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A novel detection approach of linear FM (LFM) signals, with

single or multiple components, in the time-frequency plane of

Teager-Huang (TH) transform is presented. The detection scheme

that combines TH transform and Hough transform is referred to as

Teager-Huang-Hough (THH) transform. The input signal is mapped

into the time-frequency plane by using TH transform followed by the

application of Hough transform to recognize time-frequency

components. LFM components are detected and their parameters

are estimated from peaks and their locations in the Hough space.

Advantages of THH transform over Hough transform of

Wigner-Ville distribution (WVD) are: 1) cross-terms free detection

and estimation, and 2) good time and frequency resolutions. No

assumptions are made about the number of components of the LFM

signals and their models. THH transform is illustrated on

multicomponent LFM signals in free and noisy environments and the

results compared with WVD-Hough and pseudo-WVD-Hough

transforms.
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I. INTRODUCTION

Linear frequency modulated (LFM) signals, also

known as chirp signals, are frequently encountered in

many applications such as radar, sonar, and

telecommunications. For example, due to target motion,

radar return signals can be modeled as LFM signals, the

parameters of which reveal useful information about the

target such as velocity and acceleration [1]. Detection and

estimation of the parameters of such signals are very

important for electronic intelligence applications [2–4].

Although the generalized likelihood ratio test has been

reported to be optimal for chirp detection [5], it requires

too much computational complexity to support practical

applications [6]. Methods based on the maximum

likelihood (ML) estimator [7, 8] are also used, but heavy

computational complexity is generally needed for high

estimation accuracy [9]. Time-frequency-based methods

have been reported to be effective for detecting and

estimating LFM signals [10, 11]. These techniques have

attracted considerable attention and proved themselves to

be effective among others [12]. The first time-frequency

approach involved spectrogram [11]. However, the

spectrogram suffers from fixed time and frequency

resolutions due to the fixed window length and is not a

totally cross-terms free representation [13] which limits its

application to LFM detection. Wavelet transforms can also

be used for LFM detection because they are not limited by

the fixed window constraint. However, it suffers from poor

frequency resolution [13]. Due to its high time-frequency

localization, Wigner-Ville distribution (WVD) is optimal

in the sense of maximum energy concentration about the

instantaneous frequency (IF), for LFM signals [13]. For

such signals, the detection approach computes the line

integral of the WVD along all the lines in the

time-frequency plane. The line that produces the

maximum value yields to the ML estimate of the linear IF

of the chirp. Thus, the principle of the method is to track

straight lines in the time-frequency plane by locating

maxima in the two-dimensional (initial frequency versus

chirp rate) plane [12]. This detection can be obtained by

combining the WVD with Hough transform [10] or Radon

transform [12–14]. Due to its bilinear nature, WVD

involves cross-product terms, which appear midway

between true signal components (auto-terms) in the case

of multicomponent signals. These cross-terms make the

transform space of VWD difficult to visually interpret.

Recently, a new time-frequency representation for

analyzing multicomponent AM-FM signals referred to as

Teager-Huang (TH) transform has been introduced [15].

Compared with WVD, TH transform shows further

benefits: fine time-frequency resolution and free of

cross-terms. TH transform relies on no prior choice upon

the number of AM-FM components of the analyzed signal.

Further, it is based on adaptive basis and is not constrained

by uncertainty principle. In this work, we present a novel

detection approach of multicomponent LFM signals,

based on a time-frequency domain representation of TH



Fig. 1. Block diagram of TH transform.

transform, that we named Teager-Huang-Hough (THH)

transform.1 Compared with our previous work [16] where

THH transform was limited to noise-free signals, the

present work contributions are the following.

1) THH transform is analyzed in noisy conditions. For

this analysis, subband filtering associated to THH

transform is introduced in Section VI.

2) Teager-Kaiser spectrum is introduced in

Subsection II-C.

3) A mathematical formulation of THH transform is

introduced (11).

4) A strategy for deriving the detection threshold is

presented in Subsection IV-B.

II. TEAGER-HUANG TRANSFORM

TH transform has been introduced recently for

time-frequency analysis [15]. It has found applications in

a lot of domains [17–22]. This transform first band-pass

filters a multicomponent AM-FM signal through the

empirical mode decomposition (EMD) into a reduced

number of oscillatory modes called intrinsic mode

functions (IMFs) [23]. Each extracted mode is

demodulated into IF and instantaneous amplitude (IA)

signals. An energy demodulation method, called energy

separation algorithm (ESA) [23], is used to

simultaneously track these IF and IA components. The

ESA is based on Teager-Kaiser energy operator (TKEO)

and shows high efficiency, in particular in terms of time

resolution. More particularly, TKEO is attractive due to its

computational simplicity and because it tracks physically

meaningful quantities. Applying ESA to IMFs yields IFs

as a function of time that enables sharp identifications of

embedded structures of the signal. Taken collectively, the

spectra of the IMFs supplied by ESA yield complete

time-frequency information (energy) about the original

signal. A common method for displaying the spectra

derived from the IMFs, is to generate a two-dimensional

plot with time and frequency axes. The block diagram of

TH transform, depicting multiband filtering followed by

energy separation is shown in Fig. 1.

A. EMD

The EMD has been introduced by Huang et al. [23] for

adaptively decomposing any signal into a reduced number

of IMFs and a residual that represents the trend. By

1Some elements of this paper were initially presented in [16].

definition, an IMF 1) must have the same numbers of

extrema and zero-crossing or differ at most by one; and 2)

is symmetric with respect to local zero mean. With these

two conditions, meaningfully IF and IA components of an

IMF can be well defined. In order to successfully

decompose a signal x(t) into IMFs, it must have at least

two extrema (one maximum and one minimum). Given

conditions 1 and 2, EMD is defined by an iterative process

called sifting and is summarized as follows [23].

1) Identify the extrema of signal x(t).

2) Generate its upper and lower envelopes, xu(t) and

xl(t), with spline interpolation.

3) Compute the local mean m(t) = (xu(t) + xl(t))/2.

4) Extract the detail d(t) = x(t)–m(t).

5) Check the properties of d(t).

If d(t) meets conditions 1 - 2, an IMF is derived and

r(t) ← x(t) – d(t).

If d(t) is not an IMF, x(t) ← d(t).

6) Repeat steps 1 - 5 until r(t) satisfies some stopping

criterion.

At the end of the process, x(t) is expanded as follows:

x(t) =
K

∑

j=1

IMFj (t) + rK (t) (1)

where K is the number of IMFs and rK(t) denotes the final

residue. The IMFs are nearly orthogonal to each other, and

all have nearly zero means. The number of extrema is

decreased when going from one mode to the next, and the

whole decomposition is guaranteed to be finished with a

finite number of modes.

B. Energy Separation of IMFs

The salient property of an IMF is that it is a

monocomponent AM-FM signal [23] and therefore it can

be demodulated using ESA. For a twice derivable signal

s(t), the output of TKEO is given by

�[s(t)] = [ṡ(t)]2 − s(t)s̈(t) (2)

where ṡ(t) and s̈(t) are the first and second order

derivatives of s(t). A useful and important property of �[.]

is its behavior when applied to AM-FM signal s(t) in the

form

s(t) = a(t) cos

(

2π

∫ t

0

f (τ )dτ

)

. (3)

Then, the output of �[.] applied to s(t) and ṡ(t) is given by

� [s(t)] ≈ a2(t)φ̇2(t) (4)

� [ṡ(t)] ≈ a2(t)φ̇4(t). (5)

Thus, with negligible approximation error under general

realistic conditions, (4) shows that �[s(t)] is the squared

product of a(t) and the time-varying instantaneous phase



φ̇(t). Combining relations (4) and (5) we obtain the ESA

method [24]:

f (t) ≈
1

2π

√

� [ṡ(t)]

� [s(t)]
, |a(t) | ≈

� [s(t)]
√

� [ṡ(t)]
. (6)

A discrete-time counterpart of the TKEO �d [.] is given by

[24]

�d [s(n)] = s2(n) − s(n + 1) · s(n − 1). (7)

Equation (7) shows that TKEO is nearly instantaneous

because only three samples are required for the energy

computation at each time instant. By approximating the

continuous-time derivation in (4)–(5) to discrete

differences, one obtains different versions of discrete ESA

(DESA) [24]. For example, by approximating the

continuous-time derivatives in (6) by discrete asymmetric

backward differences, one obtains the DESA-1a

algorithm:

f (n) ≈
1

2π
arccos

(

1 −
�d [s(n) − s(n − 1)]

2�d [s(n)]

)

(8)

|a(n) | ≈
√

√

√

√

√

�d [s(n)]

1 −
(

1 −
�d [s(n) − s(n − 1)]

2�d [s(n)]

)2
. (9)

Other DESAs can be derived [24].

C. Teager-Kaiser Spectrum

After applying DESA to each IMF component of a

signal x(t), one can express it in the following form:

x(t) = R

⎛

⎝

K
∑

j=1

aj (t) exp

(

i

∫

ωj (t)dt

)

⎞

⎠ + rK (t) (10)

where R stands for “real part”, ωj (t) = 2πfj (t) and

i =
√

−1. If we omit rK(t), which is either a monotonic

function or a constant, representation (10) gives both

amplitude and frequency of each component as functions

of time. This equation enables us to represent IA and IF as

functions of time in a three-dimensional plot: for each

IMF, we get a curve (t, fi(t), ai(t)). The weight assigned to

each time-frequency cell is the local spectrum amplitude.

We call the amplitude (or energy) depending on time and

frequency the Teager-Kaiser spectrum (TKS), TK(t, f ).

Formally, this is defined as follows. Let signal x(t) be

represented in the form (10). The TKS (amplitude) is

defined as

TK(t, f ) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

a1(t) on the curve {(t, f1(t)); t ∈ R}
a2(t) on the curve {(t, f2(t)); t ∈ R}
...

aK (t) on the curve {(t, fK (t)); t ∈ R}

Given IFs, fj(t), and IAs, aj(t), at each instant t,

associated time-frequency of TH transform can be

written as

TK(t, f ) =
K

∑

j=1

aj (t, fj (t)) =
K

∑

j=1

aj (t)δ(f − fj (t)).

(11)

An advantage of TKS analysis over Hilbert spectral

analysis [23] is to circumvent the limitation of Bedrosian’s

theorem [25]. TH transform produces a sharp and sparse

representation. If x(t) is of dimension T in time and is

given in discrete-time, its time-frequency representation is

of dimension NfT when computed over Nf frequency bins.

Since the number of extracted modes (Eq. 1), K, is much

smaller than T, TH transform which satisfies relation (11)

is distributed over the time-frequency plane in a very

sparse way, with only K 1D trajectories where at most KT

values are expected to be non-zero. All information of the

TH transform is concentrated in a very small number of

1D trajectories. Thus, in terms of number of points, TH

transform is of KT dimensions where K≪T while, for

example, WVD is of dimension TNf.

III. HOUGH TRANSFORM

Hough transform is a feature extraction technique

essentially used in image processing for detecting

geometric curves (lines, circles . . . ) in binary point

images such as object detection [26] and texture analysis.

Note that since the Cartesian representation y = ax + b of

a line becomes clumsy [26] as a line approaches the

vertical, alternative polar representation can be preferred

[26]. The key idea of Hough transform is to project pixels

of a given image into a parametric space where the shapes

of interest can be well localized. For example, for line

detection and polar parametrization we have

HT (xi, yi) = {(ρ, θ ); ρ = xi cos θ + yi sin θ} . (12)

This parametrization specifies a straight line by the angle θ

of its normal and its algebraic distance ρ from the origin.

For each point (xi, yi) in an image, Hough transform

associates a sinusoid in the plane (ρ, θ), with amplitude
√

x2
i + y2

i and initial phase arctan(yi/xi). In addition, the

pixels of the sinusoid are given an intensity equal to that of

the pixel (xi, yi). If M points are concentrated along a

straight line in time-frequency domain, their transforms

will define M sinusoidal curves that intersect at the same

point in the (ρ, θ) domain (Fig. 2) where curve intensities

add. Thus, maxima location in the Hough transform

domain are directly related to the parameters of the lines

in the initial image and the Hough transform converts a

difficult global detection problem in image domain into a

more easily solved local peak detection problem in the

parameters space.

IV. TH AND HOUGH TRANSFORMS

A. Hough Transform for LFM Signals

Different methods have been proposed for LFM

component tracking using time-frequency representations



Fig. 2. Illustration of Hough transform.

Fig. 3. Block diagram of THH transform.

[9–12, 14, 27–30]. A time-frequency representation is

viewed as an image, where a pixel intensity corresponds to

the energy presents at a particular time and frequency

positions. The combination of WVD and Hough transform

was first presented for chirp identification [10]. WVD

ideally concentrates the chirp signals in time-frequency

plane. FM parameters can be estimated using Hough

transform combined with WVD [10], smoothed

pseudo-WVD (SPWVD) [27], or reallocated SPWVD

(RSPWVD) [28]. The principle of the method has been

introduced by Kay and Boudreaux-Bartles [29], extended

to the multicomponent case by Barbarossa [10], and also

extended to analysis of constant amplitude signals

(cross-terms) added to a spread spectrum plus an additive

white Gaussian noise (AWGN) by Barbarossa and

Scaglione [30]. In general, the detection problem of an

LFM signal, which is not easy in the time-domain (or

frequency domain), is reduced to the detection of a line in

an image. Applying a Hough transform in the

time-frequency representation of a multiple components

LFM signal yields peaks in the Hough space, the

coordinates of which are directly related to the parameters

of the straight lines in time-frequency image. Although the

method is attractive, accurate estimation of FM parameters

is not easy due to the cross-terms of the quadratic

time-frequency representations (WVD, . . .). This leads to

difficulties in practical implementation, and the

computational attractiveness of array accumulators of

Hough transform was not advantageously utilized.

Alternatively, the THH transform that we propose and that

is illustrated in Fig. 3 is a time-frequency representation

free of cross-terms and is used to detect energy-varying

linear chirp. When Hough transform is applied to TH

transform of an LFM signal y(t) it outputs an energy

time-frequency representation. Let y(t) be such a signal:

y(t) = e
2iπ

(

νt+ β

2
t2

)

(13)

where ν is the start frequency of the LFM and β the chirp

rate. The comparison of THH transform to a threshold τ

enables LFM peaks detection. Estimates of the unknown

parameters ν and β are given by the coordinates of the

peak in the space of the parameters (ρ, θ).

THH transform of a signal y(t) is defined as the line

integral through the TKS along the IF model f(t; �) where

� : = (ν, β) is the parameter vector.

h(ν, β) =
∫ −∞

−∞
TK(t, f )δ(f − ν − βt)dt (14)

where TK(t, f ) is the TKS under consideration. When

dealing with LFM signals, each IMF gives rise to energy

concentration along straight lines in the time-frequency

plane of fj(t) ≈ (t, �j) = ν j + β jt, where fj(t) is the IF of

the jth IMF. The integration over all possible lines,

obtained by applying Hough transform to TH transform

gives rise to peaks in the final parameter space. A

monocomponent LFM signal corresponds to one peak in

the parameter space and a multicomponent LFM signal

generates multiple peaks in the parameter space. THH

transform is therefore a mapping from the time-frequency

domain to the parameter space (ν, β). The detection and

parameters estimation is reduced to peaks search in the

parameter space. THH transform algorithm involves the

following steps.

Step 1) Apply TH transform to input signal x(t) to

generate TK(t, f ) (11).

Step 2) Compute h(�) using (14).

Step 3) Search peaks of h(�) which are larger than τ .

Step 4) Extract parameters � of each detected peak.

Values of θ and ρ (12) are given by

θ = arctan(−1/β) and ρ = ν sin(θ).

Note that time-frequency localization of a signal can be

quantified by the percentage of the time-frequency plane

that it occupies. Since TH transform consists of a reduced

number of 1D trajectories it is highly localized. Besides

this sparsity, THH transform is based on two local and

nonlinear approaches, the ESA (which in turn is based on

the instantaneous TKEO) and the EMD. This enables

THH transform to have a good time-frequency resolution

and to perform good LFM localization and estimation.

B. Thresholding Based on Neyman-Pearson Criterion

Different criteria can be used to choose the detection

threshold such as MiniMax, maximum a posteriori

probability or Neyman-Pearson (NP) criterion. As NP

rule does not involve decision costs or prior knowledge

of LFM signals distribution, it is well suited for choosing

a detection threshold τ . Then, the threshold is calculated

for a targeted false alarm probability. The problem is to

decide between the null hypothesis (H0) and the



alternative one (H1):
{

H1 : a LFM component is present in TKS

H0 : no LFM is present.

Let τ denote the threshold for LFM component detection.

For the K IMFs under consideration, IMFi(t) has IA ai(t)

for t = 1, . . . , T. For the sake of simplicity, let us assume

an approximate circularly complex Gaussian distribution

for the IMFs. Thus amplitudes ai(t) are Rayleigh

distributed. In addition, to achieve simple in designing the

threshold τ , it will appear more convenient to perform the

Hough transform on the squared TKS where amplitude at

point (t, fi(t)) is a2
i (t) and has a χ2(2) distribution, with

mean E[a2
i (t)] denoted by σ 2.

Let us now consider the all-at-one time-frequency

representation, that is the area of the discretized

time-frequency plane where the Hough transform is

calculated, with all points set to one. Then, we denote by

N0
νβ the integer value of the Hough transform at point (ν =

ρ /sin(θ), β = – cot(θ)) of the corresponding transformed

plane. In other words, N0
νβ represents the number of lines

that pass through (ν, β) for the all-at-one time-frequency

representation.

The support of the TKS is made of KT points, while

the time-frequency representation contains NfT samples.

Then, only a fraction

S =
KT

Nf T
=

K

Nf

(15)

of the time frequency plane carries the TKS. Note that S

represents the sparsity rate in the TKS. If there is no LFM

(H0 hypothesis) the Hough transform is unstructured and,

on the average, there are SN0
νβ lines passing through (ν,

β). However, letting Nνβ be the number of lines at (ν, β),

it is clear that its value can differ from SN0
νβ . A convenient

modeling for Nνβ is to describe it as a Poisson random

variable with mean SN0
νβ . Indeed, the number of lines

passing through (ν, β) is a binomial distribution B(KT, p)

where p = N0
νβ

Nf T
is the probability that the transform of a

given point of the time-frequency plane generates a line

passing through (ν, β). As KT is quite large, it is well

known that B(KT, p) can be well approximated by a

Poisson P(λ) distribution, with λ = KTp = SN0
νβ . Then,

we get

P (Nνβ = k) =
(

SN0
νβ

)k

k!
e−SN0

νβ . (16)

For hypothesis H0 and conditional to Nνβ , the distribution

of the amplitude aνβ at point (ν, β) is that of the

accumulation of Nνβ independent random amplitudes with

distribution χ2(2), that is, aνβ has a χ2(2Nνβ) distribution.

Note that the normalized χ2(n) distribution has variance

2n and the accumulation of Nνβ points ai(t) has variance

Nνβσ 2. Thus a normalizing factor equal to σ /2 must be

applied to the standard χ2(2Nνβ) random variables to

achieve the desired distribution. Since the transform X ←
αX results in the transform p(x) → α−1p(α−1x) of the

corresponding probability density functions (pdfs), we

finally get

p(aνβ |Nνβ) =
1

2Nνβ−1Ŵ(Nνβ)σ

(

2aνβ

σ

)Nνβ−1

e− aνβ

σ (17)

Then, Pfa is given by

Pfa = P (max
νβ

aνβ > τ )

= 1 −
∏

νβ

P (aνβ < τ )

= 1 −
∏

νβ

ENνβ

⎡

⎣

τ
∫

0

p(aνβ |Nνβ)daνβ

⎤

⎦

= 1 −
∏

νβ

ENνβ

⎡

⎣

τ
∫

0

1

2Nνβ−1Ŵ(Nνβ)σ
�e− a

σ da

⎤

⎦

= 1 −
∏

νβ

P
(

Nνβ,
τ

σ

)

(18)

where � =
(

2a

σ

)Nνβ−1

and P(n, x) is the incomplete

gamma function:

P (n, x) =
∫ x

0

1

Ŵ(n)
tn−1e−tdt. (19)

And accounting for the distribution of Nνβ we get

Pfa = 1 −
∏

νβ

[ ∞
∑

k=0

P
(

k,
τ

σ

)

(

SN0
νβ

)k

k!
e−SN0

νβ

]

. (20)

By plotting Pfa as a function τ , one can choose the

threshold τ for a given Pfa. Note that P(n, x) can be found

implemented in many scientific programming libraries,

making thus the practical calculation of Pfa quite easy. As

an example, we have considered a case of a signal without

LFMs and three IMFs (K = 3) is considered. σ is set to 1.

The all-at-one Hough transform and the IMFs are

presented on the first line of Fig. 4. On the second line of

the figure, we observe the corresponding THH transform

output and the false alarm rate as a function of the

threshold. The false alarm rate starts decreasing drastically

for τ >24, which is in good agreement with the fact that

the THH transform output (Fig. 4, bottom left) remains

smaller than about 24 (Pfa = 4.4%).

V. DETECTION IN NOISE-FREE ENVIRONMENT

We first test THH transform on free noise signals. For

LFM detection, we place a bound 5% on the false alarm

probability Pfa to determine the threshold τ (20). THH

transform is illustrated on two multicomponent signals

and detection results are compared with WVD-Hough

transform and SPWVD-Hough transform.

A. Results

The first illustration of LFM detection is a signal x1(t)

with four components (K = 4) and an observation time



Fig. 4. NP thresholding.

Fig. 5. Ideal time-frequency representation of free noise signal x1 (t).

T = 256s (Fig. 5). Using (20) with Pfa = 0.05, K = 4,

T = 256, and Fs = 1Hz we find τ = 67. The associated TH

transform, WVD, and SPWVD are shown, respectively, in

Figs. 6(a), 8(a), and 10(a). The lines are clearly visible on

SPWVD representation and better on TH transform. For

WVD, the detection of all IFs is very hard due to the

cross-terms (Fig. 8(a)). In Fig. 10(a), the time smoothing

carried out by SPWVD considerably reduces these

artifacts, but gives the worst resolutions (in time and in

frequency). Comparing TH transform against WVD and

SPWVD, the four time-frequency components are well

localized with no cross-terms or loss in time-frequency

resolution (Fig. 6(a)). Hough transform has been applied

to these three time-frequency representations. Both THH

transform and WVD-Hough transform show four peaks

(Figs. 7 and 9). However, the peaks are significantly more

prominent in THH transform than in WVD-Hough

transform. The estimation of the IFs by THH transform,

Fig. 6. LFM components tracking in TH transformed plane of x1 (t). (a)

TH transform of x1 (t). (b) Lines of detection on TH transform.

Fig. 7. THH transform applied to x1 (t).

WVD-Hough transform, and SPWVD-Hough transform

are shown, respectively, in Figs. 6(b), 8(b), and 10(b). Due

to oscillating structures of cross-terms, the detection of

peak by Hough transform is difficult for the WVD

(Fig. 8(b)). While SPWVD reduces the cross-terms and

gives a better time-frequency representation, estimation of

the IFs remains difficult (Fig. 10(b)). For THH transform,

the time-frequency components are well separated in the

parameter space (Fig. 7). Unlike WVD-Hough transform,

the four time-frequency components are well detected and

estimated with the THHT (Fig. 6(b)).



Fig. 8. LFM components tracking in WVD plane for x1 (t). (a) WVD of

x1 (t). (b) LFM detection on WVD.

Fig. 9. WVD-Hough transform applied to x1 (t).

Fig. 10. LFM components tracking in SPWVD plane for x1 (t). (a)

SPWVD of x1 (t). (b) LFM detection on SPWVD.

THH transform has also been tested on a

multicomponent signal x2(t) of seven linear chirps and

sinusoidal chirp in the time-frequency domain (Fig. 11).

With K = 8, we obtain τ = 92. Results of SPWVD and

TH transform are shown in Figs. 12 and 13. While the

different components are hardly readable in the time

representation, they clearly appear in SPWVD and are

even better evidenced in TH transform. Again, as in the

first case the cross-terms problem is more important

as the number of signal components increases and this

is well evidenced on the output of SPWVD (Fig. 13(a)).

The sinusoidal FM component in SPWVD is represented

as an LFM signal (Fig. 13(b)). Note that TH transform is

devoid of the cross-terms effect and all IFs are well

localized (Fig. 12(a)). However, SPWVD provides

cross-terms and so the detection and estimation of

IFs are not easy (Fig. 13(b)). Comparing THH transform

against SPWVD-Hough transform, all linear IFs

components are well detected, localized, and estimated

(Fig. 12(b)).



Fig. 11. Ideal time-frequency representation of free noise signal x2 (t).

Fig. 12. LFM components tracking in TH transform plane for x2 (t). (a)

TH transform of x2 (t). (b) Lines of detection on TH transform.

VI. DETECTION IN NOISY ENVIRONMENT

In many applications, signals enhancement or

extraction of signals of interest from noise is necessary.

Signals or their components may overlap either in time or

frequency domain and thus conventional filtering such as

time-domain or frequency-domain windowing is not

efficient. A solution to this problem is to use subband

Fig. 13. LFM components tracking in SPWVD plane for x2 (t). (a)

SPWVD of x2 (t). (b) Lines of detection on SPWVD.

filtering. In this work we use a data-driven time filtering

based on EMD where filtering is applied to each extracted

IMF.

A. EMD-Based Denoising

A denoised version of an input signal can be obtained

by filtering each IMF separately followed by signal

reconstruction. Let fj(t) be a clean deterministic IMF. The

jth IMF, corrupted with additive noise bj(t) is then given by

IMGj (t) = fj (t) + bj (t), where j ∈ {1, . . . , K}. (21)

Let f̃j (t) be an estimation of fj(t) based on the noisy

observation IMFj(t). This estimate is given by

f̃j (t) = Ŵ[IMFj (t), ξj ] (22)

where Ŵ[., ξ ] denotes a thresholding or filtering function,

with parameters ξ . The denoised signal x̃(t) is given by

[31]

x̃(t) =
K

∑

j=1

f̃j (t) + rK (t). (23)



Fig. 14. Block diagram of EMD – SG.

For noise reduction, EMD can be combined with a

filtering method such as Savitzky-Golay (SG) smoothing

(finite impulse response (FIR) filter) [32] or a nonlinear

transformation such as soft-thresholding. If Ŵ[IMFj (t), ξj ]

is a filtering method, then ξ j can be the window size of the

filter or its kernel. In this work, we combine EMD with

SG filter, which have been shown to be efficient for noise

removal [31] (Fig. 14). SG filter (also called digital

smoothing polynomial filter) performs time smoothing

based on least squares (LS) polynomial fitting across a

moving window within the data [32]. This filter performs a

local polynomial regression on a distribution of equally

spaced points to determine the smoothed value for each

data point [32]:

f̃j (i) =
m=MR
∑

m=−ML

αm.IMFj (i + m) (24)

where i = . . . , –2, –1, 0, 1, 2, . . . . ML and MR is the

number of points used on the left and right sides of i. The

idea of SG filtering is to find filter coefficients αm (24) that

preserve higher moments within the window of analysis.

For each point IMFj(i –ML), . . . , IMFj(i + MR) are

determined by using a polynomial of degree p, α0 + α1i1

+ α2i2 + . . . + αpip. The coefficients αm are given by an

LS fit using a shifted windows [32]. SG filter is optimal in

the sense that it minimizes the LS error in fitting a

polynomial to frames of noisy data. Furthermore, this

smoothing filter performs much better than standard

averaging FIR filter because it tends to preserve features

of the signal such as peak height and high frequency

components, which are usually “flattened” by other

adjacent averaging techniques.

B. Results

The effectiveness of THH transform has also been

tested on noisy LFM signals (13) where the phase function

is given by

φLFM = 2iπ

(

νt +
β

2
t2

)

. (25)

An LFM signal with ν = 0.018 Hz, β = 0.328 Hz/s, and N

= 128 samples is used. White Gaussian noise is added to

the LFM signal to obtain noisy signals with

signal-to-noise ratios (SNRs) in the range of 50dB down

to 5dB. A Monte Carlo simulation with 500 trials is run to

Fig. 15. MSEs of β and ν estimates of noisy LFM signal.

Fig. 16. Components tracking in TH transform plane of x1 (t). (b) Lines

of detection on TH transform.

evaluate the effectiveness of THH transform estimator.

The estimations results of β and ν are presented in 15. For

SNR = 5-23dB THH transform provides better β

estimates than WVD-Hough transform (Fig. 15). This

result was expected due to the cross-terms generated by

WVD between free noise signal and noise component. For

SNR≥ 23dB the two estimators perform similarly. For ν

estimates similar conclusions can be drawn for the

estimation (Fig. 15).

THH transform is tested on signal x1(t) (Fig. 5)

corrupted with AWGN with an SNR of 7dB. The four IFs

are evidenced in both time-frequency representations

(Figs. 16(a), 17(a)). The result of line detection with THH

and SPWVD-Hough transforms are given in Figs. 16(b)



Fig. 17. Components tracking in SPWVD plane of x1 (t) (SNR = 7dB).

(a) SPWVD of x 1 (t). (b) Lines of detection on SPWVD.

and 17(b), respectively. As in the first simulations, the

THH transform (Fig. 16(b)) is sharper than

SPWVD-Hough transform (Fig. 17(b)) which makes the

detection easier. Both THH and SPWVD-Hough

transforms detect correctly three out of four LFM

components (Figs. 16(b), 17(b)). The fourth one is not

well identified. For THH transform, this may be due to

estimation of the IF of the IMF by the TKEO, which has a

moderate sensitivity to noise. For the SPWVD-Hough

transform, despite the smoothing used, strong cross-terms

persist and degrade the time-frequency representation.

Consequently both detection and estimation with Hough

transform are biased.

Based on EMD and TKEO, TH transform is able to

extract the energy associated with different intrinsic time

scales of a nonstationary signal such as FM components,

and this makes it attractive for detection purpose. Further,

TH transform produces a sharp and sparse representation.

This is well illustrated on Figs. 6(a), 12(a), and 16(a)

where TH transform generates much cleaner, sharper, and

sparser time-frequency representations than WVD and

SPWVD (Figs. 8(a), 10(a), 13(a), 17(a)). This sparsity and

sharpness of TKS are interesting properties for detecting

or tracking fine structures such as LFM signals. The

detection and localization are also made easy by the

TKEO. However, both EMD and TKEO are sensitive to

sampling rate. TKEO is best suited for signals with

frequency less than one-fourth of the sampling frequency

[33]. Thus, in practice, signals must be sampled with

sampling rate at least four times the Nyquist-Shannon

frequency before applying the ESA. Also, results of the

sifting process (IMFs extraction) are influenced by the

frequency rate. Based on simulations, it was found that

good performances of EMD in terms of IMFs

orthogonality and distribution of energy are obtained for a

sampling limit of five times Nyquist-Shannon frequency.

Thus, prior to applying THH transform the signals must be

“sufficiently oversampled.”

VII. CONCLUSIONS

In this work a novel approach for detection of

multicomponent LFM signals in the time-frequency

domain that we called THH transform is proposed.

Preliminary results show the interest and effectiveness of

THH transform as a tracking method for time-frequency

components. THH transform is cross-terms free and does

not suffer from the trade-off between time-frequency

resolution and cross-terms suppression. No assumptions

are made about the number of components of the signal

nor their amplitude or phase. Numerical examples show

that compared with WVD-Hough and SPWVD-Hough

transforms, THH transform achieves better performance in

terms of time-frequency components tracking of signals in

both noise-free and noisy environments. Furthermore,

THH transform yields much sharper results than

WVD-Hough and SPWVD-Hough transforms. In all

presented examples, LFM components are well identified.

In addition, we have developed an NP approach for THH

transform detection by estimating the threshold that

achieves maximum detection at fixed false alarm rate.

Since the performance of THH transform has only been

evaluated by some simulations, a large class of signals

(extensive simulations) is necessary to confirm the

obtained results. As future work we plan to extend the

analysis to more complicated IF laws such as nonlinear

FM signals or arbitrary time-frequency shapes.

Investigation is in progress to optimize the size of the SG

filter window to each noisy signal in function, for

example, of its SNR.
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