular weights in the translatome and transcriptome 
populations relative to the genome population are predominantly due to greater expression of 
shorter proteins rather than the incorporation of smaller amino acids. 
 

Secondary Structure Composition 
We also used our methodology to study the enrichment of secondary-structural features. Secondary 
structural annotation was derived from structure prediction applied uniformly to all the ORFs in the 
yeast genome as described in Table 1. As shown in Figure 4A, all three populations – genome, 
transcriptome, and translatome – had a fairly similar composition of secondary structures -- sheets, 
helices, and coils. The differences between populations were marginal and based only on the small 
subset of genes.  They do, though, point to a possible trend of depletion of random coils relative to 
alpha helices and beta sheets in the transcriptome and translatome. 
 
We also found that transmembrane proteins were significantly depleted in the transcriptome (see 
website).  To identify transmembrane (TM) proteins, we used the GES hydrophobicity scale as 
described previously (see caption to Table 1 (Gerstein 1998)).  These results are consistent with our 
previous analyses (Jansen & Gerstein 2000).  This analysis could not be extended to the 
translatome because the 181 genes in the protein abundance data set (GProt) do not contain any 
membrane proteins, which are difficult to detect in gel electrophoresis (Molloy 2000). 
 

Subcellular Localization 
A generalization of the transmembrane protein analysis is subcellular localization.  We looked into 
the enrichment of proteins associated with the various subcellular compartments. This is shown in 
Figure 4C. For clarity, we divided the cell into five distinct subcellular compartments, as described 
in Table 1. We found that, in comparison to the genome, both the transcriptome and translatome are 
enriched in cytoplasmic proteins. This is true whether we make our comparisons in relation to the 
relatively large reference mRNA expression set or the smaller reference protein abundance set. As 
figure 4C shows, the 2D gel experiments are clearly biased towards proteins from the cytoplasm.  
However, in the biased subset Gprot transcription and translation lead to an even higher fraction of 
cytoplasmic proteins in the translatome. 
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Functional Categories 
Finally, we compared the enrichment of various functional categories in both the translatome and 
the transcriptome (see Figure 4B).  This gives us a broad yet informative view of the cell as a 
whole. As described in Table 1, we used the top-level of the MIPS scheme for the functional 
category definitions (Mewes et al. 2000).  We found broad differences between the various 
populations, with some of the functional categories showing strikingly high enrichments.  In 
particular, we found enrichments of the “cellular organization,” “protein synthesis,” and “energy 
production” categories. 
 

Application to Semi-quantitative Protein Abundance Data Sets 
We also tried to extend our methodology to cope with the semi-quantitative Transposon set. The 
qualitative nature of the set makes it impossible to compute statistical relationships between mRNA 
and protein populations as we did for both the 2D gel sets. We briefly summarize our approach. 
 
Many ORFs in the Transposon dataset had multiple, sometimes inconsistent, measurements ranging 
from one (background) to four (strong) for various different transposon insertions.  We took only 
those 450 ORFs that consistently yielded either background or strong.  We then used this set in a 
binary fashion, interpreting an ORF as either on or off. We show the enrichments of amino acids 
computed from this filtered Transposon Abundance Set in Figure 3A. Overall, the enrichments 
from this set seemed to be attenuated in comparison to either the mRNA expression or protein 
abundance data. 
 

Discussion and Conclusion 
We developed a methodology for integrating many different types of gene expression and protein 
abundance into a common framework and applied this to a preliminary analysis of yeast. In 
particular, we developed a procedure for scaling and merging different mRNA and protein sets 
together and then computing the enrichment of various proteomic features in the population of 
transcripts and proteins implied by these scaled sets.  We showed that by analyzing broad 
categories instead of individual noisy data points, we could find logical trends in the underlying 
data.   
 
The comparison of the translatome with the transcriptome and the genome helps to better 
understand cellular processes.  For this purpose, we compiled two reference sets, the mRNA 
reference expression set integrated from various Gene Chip and SAGE experiments, and the protein 
reference abundance set, collected from published 2D gel electrophoresis experiments.  Our 
reference sets proved useful for our analysis of the composition and enrichments of protein features 
in the various stages of gene expression.  We found many similar trends for general protein 
categories between these two sets. 
 
To compare the translatome and the transcriptome, we devised a formalism to measure enrichments 
of data sets.  With this formalism we measured the enrichments of amino acids, protein function 
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and secondary structures in the vegetative yeast cell.  Other comparisons included looking at 
average biomasses, looking into subcellular localizations and a direct comparison of mRNA 
expression vs. protein abundance. 

Overall Transcriptome and Translatome Similarity: Outliers Against Trend  
 
The overall similarity we find between transcriptome and translatome contrasts somewhat with the 
weak correlation between mRNA expression and gene abundance as shown in figure 2 and reported 
previously (Futcher et al. 1999; Gygi et al. 1999). This reflects the way our system of overall 
categories collects many proteins into robust averages. It shows that variation between proteins is 
not systematic with respect to the categories. For example, individual transcription factors might 
have higher or lower protein abundance than one expects from their mRNA expression, but the 
category “transcription factors” as a whole has a similar representation in the transcriptome and 
translatome. 
 
We used the reference data sets to compare mRNA expression and protein abundance for the 181 
genes shared between the two sets -- the largest such comparison.  While we found an overall 
correlation between the two data sets, indicating that mRNA expression may be closely related to 
protein abundance, we found some genes that bucked the trend.  Possible explanations for the 
aberrant behavior of some of these outliers are presented. Those outliers that have higher levels of 
protein abundance than expected from their mRNA expression are dominated by alcohol 
dehydrogenases and Glyceraldehyde-3-phosphate (G3P) dehydrogenases.  It is known that G3P 
dehyderogenase forms a bienzyme complex with alcohol dehydrogenase, thus, the similar 
abundance pattern of these two enzymes can be rationalized (Batke et al. 1992). Alcohol 
dehydrogenase is also a stress induced protein in many organisms (Matton et al. 1990; An et al. 
1991; Millar et al. 1994), induced into action when the cell undergoes trauma, thus perhaps 
translated to a higher degree prophylactically (although the expression pattern of another stress-
induced protein (HSP70) shows that this is not always the case). Translation-related proteins are 
more prominent in the outliers, with lower protein abundance than expected from mRNA 
expression. 
 
While it is known that multiple features of an individual mRNA influence its expression and 
regulation, it is presently not clearly understood how.  There are many non-coding regions in each 
mRNA species that are responsible for this regulation.  These include upstream AUG codons 
(uAUGs), both 3’ and 5’ untranslated regions, upstream open reading frames (uORFs) and the 
overall secondary structure of mRNA.  Presently it is unclear how these act to exert their control 
(Morris & Geballe 2000).   
 
One might conceive of using "outliers" with significantly different transcriptional and translational 
behavior to find consensus regulatory sequences.  One possible method would involve using 
predicted mRNA structures (Jaeger et al. 1990; Zuker 2000) to find consensus structural elements 
in these outliers.  In particular, it might be worthwhile to investigate the secondary mRNA 
structure, to which the yeast translational machinery is known to be sensitive (McCarthy 1998). 
 
The regulation of mRNA stability is certainly an additional factor causing strong disparities 
between gene expression and protein abundance.  Presently, there are many structures within 
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mRNA that are thought to influence stability including, among others, stem loops, UTRs premature 
stops and uORFS (Klaff et al. 1996). 
 

Overall Transcriptome and Translatome Similarity: Consistent Enrichments  
 
We found the enrichments relative to the genome to be consistent between the translatome and the 
transcriptome.  In particular we found that the amino acids Valine, Glycine and Alanine -- all 
relatively small amino acids -- are significantly enriched in both populations in comparison to the 
genome population.  These results coincide with the previous conclusion that those amino acids are 
also the most highly abundant amino acids in soluble proteins (Nauchitel & Somorjai 1994).   
Conversely we found that Cysteine, Serine, Asparagine and Arginine were markedly depleted.  Our 
transcriptome enrichments using the reference set were similar to results attained previously using 
individual mRNA expression data sets (Jansen & Gerstein 2000). In addition, we found that the 
translatome and the transcriptome both have lower molecular weight proteins in relation to the 
genome.   
 
Furthermore, we found, in comparison to the genome population, that the translatome and 
transcriptome had a depletion of random coils, a relatively less structurally complex and, as such, 
less stable protein structure, to alpha helices and beta sheets. These results are from a small and 
potentially biased subset of proteins and so, in of themselves, may not be informative.  Yet, it is 
possible that they point to a logical trend that may result from the cellular preference for stability 
and structural rigidity through more regular secondary structures (helices and sheets). 
 
In relation to functional categories, we found three trends that were particularly notable: (i) The 
“cellular organization,” “protein synthesis,” and “energy production” categories were increasingly 
enriched as we moved from genome to transcriptome to translatome. This finding was true for 
either of the gene sets and reflects the great abundance of structural proteins, such as actin, and, in 
the case of the transcriptome, ribosomal proteins. (In the protein abundance set GProt ribosomal 
proteins are rather underrepresented.) (ii) Proteins with “unclassified function” are significantly 
depleted in the transcriptome and the translatome in relation to the genome, perhaps reflecting a 
bias against studying them. (iii) Proteins in the “transcription” and “cell growth, cell division, and 
DNA synthesis” categories were consistently depleted in the transcriptome and translatome 
population relative to the genome. This perhaps reflects the fact that many of these proteins, such as 
transcription factors, act as “switches.” While many copies are needed in the genome to give 
different specificities, only small quantities of the protein are necessary to activate or deactivate a 
process. These results concur with previous calculations (Jansen & Gerstein 2000) wherein we 
found the transcriptome is enriched specifically with proteins involved in protein synthesis and 
energy. 
 
As opposed to the genome population, where there is a wide distribution of products in all cellular 
compartments, mainly cytoplasmic proteins dominate the translatome and transcriptome. For 
instance, while the genome data set has the largest allocation of genes going to the nucleus, the 
bulk of the translatome and transcriptome populations are localized to the cytoplasm.  Part of this 
effect may also be due to the gel-electrophoresis experimental process that favors the higher 
expressing cytoplasmic proteins, although a similar effect can clearly be observed in the 
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transcriptome data set, which does not have this experimental bias.   This may be related to the 
enrichment of functional categories that are connected to cytoplasmic proteins, such as "protein 
synthesis." 
 

Limitations Given the Small Size of the Protein Abundance Data 
Even with the extended coverage made possible by merging many datasets together into our two 
reference sets, we still found that the largest complication in our analysis was the limited amount of 
data. This was, obviously, most applicable to the protein abundance measurements. In addition to 
giving us fewer data points for our statistics, the small number of protein abundance measurements 
potentially biased our statistical results towards certain protein families. The 181 proteins in Gprot 
are certainly not a random selection from the possible 6280 in yeast. They are, rather, skewed 
towards well-studied proteins that are highly expressed.  Our methodology attempts to control for 
this gene-selection bias through our enrichment formalism, which allows one to rather precisely 
gauge various aspects of the bias. 
 
Our results will certainly be more complete and definitive when larger proteomics datasets become 
available, which we anticipate to become available soon (Smith 2000). However, we believe that 
the essential formalism and approach that we develop will remain quite relevant for all future 
datasets.  
 
Although the translatome data we used in our study is small in comparison to the information on 
the genome and transcriptome, many protein features in both the translatome and the transcriptome 
are dominated by the very highly expressed proteins (to which the 2-DE experiments are biased).  
Under this circumstance, it is often sufficient to look at this smaller number of dominating proteins 
to approximately characterize the whole population. This is similar in spirit to the development of 
the Codon Adaptation Index for Yeast (Sharp & Li 1987).  While based on only 24 highly 
expressed proteins, it has proven to be robust in predicting expression levels for the entire genome. 
In contrast, the experimental bias in the selection of proteins with particular biophysical properties 
should be of more concern. 
 

Future Directions   
Besides the recapitulation of our computations with the release of new data, we also hope to expand 
this analysis to other organisms.  While presently we have limited our study to yeast gene 
expression, there are other potential model organisms for which there are expression experiments.  
Moreover, we have also limited ourselves to Gene Chip experiments, but it may be worthwhile to 
analyze cDNA microarray data sets  (DeRisi et al. 1997; Cho et al. 1998; Winzeler et al. 1999).  
We can use these sizeable microarray data sets to study changes in protein features over time.   

Supplementary Material 
Supplementary material is available at http://genecensus.org/expression/translatome 
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Figure and Table Captions 
 
Table 1,  Data Sets 
This table provides an overview of the data sets used in our analysis. The table is divided into three 
sections.  The first section at the top lists different mRNA expression sets.  The second section in 
the middle shows the protein abundance data sets used.  The third section at the bottom contains 
different annotations of protein features.  The column "Data set" lists a shorthand reference to each 
data set used throughout this paper.  The next columns contain a brief description of the data sets, 
the number of ORFs contained in each of them, the literature reference and the URL.  In contrast to 
the other data we investigated, the reference expression and abundance data sets have been 
calculated for the purpose of our analysis (see text). 
 
Some further information on the genome annotations: 
 
Localization: Protein localization information from YPD, MIPS and SwissProt  were merged, 
filtered and standardized (Bairoch & Apweiler 2000; Costanzo et al. 2000; Mewes et al. 2000) into 
five simplified compartments -- cytoplasm, nucleus, membrane, extracellular (including proteins in 
ER and golgi), and mitochondrial -- according to the protocol in Drawid et al. (2000).  This yielded 
a standardized annotation of protein subcellular localization for 2133 out of 6280 ORFs. 
 
Transmembrane segments: In 2710 out of 6280 yeast ORFs transmembrane segments are predicted 
to occur, ranging from low to high confidence (732 ORFs). The transmembrane prediction was 
performed as follows: The values from the scale for amino acids in a window of size 20 (the typical 
size of a transmembrane helix) were averaged and then compared against a cutoff of –1 kcal/mole. 
A value under this cutoff was taken to indicate the existence of a transmembrane helix. Initial 
hydrophobic stretches corresponding to signal sequences for membrane insertion were excluded. 
(These have the pattern of a charged residue within the first seven, followed by a stretch of 14 with 
an average hydrophobicity under the cutoff.) These parameters have been used, tested, and refined 
on surveys of membrane protein in genomes. "Sure" membrane proteins had at least two TM-
segments with an average hydrophobicity less than –2 kcal/mole. (Rost et al. 1995; Gerstein et al. 
2000; Santoni et al. 2000; Senes et al. 2000). 
 
Functions. MIPS functional categories have been assigned to 3519 out of 6194 ORFs. (The 
remainder are assigned to category '98' or '99', which corresponds to unclassified function.) 
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Figure 1,  Schematic overview of the analysis 
On the left side we outline the terms we use to describe the process of gene expression.  The coding 
section of the genome is transcribed into a population of mRNA transcripts called the 
"transcriptome".  The transcripts in turn are translated to a population of proteins; we use the term 
"translatome" for this protein population rather than the alternative "proteome" because the latter 
term may be confounded with the protein complement of the genome (which is not necessarily 
associated with a quantitative abundance level). 
 
The matrix in the middle schematically shows an analysis of the three stages of expression.  In 
general, we define a protein "population" as a set of genes associated with a corresponding number 
of expression or abundance levels ("weights").  In the matrix each row represents a weight and each 
column a gene set.  In particular, we differentiate between the mRNA reference expression set 
(GmRNA = GGen), which essentially covers the complete genome, and the reference protein 
abundance set (GProt) which contains the proteins in data sets 2-DE #1 and 2-DE #2 (see table 1) 
because the protein abundance set is a significantly smaller subset of the genome.  By definition, 
this subset contains only proteins that can be identified by 2-D gel electrophoresis and is therefore 
biased in this sense. The enrichment figures throughout this paper, through a comparison of the 
right and left sides of this figure, show the results of the experimental biases of 2D gels on the data 
set. 
 
Each pie chart represents a composition of a particular protein feature F (for instance, an amino 
acid composition) in a population (represented by the symbol µ).  We can further look at the 
"enrichment" of this feature in one population relative to another (represented by the symbol ∆, see 
section "Methods" for an explanation of the formalism). 
 
For simplification, we neglect the effects of post-transcriptional and post-translational 
modifications that might alter the features of proteins (they affect the expression levels but this is 
largely accounted for by the measurements).  In this study we analyze protein features as they are 
represented in the genome. 
 

Figure 2,  mRNA expression levels vs. protein abundance levels 
 
Part A of this figure shows the reference protein abundance levels plotted against the mRNA 
reference expression levels on a log-log scale; this plot is similar to the one reported by Futcher et 
al. (1999) earlier.  The trend line is described by the equation y = 5.20x0.61 where y represents the 
protein abundance level (in units of 103 copies/cell) and x the mRNA expression level (in units of 
copies/cell).  The dashed lines indicate a distance of 1.85 standard deviations (in the log scale) from 
the trend line.  The outliers beyond the dashed lines are listed in Part B. For each of these outlier 
ORFs we show a description of their function and their respective MIPS categories (the numbers 
are defined in Figure 4C).  With one exception, all outliers are associated with cellular organization 
(MIPS category 30).  Those outliers that have a high level of protein abundance relative to the 
expected amount of mRNA expression are dominated by the alcohol and G3P dehydrogenases.  
Translation-related proteins are prominent in the group of those proteins with low protein 
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abundance in relation to mRNA expression. 
 

Figure 3, Amino Acid and Biomass Enrichment 
 
Part A shows the amino acid enrichments between different populations as indicated by the legend 
to the right of the plot (the legend is ordered in the same way as the schematic illustration in Figure 
1).  The bars indicate the enrichment of the transcriptome relative to the genome, whereas the 
circles indicate the enrichment of the translatome relative to the genome.  In addition, we also show 
the enrichment for protein abundance from the Transposon Abundance Set, represented by the 
circles with the line through them.  It can be seen that the enrichments for the transcriptome and the 
translatome follow a similar trend despite their differences.  In general, the amino acid enrichments 
seem to be more strongly emphasized in the translatome.  In contrast, the enrichments for the 
Transposon Abundance Set seem to be very small.  This may be due to the fact that the ORFs fused 
with lacZ produce different gene products than the original genes.  In both the translatome and the 
transcriptome the amino acids Valine, Glycine and Alanine are strongly enriched.  On the other 
end, the amino acids Asparagine, Cysteine and Serine are strongly depleted. 
 
Part B shows a different view of amino acid enrichment from that contained in part A, now 
focusing on changes, and thus restricting the comparison to the genes common to all the datasets.  
The graph is ordered according to the enrichment from transcriptome to translatome (black 
squares).  We focus here only on the changes for the abundance gene set (GProt) to exclude the 
effects that arise from looking at different subsets.  In this view the enrichments from genome to 
transcriptome (white squares) and from genome to translatome (white diamonds) look more similar 
than do the analogous sets in Part A.  To make comparison with Part A easier we again show the 
enrichment from genome to the transcriptome for the complete gene set (GGen, shown in bars). 
 
Part C shows biomass enrichment. The left panel depicts the average molecular weight per ORF 
(in units of kDa) and the right panel, the average molecular weight per amino acid (in units of 
Daltons) in each of the three stages of gene expression.  The numbers inside the circles indicate the 
average molecular weights.  The values next to the arrows indicate the enrichments in biomass 
between different populations.  Both the circle diameters and the arrow widths are functions of the 
corresponding values (the hollow arrow indicates a positive value).  It is very clear that the average 
molecular weight per ORF is much lower in the translatome (by 20% or 15%) and transcriptome 
(by 29%) than in the genome.  This relative depletion of biomass mainly takes place as a result of 
transcription; the effect of translation is less clear, depending on the populations compared.  On the 
other hand, the depletion in the average molecular weight per amino acid (-3.3 % from genome to 
translatome) is an order of magnitude smaller than in the average weight per ORF.  This shows that 
the yeast cell favors the expression of shorter ORFs over longer ones, and agrees with our earlier 
observation that there is a negative correlation between maximum ORF length and mRNA 
expression (Jansen & Gerstein 2000); it seems that this effect mainly takes place during 
transcription rather than translation. 
 
Part D This plot shows that the amino acid enrichments are statistically significant.  We have 
assessed significance by randomly permuting the expression levels among the genes and then 
recomputing the amino acid enrichments.  This procedure can be repeated and used to generate 



Greenbaum et al 19

distributions of random enrichments that can then be compared against the observed enrichments.  
In the plot the gray bars represent the observed enrichments already shown in figure 3a.  On top of 
the gray bars we show standard boxplots of enrichment distributions based on 1000 random 
permutations.  (The middle line represents the distribution median.  The upper and lower sides of 
the box coincide with the upper and lower quartiles.  Outliers are shown as dots and defined as data 
points that are outside the range of the whiskers, the length of which is 1.5 the 
interquartile distance.)  Based on the random distributions, we can compute one-sided P-values for 
the observed enrichments.  Amino acids for which the P-values are less than 10-3 are shown in bold 
font. 
 

Figure 4, Breakdown of the Transcriptome and Translatome in terms of Broad 
Categories relating to Structure, Localization, and Function 

 
All of the subfigures are analogous to the schematic illustration in figure 1. 
 
Part A represents the composition of secondary structure in the different populations. In general, 
the secondary structure compositions appear to be relatively stable across the different populations.  
The most notable change from genome to translatome is perhaps the depletion of coils -- that is, 
relatively unordered structures compared to the more structured helices and sheets -- by about 4%. 
 
Part B represents the distribution of subcellular localizations associated with proteins in the 
various populations. We used standardized localizations developed earlier (Drawid & Gerstein 
2000), which, in turn, were derived from the MIPS, YPD, and Swiss-Prot databases (Bairoch & 
Apweiler 2000; Costanzo et al. 2000; Mewes et al. 2000). The subcellular localization has been 
experimentally determined for less than half of the yeast proteins, so our analysis applies only to 
this subset.  The most notable difference between genome, transcriptome and translatome is the 
strong enrichment of cytoplasmic proteins.  This is in agreement with our previous observations 
(Drawid et al. 2000).  This also explains to some degree the observations for the functional classes 
in part C. For example, the functional group "energy" is mostly dominated by the highly expressed 
glycolytic proteins found in the cytoplasm.  The depletion of the functional group "transcription" 
makes sense in the light of the strong depletion for nuclear proteins.  We have argued before 
(Drawid et al. 2000) that the number of proteins in a particular subcellular compartment may be 
roughly related to the size of the compartment.  For instance, membrane proteins occupy the 
relatively small "two-dimensional" space in lipid bi-layers.  We also performed a separate, 
independent calculation for a more comprehensive list of transmembrane segments, which were 
predicted computationally (see caption of Table 1).  This largely confirms the result. (Data not 
shown.) 
 
Part C shows the division of ORFs into different functional categories (according to the MIPS 
classification) in the various populations.  Only the largest functional categories of the top level of 
the MIPS classification are shown.  The group "Other" contains the smaller top-level categories 
lumped together.  This “Other” group is different from the group "Unclassified," which contains 
genes without any functional description.  One complication is that many genes have multiple 
functional classifications such that they may be counted in more than one category (this explains 
why the group "Unclassified" has only a size of 28% for the genome population although the 
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number of unclassified genes in the yeast genome is much larger).   
 
Comparing the genome with the transcriptome and translatome compositions in general, it can be 
observed that if a functional class is enriched in the transcriptome relative to the genome, it is also 
enriched in the translatome.  Specifically, the functional classes "metabolism", "energy", "protein 
synthesis" and "cellular organization" are enriched in transcriptome and translatome.  On the other 
hand, the classes "cell growth, cell division and DNA synthesis" and "transcription" are depleted; in 
particular, this is the case for the "unclassified" group, indicating that a lot of the current 
biochemical knowledge is clearly skewed towards more highly expressed genes.  Some of the 
differences between the complete gene set (GGen) and the protein abundance set (GProt) are 
obviously a result of the bias of electrophoresis experiments.  In addition, the ribosomal proteins 
that make up an important highly expressed part of the class “protein synthesis” are 
underrepresented in the protein abundance set (GProt).  
 



Greenbaum et al 21

 

REFERENCES 
An, H., R. K. Scopes, et al. (1991). Gel electrophoretic analysis of Zymomonas mobilis glycolytic 

and fermentative enzymes: identification of alcohol dehydrogenase II as a stress protein. J 
Bacteriol 173(19): 5975-82. 

Anderson, L. and J. Seilhamer (1997). A comparison of selected mRNA and protein abundances in 
human liver. Electrophoresis 18(3-4): 533-7. 

Bairoch, A. (2000). Serendipity in bioinformatics, the tribulations of a Swiss bioinformatician 
through exciting times! Bioinformatics 16(1): 48-64. 

Bairoch, A. and R. Apweiler (2000). The SWISS-PROT protein sequence database and its 
supplement TrEMBL in 2000. Nucleic Acids Res 28(1): 45-8. 

Bassett, D. E., Jr., M. A. Basrai, et al. (1996). Exploiting the complete yeast genome sequence. 
Curr Opin Genet Dev 6(6): 763-6. 

Batke, J., V. A. Benito, et al. (1992). A possible in vivo mechanism of intermediate transfer by 
glycolytic enzyme complexes: steady state fluorescence anisotropy analysis of an enzyme 
complex formation. Arch Biochem Biophys 296(2): 654-9. 

Cambillau, C. and J. M. Claverie (2000). Structural and Genomic Correlates of 
Hyperthermostability. J Biol Chem 275(42): 32383-32386. 

Carlson, M. (2000). The awesome power of yeast biochemical genomics. Trends in Genetics 16(2): 
49-51. 

Cavalcoli, J. D., R. A. VanBogelen, et al. (1997). Unique identification of proteins from small 
genome organisms: theoretical feasibility of high throughput proteome analysis. 
Electrophoresis 18(15): 2703-8. 

Cho, R. J., M. J. Campbell, et al. (1998). A genome-wide transcriptional analysis of the mitotic cell 
cycle. Mol Cell 2(1): 65-73. 

Claverie, J. M. (1999). Computational methods for the identification of differential and coordinated 
gene expression [In Process Citation]. Hum Mol Genet 8(10): 1821-32. 

Corthals, G., Wasinger VC, Hochstrasser DF, Sanchez JC (2000). The dynamic range of protein 
expression: a challenge for proteomic research. Electrophoreisis 21(6): 1104-1115. 

Costanzo, M. C., J. D. Hogan, et al. (2000). The yeast proteome database (YPD) and 
Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the 
organization and comparison of model organism protein information. Nucleic Acids Res 
28(1): 73-6. 

Das, R. and M. Gerstein (2000). The Stability of Thermophilic Proteins: A Study Based on 
Comprehensive Genome Comparison. Functional & Integrative Genomics 1: 33-45. 

Day, D. A. and M. F. Tuite (1998). Post-transcriptional gene regulatory mechanisms in eukaryotes: 
an overview. J Endocrinol 157(3): 361-71. 

DeRisi, J. L., V. R. Iyer, et al. (1997). Exploring the metabolic and genetic control of gene 
expression on a genomic scale. Science 278(5338): 680-6. 

Doolittle, W. F. (2000). The nature of the universal ancestor and the evolution of the proteome. 
Curr Opin Struct Biol 10(3): 355-8. 

Drawid, A. and M. Gerstein (2000). A Bayesian system integrating expression data with sequence 
patterns for localizing proteins: comprehensive application to the yeast genome. J Mol Biol 
301(4): 1059-75. 

Drawid, A., R. Jansen, et al. (2000). Gene Expression Levels are Correlated with Protein 



Greenbaum et al 22

Subcellular Localization (in Press). Trends in Genetics. 
Einarson, M. and E. Golemis (2000). Encroaching genomics: adapting large-scale science to small 

academic laboratories. Physiological Genomics 2(3): 85-92. 
Eisen, M. B. and P. O. Brown (1999). DNA arrays for analysis of gene expression. Methods 

Enzymol 303: 179-205. 
Epstein, C. and R. Butow (2000). Microarray technology - enhanced versatility, persistent 

challenge. Current Opinions Biotechnology 11(1): 36-41. 
Ferea, T. and P. Brown (1999). Observing the living genome. Current Opinions Genetic and 

Development 9(6): 715-722. 
Fey, S. J. and P. M. Larsen (2001). 2D or not 2D. Two-dimensional gel electrophoresis. Curr Opin 

Chem Biol 5(1): 26-33. 
Fey, S. J., A. Nawrocki, et al. (1997). Proteome analysis of Saccharomyces cerevisiae: a 

methodological outline. Electrophoresis 18(8): 1361-72. 
Frishman, D. and H. W. Mewes (1997). Protein structural classes in five complete genomes [letter]. 

Nat Struct Biol 4(8): 626-8. 
Frishman, D. and H. W. Mewes (1999). Genome-based structural biology. Prog Biophys Mol Biol 

72(1): 1-17. 
Futcher, B., G. Latter, et al. (1999). A sampling of the yeast proteome. Mol Cell Biol 1999 19(11): 

7357-68. 
Gaasterland, T. (1999). Archaeal genomics. Curr Opin Microbiol 2(5): 542-7. 
Garrels, J. I., C. S. McLaughlin, et al. (1997). Proteome studies of Saccharomyces cerevisiae: 

identification and characterization of abundant proteins. Electrophoresis 18(8): 1347-60. 
Gerstein, M. (1997). A structural census of genomes: comparing bacterial, eukaryotic, and archaeal 

genomes in terms of protein structure. J Mol Biol 274(4): 562-76. 
Gerstein, M. (1998). How representative are the known structures of the proteins in a complete 

genome? A comprehensive structural census. Fold Des 3(6): 497-512. 
Gerstein, M. (1998). Patterns of Protein-Fold Usage in Eight Microbial Genomes: A 

Comprehensive Structural Census. Proteins 33: 518-534. 
Gerstein, M. (1998). Patterns of protein-fold usage in eight microbial genomes: a comprehensive 

structural census. Proteins 33(4): 518-34. 
Gerstein, M. and H. Hegyi (1998). Comparing genomes in terms of protein structure: surveys of a 

finite parts list. FEMS Microbiol Rev 22(4): 277-304. 
Gerstein, M. and R. Jansen (2000). The current excitement in bioinformatics, analysis of whole-

genome expression data: How does it relate to protein structure and function (In press). 
Current Opinions in Structural Biology. 

Gerstein, M., J. Lin, et al. (2000). Protein folds in the worm genome. Pac Symp Biocomput: 30-41. 
Goffeau, A., Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, 

Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver 
SG (1996). Life with 6000 genes. Science 274 5287. 

Gygi, S.P. , G. L. Corthals et al (2000). Evaluation of two-dimensional gel electrophoresis-based 
proteome analysis technology. Proc Natl Acad Sci USA 97 9390¯9395. 

Gygi, S. P., B. Rist, et al. (2000). Measuring gene expression by quantitative proteome analysis [In 
Process Citation]. Curr Opin Biotechnol 11(4): 396-401. 

Gygi, S. P., B. Rist, et al. (1999). Quantitative analysis of complex protein mixtures using isotope-
coded affinity tags. Nat Biotechnol 17(10): 994-9. 

Gygi, S. P., Y. Rochon, et al. (1999). Correlation between protein and mRNA abundance in yeast. 



Greenbaum et al 23

Molecular Cell Biology 19(3): 1720-30. 
Harry, J. L., M. R. Wilkins, et al. (2000). Proteomics: Capacity versus utility. Electrophoreisis 

21(6): 1071-1081. 
Hatzimanikatis, V., L. H. Choe, et al. (1999). Proteomics: theoretical and experimental 

considerations. Biotechnol Prog 15(3): 312-8. 
Haynes, P.A. and Yates, J.R. (2000) Proteome profiling-pitfalls and progress. Yeast 17: 81-87. 
Hegyi, H. and M. Gerstein (1999). The relationship between protein structure and function: a 

comprehensive survey with application to the yeast genome. J Mol Biol 288(1): 147-64. 
Holstege, F. C., E. G. Jennings, et al. (1998). Dissecting the regulatory circuitry of a eukaryotic 

genome. Cell 95(5): 717-728. 
Ishii M., S.Hashimoto, et al. (2000). Direct Comparison of GeneChip and SAGE on the 

Quantitative Accuracy in Transcript Profiling Analysis. Genomics 68(2):136-143. 
Ito, T., K. Tashiro, et al. (2000). Toward a protein-protein interaction map of the budding yeast: A 

comprehensive system to examine two-hybrid interactions in all possible combinations 
between the yeast proteins. Proc Natl Acad Sci 97(3): 1143-1147. 

Jackson, R. J. and M. Wickens (1997). Translational controls impinging on the 5'-untranslated 
region and initiation factor proteins. Curr Opin Genet Dev 7(2): 233-41. 

Jacobs Anderson, J. S. and R. Parker (2000). Computational identification of cis-acting elements 
affecting post- transcriptional control of gene expression in Saccharomyces cerevisiae. 
Nucleic Acids Res 28(7): 1604-17. 

Jaeger, J. A., D. H. Turner, et al. (1990). Predicting optimal and suboptimal secondary structure for 
RNA. Methods Enzymol 183: 281-306. 

Jansen, R. and M. Gerstein (2000). Analysis of the yeast transcriptome with structural and 
functional categories: characterizing highly expressed proteins. Nucleic Acids Res 28(6): 
1481-8. 

Jelinsky, S. A. and L. D. Samson (1999). Global response of Saccharomyces cerevisiae to an 
alkylating agent. Proc Natl Acad Sci U S A 96(4): 1486-91. 

Jones, D. T. (1998). Do transmembrane protein superfolds exist? FEBS Lett 423(3): 281-5. 
Jones, D. T. (1999). GenTHREADER: an efficient and reliable protein fold recognition method for 

genomic sequences. J Mol Biol 287(4): 797-815. 
Kidd, D et al. (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 

40(13):4005-4015. 
Klaff, P., D. Riesner, et al. (1996). RNA structure and the regulation of gene expression. Plant Mol 

Biol 32(1-2): 89-106. 
Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse 

tissues. A novel approach to testing for induced point mutations in mammals. 
Humangenetik 26(3): 231-43. 

Krogh, A. et al (2001).Predicting transmembrane protein topology with a hidden Markov model: 
application to complete genomes. J Mol Biol 305(3):567-580.  

Lin, J. and M. Gerstein (2000). Whole-genome trees based on the occurrence of folds and 
orthologs: implications for comparing genomes on different levels. Genome Res 10(6): 808-
18. 

Lindahl, L. and A. Hinnebusch (1992). Diversity of mechanisms in the regulation of translation in 
prokaryotes and lower eukaryotes. Curr Opin Genet Dev 2(5): 720-6. 

Lipshutz, R. F. S., Gingeras TR, Lockhart DJ (1999). High density synthetic oligonucleotide arrays. 
Nature Genetics 21(1): 20-24. 



Greenbaum et al 24

Lopez, M. F. (2000). Better approaches to finding the needle in a haystack: Optimizing proteome 
analysis through automation. Electrophoreisis 21(6): 1082-1093. 

Luban, J. and S. P. Goff (1995). The yeast two-hybrid system for studying protein-protein 
interactions. Current Opinions in Biotechnology 6(1): 59-64. 

MacBeath, G. and S. L. Schreiber (2000). Printing proteins as microarrays for high-throughput 
function determination. Science 289(5485): 1760-3. 

Matton, D. P., P. Constabel, et al. (1990). Alcohol dehydrogenase gene expression in potato 
following elicitor and stress treatment. Plant Mol Biol 14(5): 775-83. 

McCarthy, J. E. (1998). Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol 
Rev 62(4): 1492-553. 

Mewes, H. W., D. Frishman, et al. (2000). MIPS: a database for genomes and protein sequences. 
Nucleic Acids Res 28(1): 27-40. 

Millar, A. A., M. R. Olive, et al. (1994). The expression and anaerobic induction of alcohol 
dehydrogenase in cotton. Biochem Genet 32(7-8): 279-300. 

Molloy, M. P. (2000). Two-dimensional electrophoresis of membrane proteins using immobilized 
pH gradients. Anal Biochem 280(1): 1-10. 

Morris, D. R. and A. P. Geballe (2000). Upstream open reading frames as regulators of mRNA 
translation. Mol Cell Biol 20(23): 8635-42. 

Nauchitel, V. V. and R. L. Somorjai (1994). Spatial and free energy distribution patterns of amino 
acid residues in water soluble proteins. Biophysical Chemistry 51(2-3): 327-336. 

Nelson, R. W., D. Nedelkov, et al. (2000). Biosensor chip mass spectrometry: a chip-based 
proteomics approach [In Process Citation]. Electrophoresis 21(6): 1155-63. 

O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 
250(10): 4007-21. 

Pandey, A. and M. Mann (2000). Proteomics to study genes and genomes. Nature 405(6788): 837-
46. 

Qi, S. Y., A. Moir, et al. (1996). Proteome of Salmonella typhimurium SL1344: identification of 
novel abundant cell envelope proteins and assignment to a two-dimensional reference map. 
J Bacteriol 178(16): 5032-8. 

Ross-Macdonald, P., P. S. Coelho, et al. (1999). Large-scale analysis of the yeast genome by 
transposon tagging and gene disruption. Nature 402(6760): 413-418. 

Rost, B., R. Casadio, et al. (1995). Transmembrane helices predicted at 95% accuracy. Protein Sci 
4(3): 521-33. 

Roth, F. P., J. D. Hughes, et al. (1998). Finding DNA regulatory motifs within unaligned noncoding 
sequences clustered by whole-genome mRNA quantitation. Nat BIOTECHNOL 16(10): 
939-45. 

Rubin, G. M., M. D. Yandell, et al. (2000). Comparative genomics of the eukaryotes. Science 
287(5461): 2204-15. 

Sali, A. (1999). Functional Links between Proteins.  
Nature 402(23): 25-26. 
Santoni, V., M. Molloy, et al. (2000). Membrane proteins and proteomics: un amour impossible? 

Electrophoreisis 21(6): 1054-1070. 
Schena, M., D. Shalon, et al. (1995). Quantitative monitoring of gene expression patterns with a 

complementary DNA microarray [see comments]. Science 270(5235): 467-70. 
Searls, D. B. (2000). Using bioinformatics in gene and drug discovery. Drug Discovery Today 5(4): 

135-143. 



Greenbaum et al 25

Senes, A., M. Gerstein, et al. (2000). Statistical analysis of amino acid patterns in transmembrane 
helices: the GxxxG motif occurs frequently and in association with beta-branched residues 
at neighboring positions. J Mol Biol 296(3): 921-36. 

Shapiro, L. and T. Harris (2000). Finding function through structural genomics. Current Opinions 
in Biotechnology 11(1): 31-35. 

Sharp, P. M. and W. H. Li (1987). The codon Adaptation Index--a measure of directional 
synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15(3): 
1281-95. 

Sherlock, G. (2000). Analysis of large-scale gene expression data. Curr Opin Immunol 12(2): 201-
5. 

Shevchenko, A., O. N. Jensen, et al. (1996). Linking genome and proteome by mass spectrometry: 
large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci U 
S A 93(25): 14440-5. 

Smith, R. D. (2000). Probing proteomes-seeing the whole picture? [In Process Citation]. Nat 
Biotechnol 18(10): 1041-2. 

Tatusov, R. L., E. V. Koonin, et al. (1997). A genomic perspective on protein families. Science 
278(5338): 631-7. 

Tekaia, F., A. Lazcano, et al. (1999). The genomic tree as revealed from whole proteome 
comparisons. Genome Res 9(6): 550-7. 

Vilela, C., B. Linz, et al. (1998). The yeast transcription factor genes YAP1 and YAP2 are subject 
to differential control at the levels of both translation and mRNA stability. Nucleic Acids 
Res 26(5): 1150-9. 

Vilela, C., C. V. Ramirez, et al. (1999). Post-termination ribosome interactions with the 5'UTR 
modulate yeast mRNA stability. Embo J 18(11): 3139-52. 

Wallin, E. and G. von Heijne (1998). Genome-wide analysis of integral membrane proteins from 
eubacterial, archaean, and eukaryotic organisms. Protein Sci 7(4): 1029-38. 

Washburn, M. P., D. Wolters, et al. (2001). Large-scale analysis of the yeast proteome by 
multidimensional protein identification technology. Nat Biotechnol 19(3): 242-7. 

Washburn, M. P. and J. R. Yates, 3rd (2000). Analysis of the microbial proteome. Curr Opin 
Microbiol 3(3): 292-7. 

Winzeler, E. A., D. D. Shoemaker, et al. (1999). Functional characterization of the S. cerevisiae 
genome by gene deletion and parallel analysis. Science 285(5429): 901-6. 

Wittes, J. and H. P. Friedman (1999). Searching for evidence of altered gene expression: a 
comment on statistical analysis of microarray data [editorial; comment]. J Natl Cancer Inst 
91(5): 400-1. 

Wolf, Y. I., S. E. Brenner, et al. (1999). Distribution of protein folds in the three superkingdoms of 
life. Genome Res 9(1): 17-26. 

Young, K. H. (1998). Yeast two-hybrid: so many interactions, (in) so little time... Biol Reprod 
58(2): 302-311. 

Zhang, M. Q. (1999). Large-scale gene expression data analysis: a new challenge to computational 
biologists [published erratum appears in Genome Res 1999 Nov;9(11):1156]. Genome Res 
9(8): 681-8. 

Zhu, H., J. F. Klemic, et al. (2000). Analysis of yeast protein kinases using protein chips. Nat Genet 
26(3): 283-9. 

Zuker, M. (2000). Calculating nucleic acid secondary structure. Curr Opin Struct Biol 10(3): 303-
10. 


