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Now

g(t) = log det(X + Z + tN)� log det(Z + tN)

=

n

i=1

log(1 + t�i(NY
�1))

� log(1 + t�i(NZ
�1)) + log det(ZY �1)

so that

d2g

dt2
=

n

i=1

1

t+ 1
� (NZ )

2 �
1

t+ 1
� (NY )

2

� 0

where for the last inequality we have used (15) and the fact that t 2 T .
Strict inequality holds for X � 0.
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Analysis of Multiple-Antenna Wireless Links at Low SNR
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Abstract—Wireless channels with multiple transmit/receive antennas
are known to provide a high spectral efficiency both when the channel is
known to the receiver, and when the channel is not known to the receiver
if the signal-to-noise ratio (SNR) is high. Here we analyze such systems
at low SNR, which may find application in sensor networks and other
low-power devices. The key point is that, since channel estimates are not
reliable, it is often not reasonable to assume that the channel is known
at the receiver at low SNR. In this unknown channel case, we show that
for sensible input distributions, in particular all practical modulation
schemes, the capacity is asymptotically quadratic in the SNR, , and thus
much less than the known channel case where it exhibits a linear growth
in . We show that under various signaling constraints, e.g., Gaussian
modulation, unitary space–time modulation, and peak constraints, that
mutual information is maximized by using a single transmit antenna.
We also show that at low SNR, sending training symbols leads to a rate
reduction in proportion to the fraction of training duration time so that it
is best not to perform training. Furthermore, we show that the per-channel
use mutual information is linear in both the number of receive antennas
and the channel coherence interval.

Index Terms—Low-signal-to-noise ratio (SNR) regime, multiple-antenna
systems, noncoherent channels, Rayleigh fading.

I. INTRODUCTION

Multiple-antenna wireless systems have been shown to provide high
capacity, exploiting the presence of fading in such channels. However,
this is based on the premise that either the channel coefficients are
known to the receiver, or that the signal-to-noise ratio (SNR) of the
channel is high [1]–[3].

Wireless systems operating at low SNR (exhibiting weak signaling
or in noisy environments) find increasing use in energy-efficient
devices such as sensor networks. Recent work on analyzing the
capacity of low-SNR multiple-antenna links, assuming that the
channel is known at the receiver, has appeared in [4]. However, at
low SNR, channel estimates in some circumstances are unreliable
and so it is sensible to assume that the channel is unknown. In the
following analysis we, therefore, assume the channel is unknown to
both transmitter and receiver. As shown later, this leads to results
qualitatively different from the known channel case.

We use the block-fading model of a wireless multiple-antenna
system proposed by Marzetta and Hochwald in [5], expressing the
mutual information between input and output as a function of the
model parameter � (proportional to the SNR) up to second order.
This model is described in detail in the next section. Maximizing this
expression gives us insight about desired signaling at low SNR as
well as the optimal number of antennas to be used at the transmitter
and receiver. It has been shown in [6] that the optimum signaling at
low SNR achieves the same minimum energy per bit as the known
channel cases for single transmit antenna systems. We show that
the on–off optimal signaling found in [6] also generalizes to the
multiple-antenna setting (a result that also follows from [7, Theorems
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1 and 5]). However, this scheme requires increasingly peaky signals
(indeed, ones with unbounded fourth-order moment) and so may not
be acceptable from a practical point of view in some situations. We
therefore focus our attention on signaling schemes with bounded
fourth-order moment.

Recent work by Verdú [7] has shown that knowledge of the first and
second derivatives of capacity at low SNR also tells us about band-
width and energy efficiency for signal transmission. For example, these
quantities are used to see how spectral efficiency grows with energy per
bit. More work on constrained signaling in the low-power regime for
Rayleigh-fading channels is given in [8], [9] and [10], while [11] and
[12] study the Rician case. In [13], among other things, the low-SNR
mutual information of the same block-fading multiple-antenna channel
of [5] is also calculated. Similar results to ours have also been obtained
in [14], as a by-product of their study of the capacity of general commu-
nication channels under small-peak constraints. Our results differ from
[13] and [14] in two ways. First, we require a weaker assumption on
the input signals; essentially, conditions on the fourth- and sixth-order
moments, rather than an exponentially decaying input distribution as
in [13], or a peak constraint on the singular values of the transmitted
signal as in [14], both of which render all moments finite. Second, we
study the optimal signaling structure derived in [5] and further opti-
mize mutual information subject to various signaling constraints such
as training.

There are two main parts to this correspondence. In the first part,
we expand the mutual information of the wireless link to second order
in the SNR � using an approach that may be applied to other channel
models. Secondly, we optimize this expression under both peak and
fourth-order moment signal constraints to determine what signaling
should be applied to the input and how many transmit antennas should
be employed. We also study Gaussian modulation, unitary space–time
modulation. and training-based schemes.

II. MODEL

We consider a discrete-time block-fading channelmodel [5] in which
there areM transmit andN receive antennas. The channel is described
by a propagation matrixH that is assumed constant for a coherence in-
terval of length T symbols. For the next T symbols, the propagation
matrix changes to a new independent value, and so on. Signals are rep-
resented by complex-valued matrices with T rows, where the ith row
is what is transmitted or received via each of the multiple antennas at
the ith time slot.

For each coherence interval, the T �N received matrixX is related
to the T �M transmitted matrix S by

X =
�

M
SH + V (1)

where H is an M � N matrix and V is a T � N noise matrix, both
comprised of zero-mean and unit-variance circularly symmetric com-
plex Gaussian entries. The matrices H , V , and S are assumed to be
independent and the values of H and V are unknown to both trans-
mitter and receiver. S satisfies the power constraint

EtrSS� = E

T

i=1

M

j=1

jsij j
2 �2 � Pmax

whereE and tr denote the expectation and trace operators, respectively,
and sij is the (i; j)th entry of S. Throughout this work, the � operator
denotes the conjugate transpose of a matrix. When �2 = TM , the
normalization factor �

M
in (1) makes � equal to the SNR at each

receive antenna. Otherwise, the SNR at each receive antenna is given
byE[trXX�]=E[trV V �] = ��2=(TM). It is also known that there is
no performance gain in having the number of transmit antennas greater
than T [5]. Hence, we will assume that T � M .

Computing the capacity of this multiple-antenna system for generic
� is an open problem. In [5], however, it is shown that capacity is
achieved when the input signal S has the form

S = �D; (2)

whereD is a diagonalM �M matrix with nonnegative entries and �
is a T�M isotropically distributed unitary randommatrix. This means

• ��� = IM (the M �M identity matrix) although ��� 6= IT
for T > M , and

• the distribution of � is unaltered when left multiplied by a de-
terministic T � T unitary matrix or when right multiplied by a
deterministic M �M unitary matrix [5].

� and D are independently distributed.

III. MUTUAL INFORMATION TO SECOND ORDER

In this section we prove the following result.

Theorem 1: Consider the model (1) and let p(S) denote the proob-
ability density function (pdf) of S.

1) First-order result: If i) @p(S)=@� exists at � = 0 and ii)
lim�!0 �Etr(SS

�)2 = 0, the mutual information between the
transmitted and received signals S and X for the multiple-an-
tenna system (1) is zero to first order in �, i.e., I(X;S) = o(�).

2) Second-order result: If, in addition, i) @2p(S)=@�2 exists
at � = 0, ii) the fourth-order moment of S is finite, i.e.,
Etr(SS�)2 �4 < 1, and iii) lim�!0 �Etr(SS

�)3 = 0,
then the mutual information between S and X up to second
order in � is given by

I(X;S) =
Ntr[E(SS�)2 � (ESS�)2]

2M2
�2 + o(�2): (3)

The second-order part of the theorem is essentially a result in [13]
and [14]. However, we here require a much less stringent condition
on the input distribution. Moreover, we shall optimize (4) for various
signaling schemes.

The reason for the condition on p(S) in Theorem 1 is that the choice
of distributionmay depend on the SNR �. Condition ii) of the first-order
result limits the growth of the fourth-ordermoment, whereas conditions
ii) and iii) of the second-order result, respectively bound and limit the
growth of the fourth- and sixth-order moments. The regularity condi-
tions i) on p(S) at � = 0 are required for reasons that will be seen
shortly (see Sections III-B and V).

For the optimum signaling structure (2), (3) can be replaced by

I(X;S) =
N(�4 � �22=T )

2M2
�2 + o(�2): (4)

Note that under any reasonable input distribution (and certainly all
practical modulation schemes) the mutual information has no linear
term in � and so the capacity is much less than the known channel case
where the low-SNR expansion of the well-known log det formula has
a nonzero first-order term. Since �4 and �2 are independent of N , (4)
suggests that the capacity increases linearly in the number of receive
antennas. The dependence of the mutual information on M is more
complicated since both the denominator (M2), as well as the numer-
ator (via �2 and �4) depend onM . However, careful analysis will show
that for most practical signal constraints the optimal value is M = 1
transmit antenna.

Finally, note that the mutual information is affine linear in �4 sug-
gesting that it increases as the input becomes more peaky, in good
agreement with the results of [6] and their multiple-antenna general-
izations.
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A. Conditional Entropy Approximation

We compute I(X;S) = h(X) � h(XjS) via the conditional pdf
p(XjS). Given S,X is zero-mean complex Gaussian with covariance
E(XX�jS) = N(IT + �

M
SS�) and so, as in [5]

p(XjS) =
e�trX (I + SS ) X

�NT det(IT + �

M
SS�)

N
: (5)

Here IT denotes a T � T identity matrix. From p(XjS) it is possible
to compute the conditioned entropy h(XjS) directly

h(XjS) = �E log p(XjS)

=NT log � +E log det(IT +
�

M
SS�)N

+EtrX�(IT +
�

M
SS�)�1X

=NT log � +NE log det(IT +
�

M
SS�)

+Etr(IT +
�

M
SS�)�1XX�

(using tr AB = trBA)

=NT log �+NE log det(IT+
�

M
SS�)+EStrNIT

=NT log �e+NE log
i

(1 +
�

M
d2i )

(where d2i are the eigenvalues of SS�)

=NT log �e+NE
i

log(1 +
�

M
d2i ) (6)

�NT log �e+NE
i

(
�

M
d2i �

�2

2M2
d4i ) (7)

=NT log �e+N
�

M
�2 �

N�2

2M2
�4 (8)

since �2 = EtrSS� = E
i
d2i and �4 = Etr(SS�)2 = E

i
d4i .

The approximation step (7) is made assuming that the second-order
approximation

E log 1 +
�

M
d2i � E

�

M
d2i �

�2

2M2
d4i

is valid for each i. Consider the inequality

�

M
d2i�

�2

2M2
d4i � log(1+

�

M
d2i ) �

�

M
d2i�

�2

2M2
d4i+

�3

3M3
d6i

) 0 �
log(1 + �

M
d2i )�( �

M
d2i�

�

2M
d4i )

�2
�

�

3M3
d6i :

(9)

For the second-order approximation to be a valid one the limit of
the expression between the two inequalities in (9) should go to zero in
expectation as � ! 0 for each i. The condition

�Etr(SS�)3 = �E (d2i )
3 ! 0

in the second-order statement of Theorem 1 ensures that this occurs.
The first-order condition �Etr(SS�)2 similarly ensures that �d2i ! 0,
making log(1 + �

M
d2i ) �

�

M
d2i a valid first-order approximation.

B. Entropy Approximation

The pdf p(X) depends on the input distribution p(S). Our regularity
conditions i) on p(S) in Theorem 1 guarantee that the distribution can
be expanded to second order around � = 0 as

p(S) = p(S; 0) + �p0(S; 0) +
�2

2
p00(S; 0) + o(�2):

Also, p(XjS) in (5) is a function whose derivatives with respect to �
at � = 0 may be calculated. These two facts imply that

p(X) = p(S)p(XjS) dS

can also be expanded to second order as

p(X) = p(X; 0) + �p0(X; 0) +
�2

2
p00(X; 0) + o(�2)

where p0(X; 0) and p00(X; 0) are used to denote the first and second
partial derivatives of p(X) with respect to �, respectively, evaluated at
� = 0. Also, to second order

log p(X) � log p(X; 0) + �
p0(X; 0)

p(X; 0)

+
�2

2

p00(X; 0)

p(X; 0)
�

p0(X; 0)

p(X; 0)

2

:

This leads us to the following quadratic approximation:

h(X) = � p(X) log p(X) dX

� � p(X; 0) log p(X; 0) dX

� � p0(X; 0) log p(X; 0) + p0(X; 0) dX

�
�2

2
p00(X; 0) + (p0(X;0))2=p(X;0)

+ p00(X; 0) log p(X; 0) dX: (10)

We now claim that the integrals in (10) involving the second deriva-
tive p00(X; 0) are equal to zero.

First, note that

p(X; 0) + �p0(X; 0) +
�2

2
p00(X; 0) + o(�2) dX = 1:

Comparing coefficients of �n on both sides we conclude

p(n)(X; 0) dX = 0; n = 1; 2: (11)

Also, since S,H , and V are independent, (1) implies that

EtrXX� =Etr
�

M
SHH�S� +

�

M
EtrSHV �

+
�

M
EtrVH�S� +EtrV V �

=
�

M
trEHH�S�S + 0 + 0 + trNIT

=
�

M
trNIMES

�S +NT

=N(��2=M + T ): (12)

Thus,

trXX� p(X; 0) + �p0(X; 0) +
�2

2
p00(X; 0) + o(�2) dX

= N(��2=M + T ):

Comparing coefficients of �n of on both sides

trX�Xp(X;0) dX =NT

trX�Xp0(X;0) dX =N�2=M

trX�Xp00(X;0) dX =0:

Now p(X; 0) = e

�
and so

log p(X; 0) = �trX�X �NT log �:
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Hence the zeroth-order term in (10) is

p(X; 0) log p(X; 0) dX

= � p(X; 0)trX�X dX �NT log � p(X; 0) dX

= �NT �NT log �

= �NT log �e: (13)

Similarly

p0(X; 0) log p(X; 0) dX = �N�2=M

and

p00(X; 0) log p(X; 0) dX =0:

The preceding calculations combined with (10) lead to

h(X)�NT log �e+�N�2=M�
�2

2
(p0(X;0))2=p(X;0)dX: (14)

This shows that to express h(X) to second order, it suffices to cal-
culate only the first derivative of p(X) at � = 0. We use the following
result, proved in the Appendix.

Lemma 1: For the model (1), the first derivative of the pdf of X
evaluated at � = 0 is given by

p0(X; 0) =
e�trX X

M�NT
(trX�PX �N�2)

where P = ESS�.

This gives us

(p0(X;0))2

p(X; 0)
dX

=
e�trX X

M2�NT
(trX�PX �N�2)

2 dX

=
1

M2
[EG(trG

�PG)2 � 2N�2EGtrG
�PG+N2�22 ] (15)

where G is a T �M random matrix having the pdf p(G) = e

�

and EG denotes expectation over the random variable G.
To proceed we use the following lemma proved in the Appendix.

Lemma 2: If G is a T � N matrix with independent zero-mean
unit-variance complex Gaussian entries, then

• EGtrG�PG = N�2;
• EG(trG�PG)2 = N2�22 + NtrP 2;

for any T � T deterministic matrix P satisfying trP = �2.

For P = ESS�, from (15) and Lemma 2 we have

(p0(X;0))2

p(X; 0)
dX

=
1

M2
N2�22 +Ntr (ESS�)2 � 2N�2N�2 +N2�22

=
N

M2
tr (ESS�)2 :

Hence,

h(X) � NT log �e+N�2=M� �
N

2M2
tr (ESS�)2 �2

from (14) and this together with (8) gives

I(X;S) =h(X)� h(XjS)

� (NT log �e+N�2=M� �
N

2M2
tr (ESS�)2 �2)

� (NT log �e+N�2=M� �
N�4
2M2

�2)

=
Ntr E(SS�)2 � (ESS�)2

2M2
�2 (16)

as stated in Theorem 1.
We remark that to show the first-order result I(X;S) = o(�) we

only require first-order expansions of p(X) and h(X), and so the con-
ditions stated in the first-order result of Theorem 1 suffice.

In the special capacity-optimizing case of S = �D, we have

E(SS�)ij=E(�D
2��)ij

=E
k

�ikd
2

k�jk (d2k are both the diagonal entries of

D2 and the eigenvalues of SS�)

=
k

E[d2k]E �ik�jk (since � andD are independent):

The expectationE �ik�jk is evaluated by noticing that the expec-
tation is unchanged by adding T �M orthonormal columns to � to
make it a T � T unitary, denoted say by 	 = ( ij). Then using the
relation 		� = IM we have

T

k=1

 ik jk = �ij :

Taking expectations of both sides and using the fact that each entry
of 	 has the same distribution, gives us

E  ik jk =
�ij
T
; for k = 1 to T:

This implies E �ik�jk =
�

T
for k = 1 toM .

Hence,

E(SS�)ij =
�ij
T

k

E[d2k]

=
�ij
T
�2:

In other words, ESS� = �

T
IT , and so tr(ESS�)2 = �22=T . This

in (16) gives

I(X;S) =
N(�4 � �22=T )

2M2
�2 + o(�2):

IV. EXAMPLES

We now compute the low-SNR mutual information for some cases
of interest.

A. Gaussian Modulation

Suppose the transmitted signal S has independent zero-mean unit-
variance complex Gaussian entries. Then

(ESS�)ij =
k

Esiksjk =M�ij

so that ESS� =MIT . In the Appendix , we show that for a Gaussian
matrix, �4 = E(tr(SS�)2) = MT (M + T ) and so

1

T
I(X;S) =

N�2

2M2T
(MT (M + T )� (TM)2=T ) + o(�2)

=
NT

2M
�2 + o(�2):
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This has two interesting ramifications. First, the capacity per channel
use increases linearly in T (I(X;S) is actually quadratic in T ) and,
second, the optimal number of transmit antennas isM = 1.

B. Unitary Space–Time Modulation

In this scheme, we let S = �
p
T (where � has an isotropic unitary

distribution), which gives �2 = TM and �4 = T 2M . Using this in (4)
yields

1

T
I(X;S) =

N(T �M)

2M
�2 + o(�2)

which is strictly less than the Gaussian case. Again, the optimal number
of transmit antennas is M = 1.

C. Training-Based Schemes

In these schemes, we have

S =
S�
Sd

where S� is a T� � M fixed training matrix and Sd is a Td � M
zero-mean random matrix. Furthermore

trS��S� =�2;� ;EtrSdS
�

d=�2;d; �2;� + �2;d=�2; T� + Td=T:

Under these conditions it can be readily shown that

tr(ESS�)2 =tr(S�S
�

� )
2 + tr(ESdS

�

d)
2

and

trE(SS�)2 =tr(S�S
�

� )
2 + trE(SdS

�

d)
2:

Therefore, using (3), we obtain

I(X;S) =
Ntr[E(SdS

�

d)
2 � (ESdS

�

d)
2]

2M2
�2 + o(�2): (17)

The latter equation shows that the mutual information is independent
of S� . In fact, the right-hand side of (17) is just the mutual information
of a systemwith coherence intervalTd = T�T� . Thus, in the low-SNR
regime, training actually contributes a rate reduction proportional to
the fraction of time that one is sending the training symbols. One may
contrast this with the result of [15] which shows that training-based
schemes achieve capacity at high SNR.

V. OPTIMAL SIGNALING

In this section, we shall optimize (4) to determine what kind of sig-
naling should be applied to maximize the mutual information between
the transmitted and received signals. It is known that, under the stan-
dard power (second-order) constraint, capacity approaches up to first
order the capacity of a channel where the channel matrix is perfectly
known to the receiver. This is achieved by a peaky input distribution
[6].

We can show this is also the case for the multiple-antenna channel
as follows. For any � > 1 and assuming � < 1, define our transmitted
signal to satisfy

SS� =
A; w.p. ��

0T�T ; w.p. 1� ��

where

A = T���
IM 0M�(T�M)

0(T�M)�M 0(T�M)�(T�M)
: (18)

Then S satisfies the power constraint

EtrSS� = tr(T���IM)� �� = TM:

Note that the above distribution does not satisfy the regularity condi-
tions i) of Theorem 1.

Then from (6)

h(XjS) =NT log�e+NE log det(IT +
�

M
SS�)

=NT log �e+N�� log(1 +
�

M
T���)M

�NT log �e+N��M log
T

M
�1�� as �1�� is large

=NT log �e+NM��[(1� �) log �+ log(T=M)]

=NT log �e+ o(�); since � > 1:

Also, we have

p(X) = ��
e�trX (I + A) X

�NT det(IT + �

M
A)N

+ (1� ��)
e�trX X

�NT
: (19)

For � small and � > 1, �� is small while �1�� is large. Hence, in the
first term of (19), the determinant in the denominator is

1 +
�

M
T���

MN

� �MN(1��)

which is large while the numerator is bounded above by 1. Therefore,
the second term is much larger than the first and so

h(X) = �E log p(X)

� �E log(1� ��)
e�trX X

�NT

= � log(1� ��) +EtrX�X +NT log �

� �� +NT log � +EtrX�X

=NT log � +NT (�+ 1) + �� using (12)

=NT (log�e+ �) + o(�):

Then I(X;S)=T = N�+ o(�), so the first-order term corresponds
to that of the capacity when the channel is known, equal to

E log det I +
�

M
HH� = N�+ o(�):

However, such signals cannot be used in practice and so we shall con-
sider signals that are peak constrained or have a fourth-order moment
constraint.

A. Fourth-Order Moment Constraint

Suppose we enforce the fourth-order moment constraint �4 � K�22
for some positive constant K . This may be a practical constraint to
impose but as mentioned in [7] a bounded fourth-order moment will
not lead to mutual information optimality at low SNR.

By the root mean square–arithmetic mean inequality we have

M

i=1

d4i � 1

M

M

i=1

d2i

2

from which we conclude �4 � �22=M . Also, T � M as stated in
Section II and so �4 � �22=T . Hence, we require that K > 1=M �
1=T .

Then �4 � �22=T � (K � 1=T )�22 and as K � 1=T > 0, from
(4) it follows that maximizing the mutual information is equivalent to
maximizing �2. We therefore have the following result.

Theorem 2: Consider the model (1) and suppose that the input
signal must satisfy the constraints �2 � TM and �4 � K�22 . Then,
to second order, the mutual information is maximized by any input
distribution that simultaneously achieves �2 = TM and �4 = K�22
and is given by

1

T
I(X;S) =

N(K � 1=T )T

2
�2 + o(�2): (20)
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One distribution that achieves this is given by (2) where

(d21; d
2
2; . . . ; d

2
M)

=
(TKM; TKM; . . . ; TKM); w.p. 1=(KM)

(0; 0; . . . ; 0); w.p. 1� 1=(KM).

Note here that the optimal mutual information (per channel use) is
independent of the number of transmit antennas and is proportional to
both N and T .

B. Peak Constraint

Due to the isotropic unitary matrix in (2) it is not possible to di-
rectly enforce a peak constraint on the transmitted signals. However,
it is possible to force a maximum constraint on the diagonal entries
of D (the singular values of S). Thus, assume that d2i � K for some
positive constant K and for all i. For any fixed M , we wish to max-
imize �4 � �22=T subject to the constraint �2 � Pmax. We also have
�2 = E

M

i=1 d
2
i � MK . Now

�4 � �22=T =E

M

i=1

d4i � �22=T

�KE

M

i=1

d2i � �22=T

= �2(K � �2=T ) (21)

with equality iff all the di’s are equal to 0 orK . This quantity is maxi-
mized at either �2 = TK=2, �2 = Pmax, or �2 = MK , depending on
which of the three quantities TK=2, Pmax, or MK is smallest. This
leads to

�4 � �22=T �

TK2=4; if L = TK=2

Pmax(K � Pmax=T ); if L = Pmax

MK2(T �M)=T; if L = MK

(22)

where L = minfTK=2; Pmax;MKg. Equality holds in (22) when �2
is set to minfTK=2; Pmax;MKg. Corresponding distributions that
achieve equality are

(d21; d
2
2; . . . ; d

2
M) =

(K;K; . . . ; K); w.p. minf1; T=2Mg

(0; 0; . . . ; 0); w.p. 1�minf1; T=2Mg

(23)

and

(d21; d
2
2; . . . ; d

2
M)=

(K;K; . . . ; K); w.p. minf1; Pmax=MKg

(0; 0; . . . ; 0); w.p. 1�minf1; Pmax=MKg

(24)

depending onwhetherPmax � TK=2 orPmax < TK=2, respectively.
The mutual information bounds are

I(X;S)�

NTK2�2=8M2; if L=TK=2

NPmax(K�Pmax=T )�
2=2M2; if L=Pmax

NK2(T�M)�2=2TM; if L=MK.

Note that all the above bounds are decreasing functions ofM . There-
fore, it is clear that the optimal choice of transmit antennas isM = 1.
Since it is most likely thatK < Pmax (that is, L = MK = K unless
T = 1 in which case L = TK=2 = K=2), we have the following
theorem.

Theorem 3: In the model (1) with optimal signaling as in (2) sup-
pose the diagonal entries di ofD satisfy d2i < K for all i, whereK is
some constant less than Pmax. Then, for asymptotically low SNR, the

optimal number of transmit antennas isM = 1 and the optimal mutual
information is

1

T
I(X;S) =

NK (T�1)
2T

�2 + o(�2); if T > 1
NK

8
�2 + o(�2); if T = 1.

One distribution that achieves this is given in (2), where the diagonal
entries ofD2 are given by (23) or (24) depending on whether Pmax �
TK=2 or Pmax < TK=2, respectively.

VI. CONCLUSION

For the block-fading multiple-antenna channel model in which
the channel is unknown to the transmitter and receiver, the low-SNR
asymptotic mutual information has a quadratic leading term. This
mutual information may be maximized by using one transmit antenna,
many receive antennas, and with on–off signaling. When there is a
maximum constraint on the singular values of the transmit signal, it
is possible to obtain a higher capacity by lowering the signal power
from its maximum allowed level.

APPENDIX

Here we prove the lemmas used in the main sections.

Lemma 1: For the model (1), the first derivative of the pdf of X
evaluated at � = 0 is given by

p0(X; 0) =
e�trX X

M�NT
(trX�PX �N�2)

where P = ESS�.
Proof: We first approximate p(XjS) to first order in �. Ex-

panding the numerator to first order

e�trX (I + SS ) X � e�trX (I � SS )X

= e�trX Xetr( X SS X)

� e�trX X 1 +
�

M
trX�SS�X :

To expand the denominator we use

det(I + �A) = elog det(I+�A)

= etr log(I+�A)

� etr(�A)

� 1 + tr(�A)

so that

det IT +
�

M
SS�

�N

� 1 +
�

M
trSS�

�N

� 1�
�N

M
trSS�:

Putting everything together

p(XjS) �
e�trX X

�NT
1 +

�

M
trX�SS�X 1�

�N

M
trSS�

and by taking the coefficient of � of both sides it follows that

p0(XjS; � = 0) =
e�trX X

M�NT
(trX�SS�X �NtrSS�): (25)

To find p0(X; 0) we take the expectation of (25) over S, leading to
the required result.

Lemma 2: If G is a T � N matrix with independent zero-mean
unit-variance complex Gaussian entries, then

• EGtrG�PG = N�2
• EG(trG�PG)2 = N2�22 + NtrP 2

for any T � T matrix P satisfying trP = �2.
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Proof:

1) Denoting the (i; j)th entries of G and P by gij and pij , respec-
tively, we have

EGtrG
�
PG =EG

i;j;k

gjipjkgki

=
i;j;k

pjkEG[gjigki]

=
i;j;k

pjk�jk

(since gki and gji are independent unless

j = k; in which case the expectation is unity)

=N

j;k

pjk�jk

=N

j

pjj

=NtrP

as required.
2) We have

EG(trG
�
PG)2 =EG

i;j;k

gjipjkgki

2

=EG
i;j;k;l;m;n

gjipjkgkigmlpmngnl

=
j;k;m;n

pjkpmn
i;l

EG [gjigkigmlgnl] :

E[gjigkigmlgnl] will be nonzero only when terms pair up as jgj4

or jgij2jgj j2. This will occur in the following instances:
• j = k = m = n, i = l

• j = k = m = n, i 6= l

• j = k 6= m = n

• j = n 6= k = m, i = l.
Using the Kronecker delta to indicate nonzero terms when all its
subscripts are equal we have

EX(trG�PG)2=
j;k;m;n

pjkpmn
i;l

EX [gjigkigmlgnl]

=
j;k;m;n

pjkpmn
i;l

(2�jkmn�il+�jkmn(1��il)

+ �jk�mn(1��km)+�jn�km(1��kn)�il)

=
j;k;m;n

pjkpmn 2�jkmnN+�jkmn(N
2�N)

+�jk�mn(1��km)N 2+�jn�km(1��kn)N

=2N
j

p
2

jj+(N2�N)
j

p
2

jj+N
2

j;m

pjjpmm

�N2

j

p
2

jj+N

j;k

pjkpkj�N
j

p
2

jj

=N
2

j;m

pjjpmm+N

j;k

pjkpkj

=N
2(trP )2+NtrP 2

;

completing the proof.

The following lemma was used when considering a Gaussian mod-
ulation scheme in Section IV-A.

Lemma 3: Let S be a T �M matrix with independent zero-mean
unit-variance complex Gaussian entries. Then

Etr(SS�)2 = MT (M + T ):

Proof: Denote the (i; j)th entry of S by sij . Then, as the pdf of
the Gaussian matrix S is

p(S) =
e�trS S

�MT

we have

Etr(S�S)2 =
e�trS S

�MT
tr(SS�)2 dS

=
e�trS S

�MT

i;j;k;l

sijskjsklsil dS

=
i;j;k;l

e�trS S

�MT
sijskjsklsil dS:

In this summation, the indices i and k each range from 1 to T while
the indices j and l each range from 1 to N . If both i 6= k and j 6= l,
the integral

e�trS S

�MT
sijskjsklsil dX = 0

as the integrand is an odd function of the variable sij .

Using the elementary integrals e

�
= ds e

�
jsj2 ds = 1,

e

�
jsj4 ds = 2 where the integrals are over s 2 , we have

e�trSS

�MT
tr(S�S)2 dS =

i;j;l

j 6=l

e�trS S

�MT
jsij j

2jsilj
2
dS

+
i;j;k

i6=k

e�trS S

�MT
jsij j

2jskj j
2
dS

+
i;j

e�trS S

�MT
jsij j

4
dS

=
i;j;l

j 6=l

1 +
i;j;k

i6=k

1 +
i;j

2

=TM(M�1)+TM(T�1)+2TM

=MT (M + T );

as required.
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Performance Bounds for Space–Time Block Codes With
Receive Antenna Selection

Xiang Nian Zeng, Student Member, IEEE, and
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Abstract—In this correspondence, we present a comprehensive perfor-
mance analysis of orthogonal space–time block codes (STBCs) with receive
antenna selection. For a given number of receive antennas , we assume
that the receiver uses the best of the available antennas, where, typ-
ically, . The selected antennas are those that maximize the in-
stantaneous received signal-to-noise ratio (SNR). We derive explicit upper
bounds on the bit-error rate (BER) performance of the above system for
any and , and for any number of transmit antennas. We show that
the diversity order, with antenna selection, is maintained as that of the full
complexity system, whereas the deterioration in SNR is upper-bounded by
10 log ( ) decibels. Furthermore, we derive a tighter upper bound
for the BER performance for any and when = 1, and derive an
expression for the exact BER performance for the Alamouti scheme when

= 1. We also present simulation results that validate our analysis.

Index Terms—Antenna selection, multiple-input multiple-output
(MIMO) systems, performance bounds, space–time block codes (STBCs).

I. INTRODUCTION

In a wireless environment, unlike other applications, achieving reli-
able communication is much more challenging due to the possibility
that received signals from multipaths may add destructively, which,
consequently, results in a serious performance degradation. It has been
shown that a key issue to achieving reliable wireless communication
is to employ spatially separated antennas at the transmitter and/or at
the receiver. To this end, several space–time coding schemes have been
developed in recent years, including space–time trellis codes (STTCs)
[1], a simple transmit diversity scheme developed by Alamouti [2],
and space–time block codes (STBCs) developed by Tarokh et al. [3],
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which are essentially a generalization of the Alamouti scheme. How-
ever, among the implications of employing multiple antennas is the as-
sociated increase in the cost of the additional hardware required in the
form of radio frequency (RF) chains, in addition to the constraints im-
posed by the physical limitation of wireless devices.

In an effort to overcome these problems, while utilizing the advan-
tages of using multiple antennas, several papers have appeared recently
in the literature in which the notion of antenna selection was intro-
duced for both STTCs and STBCs [4]–[18]. The idea behind antenna
selection is to use only a subset of the transmit and/or receive an-
tennas in multiple-input multiple-output (MIMO) systems. In [4], the
authors consider the joint transmit and receive antenna selection based
on the second-order channel statistics, which is assumed to be avail-
able to the transmitter. The authors in [5] consider antenna selection
for low-rank matrix channels where selection is done only at the trans-
mitter. In [6], antenna selection is considered only at the transmitter
with the assumption that the channel statistics are available to the trans-
mitter. In [7], Ghrayeb and Duman show that, for full-rank STTCs over
quasi-static fading channels, the diversity order is maintained as that of
the full-complexity system. In [8], Molisch et al. studied the effect of
antenna selection from a channel capacity perspective. It was shown
that only a small loss in capacity is suffered when the receiver uses a
good subset of the available receive antennas. Other work related to
antenna selection for STTCs can be found in [9]–[15].

In [16], the authors consider antenna selection for STBCs at the
transmitter. They demonstrate through computer simulations that the
performance is improved by increasing the number of transmit an-
tennas while keeping the number of selected antennas fixed. [17] con-
siders antenna selection for MIMO systems employing three transmit
and one receive antennas. They introduce an algorithm for selecting
the best two transmit antennas based on the channel statistics provided
by the receiver. In [18], the authors consider antenna selection at the
transmitter (with full knowledge of the channel statistics) or at the re-
ceiver for orthogonal STBCs with particular emphasis on the Alamouti
scheme [2]. In their analysis, they adopt a selection criterion that max-
imizes the channel Frobenius norm and, accordingly, derive expres-
sions for the improvement in the average signal-to-noise ratio (SNR)
and outage capacity. They use the outage probability analysis to argue
that the spatial diversity, when the underlying space–time code is or-
thogonal, is maintained with antenna selection. They do not, however,
investigate the direct impact of antenna selection on the bit-error rate
(BER) performance, which is the focus of this work.

In [19], the authors propose a new scheme that involves using hybrid
selection/maximal-ratio transmission where the transmitter uses a good
subset of the available antennas and the receiver uses maximum-ratio
combining. They investigate this scheme in terms of signal-to-noise
ratio (SNR), BER, and capacity. They demonstrate the effectiveness of
their scheme relative to already existing schemes. The same scheme
was also treated in [20] but when the transmitter selects the best single
antenna. Other schemes that use hybrid selection/maximal-ratio com-
bining were also considered in [21]–[24]. A nice overview of antenna
selection for MIMO systems can be found in [25].

In this correspondence, we present a comprehensive performance
analysis of STBCswith receive antenna selection.We limit our analysis
to orthogonal STBCs simply because they are easy to design and they
achieve the maximum diversity order possible for a given number of
transmit/receive antennas. In our analysis, we assume that, for a given
number of receive antennas M , the receiver uses L out of the avail-
ableM antennas where the selected antennas are those whose instan-
taneous SNRs are largest. This is achieved by comparing the sums of
the magnitude squares of the fading coefficients at each receive antenna
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