
 Open access Proceedings Article DOI:10.1145/97444.97683

Analysis of multithreaded architectures for parallel computing — Source link

R. Saavedra-Barrera, David E. Culler, T. von Eicken

Institutions: University of California, Berkeley

Published on: 01 May 1990 - ACM Symposium on Parallel Algorithms and Architectures

Topics: Temporal multithreading, Multithreading and Cache

Related papers:

 Performance tradeoffs in multithreaded processors

 The Tera computer system

 Exploring The Benefits Of Multiple Hardware Contexts In A Multiprocessor Architecture: Preliminary Results

 APRIL: a processor architecture for multiprocessing

 Comparative evaluation of latency reducing and tolerating techniques

Share this paper:

View more about this paper here: https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-
58pbg128w5

https://typeset.io/
https://www.doi.org/10.1145/97444.97683
https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5
https://typeset.io/authors/r-saavedra-barrera-3x8mbhebiw
https://typeset.io/authors/david-e-culler-2xrgqofgag
https://typeset.io/authors/t-von-eicken-3n6agzowqi
https://typeset.io/institutions/university-of-california-berkeley-24veh4gb
https://typeset.io/conferences/acm-symposium-on-parallel-algorithms-and-architectures-3q4aixva
https://typeset.io/topics/temporal-multithreading-htfqm4c3
https://typeset.io/topics/multithreading-1ucs9aoi
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/papers/performance-tradeoffs-in-multithreaded-processors-iof574yx2f
https://typeset.io/papers/the-tera-computer-system-3tyxu8hj1f
https://typeset.io/papers/exploring-the-benefits-of-multiple-hardware-contexts-in-a-5fjz6yvttr
https://typeset.io/papers/april-a-processor-architecture-for-multiprocessing-53zs08iwk6
https://typeset.io/papers/comparative-evaluation-of-latency-reducing-and-tolerating-3ezh3c006z
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5
https://twitter.com/intent/tweet?text=Analysis%20of%20multithreaded%20architectures%20for%20parallel%20computing&url=https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5
https://typeset.io/papers/analysis-of-multithreaded-architectures-for-parallel-58pbg128w5

Analysis of Multithreaded Architectures for Parallel
Computing

Rafael H. Saavedra-Barrera

David E. Culler
Thorsten von Eicken

Computer Science Division
University of California

Berkeley, California 94720

Abstract

Multithreading has been proposed as an architectural stra-
tegy for tolerating latency in multiprocessors and, through lim-
ited empirical studies, shown to offer promise. This paper
develops an analytical model of multithreaded processor
behavior based on a small set of architectural and program
parameters. The model gives rise to a large Markov chain,
which is solved to obtain a formula for processor efficiency in
terms of the number of threads per processor, the remote refer-
ence rate, the latency, and the cost of switching between threads.
It is shown that a multithreaded processor exhibits three operat-
ing regimes: linear (efficiency is proportional to the number of
threads), transition, and saturation (efficiency depends only on
the remote reference rate and switch cost). Formulae for regime
boundaries are derived. The model is embellished to reflect
cache degradation due to multithreading, using an analytical
model of cache behavior, demonstrating that returns diminish as
the number threads becomes large. Predictions from the embel-
lished model correlate well with published empirical measure-
ments. Prescriptive use of the model under various scenarios
indicates that multithreading is effective, but the number of use-
ful threads per processor is fairly small.

1. Introduction

Memory latency, the time required to initiate, process,
and return the result of a memory request, has always been the
bane of high-performance computer architecture, and it is espe-
cially critical in large-scale multiprocessors. Many processor
cycles may elapse while a request is communicated among phy-
sically remote modules, in addition to those lost during the
memory access. For scalable architectures, communication
latency will generally increase with the number of modules, due
to the depth of the network, and may be quite unpredictable, due
to network contention. Thus, the architectural challenge is to
minimize the fraction of processor cycles wasted due to long-
latency requests. There are two obvious alternatives: avoid
latency or tolerate it. In other words, we may attempt to reduce
the number of such requests or perform other useful work while
requests are outstanding. In uniprocessors, the former is realized
by caches [Smit82] and the latter by dynamic hazard resolution
logic [Ande67, Russ78]. Unfortunately, neither of these
approaches extends trivially to large-scale multiprocessors
[Arvi87].

The latency avoidance strategy embodied in caches is
attractive for multiprocessors because local copies of shared data
are produced on demand. However, this replication leads to a
thorny problem of maintaining a coherent image of the memory
[Good83, Arga88]. Concrete solutions exist for small bus-based
multiprocessors, but even these involve considerable complexity
and observed miss rates on shared data are fairly high [Egge88].
Approaches that do not provide automatic replication can be
expected to make a larger number of long-latency requests.

Several recent architectures adopt the alternative strategy
of tolerating latency. These can be loosely classified as mul-
tithreaded architectures, because each processor supports several
active threads of computation. While some threads are
suspended, awaiting completion of a long-latency request, the
processor can continue servicing the other threads. Dataflow
architectures are an extreme example: the processor maintains a
queue of enabled instructions and, in each cycle, removes an
instruction from this queue and dispatches it into the instruction
pipeline. A number of more conservative architectures have
been proposed that maintain the state of several conventional
instruction streams and switch among these based on some
event, either every instruction [Hals88, Smit78, This88], every
load instruction [Ianu88, Nikh89], or every cache miss
[Webe89]. While the approach is conceptually appealing, the
available evidence for its effectiveness is drawn from a small
sample of programs under hypothetical implementations
[Arvi88, Ianu88, Webe89]. No coherent framework for evaluat-
ing these architectures has emerged.

In this paper, we develop a simple analytical model of
multithreaded architectures in order to understand the potential
gains offered by the approach and its fundamental limitations.
For example, what latency and remote reference rates justify
multithreading, how many threads must be supported to achieve
a significant improvement, and what are the trade-offs between
increased tolerance and degraded cache performance due to
increasing the number of threads. Our model is based on four
parameters: the latency incurred on a remote reference (L), the
number of threads that can be interleaved (N), the cycles lost in
performing a switch (C), and the interval between switches trig-
gered by remote references (R). L , N , and C are basic machine
parameters, determined by the interconnection between modules,
the amount of processor state devoted to maintaining active
threads, and the implementation of the switch mechanism,
respectively. R reflects a combination of program behavior and
memory system design.

2

The basic architectural model is presented in Section 2.
To develop a general understanding of the bahavior of mul-
tithreaded architectures, Section 3 analyzes the model under the
assumption that the remote reference interval is fixed. A simple
calculation shows that, for a given latency L , the efficiency of
processor increases linearly with the number of threads up to a
saturation point and is constant beyond that point. To provide a
more realistic prediction of the processor behavior, in Section 4
we assume the remote reference interval has a geometric distri-
bution and arrive at a Markov chain giving the efficiency as a
function of N , C , L and the mean value of R . The size of this
chain is extremely large, making direct numerical solutions
infeasible, however, an exact solution is obtained. It gives a
more accurate estimate of the processor efficiency and identifies
the transition region between linear improvement and saturation.
We can see how increasing the number of contexts enlarges the
saturation region, with respect to L , and that the effects of
switching overhead are most pronounced in saturation.

To make the model still more realistic, in Section 5 we
embellish it to include the effects of per-processor cache degra-
dation due to competing threads. In this case, the processor effi-
ciency improves more slowly with the number of contexts, for a
given latency, and reaches a peak, from which it may drop with
further increase in N . Section 6 compares predictions of the
model with published measurements obtained through trace-
driven simulation, showing the correlation to be quite good.
Section 7 employs the model to determine maximum improve-
ment, net gain, and points of diminishing return under various
operating assumptions in multithreaded architectures. To the
extent that these predictions can be verified, this analytic
approach deepens our understanding of the behavior of this new
class of machines.

2. Multithreaded Processor Model

In this section, we present the architectural model and
definitions used throughout the paper. We focus on one proces-
sor in a multiprocessor configuration and ignore issues of
synchronization[Arvi87]. In addition, we assume the latency in
processing a request is determined primarily by the machine
structure and minimally affected by program behavior, so it is
considered constant. We also assume that many outstanding
requests can be issued and will be processed in a pipelined
fashion. We say nothing about how multiple threads are actually
supported by the processor and assume only that there are N of
them per processor and it takes a constant time C to switch from
one to another. A thread is represented by a context, consisting
of a program counter, a register set, and whatever context status
words. The model is optimistic, in that it assumes sufficient
parallelism exists throughout the computation.

A conventional single-threaded processor will wait during
a remote reference, so we may say it is idle for a period of time
L . A multithreaded processor, on the other hand, will suspend
the current context and switch to another, so after some fixed
number of cycles it will again be busy doing useful work, even
though the remote reference is outstanding. Only if all the con-
texts are suspended (blocked), will the processor be idle.
Clearly, the objective is to maximize the fraction of time that the
processor is busy, so we will use the efficiency of the processor
as our performance index, given by

ε =
Busy + Switching + Idle

Busy��������������������� , (1)

where Busy , Switching , and Idle represent the amount of time,
measured over some large interval, that the processor is in the

corresponding state. The basic idea behind a multithreaded
machine is to interleave the execution of several contexts in
order to dramatically reduce the value of Idle , but without
overly increasing the magnitude of Switching .

The state of a processor is determined by the disposition
of the various contexts on the processor. During its lifetime, a
context cycles through the following states: ready, running, leav-
ing, and blocked. There can be at most one context running or
leaving. A processor is busy, if there is a context in the running
state; it is switching while making the transition from one con-
text to another, i.e., when a context is leaving. Otherwise, all
contexts are blocked and we say the processor is idle. A running
context keeps the processor busy until it issues an operation that
requires a context switch. The context then spends C cycles in
the leaving state, then goes into the blocked state for L cycles,
and finally re-enters the ready state. Eventually the processor
will choose it and the cycle will start again.

This general model can be applied to several different
multithreaded architectures, with varying switching policies.
We briefly present three examples and give an interpretation of
the run length and memory latency for each. First, suppose a
context is preempted when it causes a cache miss. In this case,
R is taken to be the average interval between misses (in cycles)
and L the time to satisfy the miss. Here, the processor switches
contexts only when it is certain that the current one will be
delayed for a significant number of cycles. A more conservative
approach is to switch on every load, independent of whether it
will cause a miss or not. In this case, R represents the average
interval between loads. Our general multithreading model
assumes that a context is blocked for L cycles after every switch,
but in the case of a "switch on load" processor this only happens
if the load causes a cache miss. The general model can be
employed, if we postulate that there are two sources of latency
(L 1 and L 2) each having a particular probability (p 1 and p 2) of
occurring on every switch. If L 1 represents the latency on a
cache miss, then p 1 corresponds to what is normally referred as
the miss ratio. L 2 is a zero cycle memory latency with probabil-
ity p 2. Finally, consider a processor that switches on every
instruction, independent of whether it is a load or not ("switch
always"). As in the case of the "switch on load" processor, we
create two sources of latency, L 1, representing a cache miss
latency, with p 1 being the probability of a cache miss per
instruction. The analysis in this paper is in terms of the general
model, however, some of the examples assume a "switch on
miss" processor.

3. Concepts and Preliminary Analysis

In order to introduce the basic concepts and terminology,
we first assume the context transition times, R and C , are con-
stant. In later sections, we consider more realistic conditions. A
single-threaded processor executes a context until a remote refer-
ence is issued (R cycles) and then is idle until the reference com-
pletes (L cycles), before continuing. There is no context switch
and, obviously, no switch overhead. We can model this behavior
as an alternating renewal process having a cycle of R + L . In
terms of eq. (1), R and L correspond to the amount of time dur-
ing a cycle that the processor is Busy and Idle , respectively.
Thus, the efficiency of the single-threaded machine is given by

ε1 =
R + L

R������ =
1 + L /R

1������� . (2)

This shows clearly the performance degradation of such a pro-
cessor in a parallel system with large memory latency.

3

With multiple contexts, memory latency can be hidden by
switching to a new context, but we assume the switch takes C
cycles of overhead. Assuming the run length between switches
is constant, with a sufficient number of contexts there is always a
context ready to execute when a switch occurs, so the processor
is never idle. In this case, we say the processor is saturated.
The cycle of the renewal process in this case is R + C , and the
efficiency is simply

εsat =
R + C

R������ =
1 + C /R

1������� . (3)

Observe, that the efficiency in saturation is independent of the
latency and also does not change with a further increase in the
number of contexts. Saturation is achieved when the time the
processor spends servicing the other threads exceeds the time to
process a request, i.e., when (N − 1)(R + C) > L . This gives the
saturation point, under constant run length, as

Nd =
R + C

L������ + 1. (4)

When the number of contexts is below the saturation
point, there may be no ready contexts after a context switch, so
the processor will experience idle cycles. The time to switch to a
ready context, execute it until a remote reference is issued, and
process the reference is equal to R + C + L . Assuming N is
below the saturation point, during this time all the other contexts
have a turn in the processor. Thus, the efficiency is given by

εlin =
R + C + L

NR��������� .

Observe, the efficiency increases linearly with the number
of contexts until the saturation point is reached and beyond that
remains constant. The equation for εsat gives the fundamental
limit on the efficiency of a multithreaded processor and under-
lines the importance of the ratio C /R . Unless the context switch
is extremely cheap, the remote reference rate must be kept low.

4. Analysis with Stochastic Run Lengths

In this section, we improve the basic model by assuming
the run length of a context (R) is a random variable having a
geometric distribution; i.e., the probability of executing an
instruction that will trigger a context switch is p = 1/R . We
present an exact solution to the Markov chain and compare it to
the solution of the simple model above.

The behavior of a multithreaded processor is conveniently
represented by a Petri net diagram as in Figure 1. The circles
represent places, and the boxes transitions. Four of the five
places correspond directly to the four context states; place A is
used to enforce the constraint that only one context can be run-
ning or leaving. Note that transition E is immediate, while tran-
sitions C and L are deterministic (black rectangle). The sto-
chastic transition R associated with the running state of a context
is shown as a white rectangle.

4.1. An Exact Solution to the Markov Chain

By computing the reachability set of a Petri net we obtain
the Markov chain, which can be solved numerically to obtain the
efficiency for specific values of N , R , C , and L . However, it is
computationally unfeasible to obtain a solution when the number
of contexts is not small; the number of states in the reachability
set is too large. The exact number of states is given by

States = 1 + L + C +
i =2
Σ
N �

� i
L − (i − 2)C �

�.

Running

Leaving

Blocked

Running

Leaving

Blocked

R

C

L

R

C

L L

C

R

A A A

ReadyReadyReady

(c)(b)(a)

E E E

Figure 1: A Petri net representing the three states of the mul-

tithreaded processor. In (a) the processor is busy; in (b)

the processor is switching; and in (c) the processor is

idle.

For example, with a latency of 128 cycles, a context switch time
of 2 cycles, and 4 contexts, the Markov chain has more than 9
million states. Fortunately, we have found the exact solution to
the limiting probabilities. The main steps in the derivation are
sketched below; details can be found in [Saav90].

Although the number of equations in the transition matrix
for the Markov chain is very large, there are several patterns
present in this particular system that makes it possible to reduce
all equations to a new system having only one unknown. Let the
limiting probability for the this state be π1. We group all the
limiting probabilities that represent the same processor state
together (Busy , Switching , or Idle) and arbitrarily set π1 = 1.
We then get the following particular solution to the set of equa-
tions given by the transition matrix

ΠBusy = 1 +
k =1
Σ

N −1

j =1
Σ
C �

� k − 1
L − (k − 1)C − j �

� (1 − p)(C +1)(k −1) + j

p k
���������������� +

k =1
Σ

N −1 �
� k
L − kC �

� (1 − p)(C +1)k

p k
����������� , (5)

ΠSwitching =
j =1
Σ
C

(1 − p) j

p������� + C
�
� N − 1
L − (N − 1)C �

� (1 − p)(C +1)(N −1)

p N
�������������� +

k =1
Σ

N −2

j =1
Σ
C �

� k
L − kC − j �

� (1 − p)(C +1)k + j

p k +1
������������� + (6)

+
j =1
Σ
C

i =1
Σ

C − j �
� (N − 2)
L − (N − 2)C − i − j �

� (1 − p)(C +1)(N −2) + i + j

p N
������������������ +

k =1
Σ

N −2

j =1
Σ
C

i =1
Σ
C �

� k − 1
L − (k − 1)C − i − j �

� (1 − p)(C +1)k + i + j

p k +1
��������������� ,

ΠIdle = �
� N
L − (N − 1)C �

� (1 − p)(C +1)(N −1)

p N
�������������� . (7)

By replacing eqs. (5)-(7) into (1) we effectively eliminate π1.

4

This gives us the following expression for the efficiency

ε =
ΠBusy + ΠSwitching + ΠIdle

ΠBusy��������������������� .

These equations are only valid when L > C , but is not a serious
restriction, since it does not make sense to build a multithreaded
machine that takes more time to switch contexts than the
memory latency it attempts to hide1. Using eqs. (5)-(7), it is
straightforward to compute the efficiency for complex systems
with many contexts, large run lengths and long memory laten-
cies.

4.2. A Better Approximation to the Saturation Point

It is easy to see that eq. (4) is a first-order approximation
to the saturation point in the case of stochastic run lengths; it
only considers the average run length of a context. However, as
shown by figure 2, the efficiency we obtain using Nd may be
well below that in saturation. We can get a much better approxi-
mation using information about the distribution of the run
lengths. Essentially, we must determine the number of contexts
required to reduce the probability that the processor is idle below
some threshold. Knowing that a geometric random variable with
mean p has variance (1 − p)/p 2 = R (R − 1)) and making some
simplifications [Saav90], we obtain a quadratic equation for the
new approximate saturation point (Ns). The solution is

Ns =
�
�
� 2(R + C)

αR + ((αR)2 + 4(R + C) L)1/2
������������������������

�
�
�

2

+ 1. (8)

Variable α gives the level of the ‘confidence’ (in the sense of the
number of standard deviations considered), that the processor
will not enter the idle state.

Equation (8) was obtained by attempting to minimize the
probability of entering the Idle state. However, what really
interests us is the fraction of the maximum efficiency that Ns

contexts provide. We obtain this by using (8) in the formulae for
the efficiency given by eqs (5)-(7) and comparing it to the max-
imum efficiency given by (3). Substituting the expression for Ns

with α = 1, the value obtained for the efficiency is more than
95% the efficiency in saturation; if α is increased to 1.5, this
efficiency is more than 99% of that in saturation. When α = 0,
(8) reduces to (4).

4.3. Comparing the Approximate and Exact Solutions

Intuitively, we expect the solution of the deterministic
model to match well with the stochastic solution far from the
transition region with a maximum separation in the transition
itself. In figure 2, we plot both solutions as a function of N .
The latency is 128 cycles; the probability of context switching
.0625 (R = 16); and the context switch time 2 cycles. In this
case, the maximum efficiency of the processor is .888. The
saturation point (Nd) predicted by the deterministic model is
located at 8 contexts. This corresponds to a real efficiency of
.743 which is only 84% of the actual maximum. In contrast, Ns

with α = 1.5 equals 13 contexts and its efficiency corresponds to
99% of the maximum.

���������������������
1 However, in a "switch on load" or "switch always" processor condi-

tion L > C may not be true. In these processors L corresponds to the

weighted average of the multiple sources of latency, and even when the re-

mote latency is large the effective latency we obtain can be smaller than a

context switch time.

Number of contexts

E
f
f
i
c
i
e
n
c
y

Nd Ns

Deterministic

Model

Markov Model

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20
2 7 12 17

Figure 2: Efficiency as a function of the number of contexts:

L = 128 cycles, R = 16 cycles, C = 2 cycles. The right-

most curve is obtained from the exact solution to the

Markov chain.

4.4. Latency, Number of Contexts, and Context Switch
Overhead

The utilization expression obtained with the stochastic
model allows a detailed investigation of the behavior of a mul-
tithreaded processor as a function of N , R , L , and C . This is
illustrated in figure 3, where we show utilization curves for a
system in which memory latency is varied from zero to 200
cycles, context switch overhead is either 0, 1, 4, or 16 cycles,
and the number of contexts is 2 and 6 contexts. However, the
qualitative behavior we identified in the simple deterministic
model is present here. (1) The maximum utilization is com-
pletely determined by the ratio C /R ; (2) In the saturation region,
latency is effectively eliminated; (3) The effect of the context
switch overhead is greater in saturation than in the linear regime.
(4) Outside the saturation region, an increase in memory latency
rapidly reduces the utilization of the processor.

5. Dependency of Contexts on Cache Miss Ratio

The next step in our analysis is to consider a more realis-
tic model that takes into account that increasing the number of
contexts running on a processor will have an adverse effect on
the cache miss ratio. A higher number of cache misses will
decrease the run length and possibly increase memory latency
due to higher memory contention. In this section, we modify the
efficiency equations obtained in both the deterministic and sto-
chastic cases to take into account the possible effect of multiple
contexts on the run length. We will assume that each context
uses 1/ N of the total cache, instead of sharing the whole cache
between the contexts. Thus, the total cache size is constant and,
as the number of contexts increases, each context will have a
smaller cache for its own use. This is a ‘middle ground’
assumption. In reality, contexts may interfere constructively or
destructively on shared data. If they do not interfere at all, they
might fit in the cache with unequal partitions.

5

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

E
f
f
i
c
i
e
n
c
y

E
f
f
i
c
i
e
n
c
y

Memory Latency (cycles)Memory Latency (cycles)

0 50 100 150 2000 50 100 150 200

Number of Contexts = 6Number of Contexts = 2

C = 0

C = 1

C = 4

C = 16

C = 0

C = 1

C = 4

C = 16

Figure 3: Efficiency as a function of latency and context switch. For both graphs R = 16 cycles.

On uniprocessors cache misses experienced by an appli-
cation can be classify into four groups: start-up effects, nonsta-
tionary behavior, intrinsic interference, and extrinsic interfer-
ence [Agar89]. The first is caused by initial execution of the
program; the second by changes in the program’s working set;
the third by the size of the cache; and the last one by multipro-
gramming. Only the number of misses due to interference
(intrinsic and extrinsic) increases with a larger number of con-
texts. By assigning independent caches to the contexts we elim-
inate the effect of extrinsic interferences in the miss ratio.
Hence, we only have to consider how the intrinsic interference is
affected2.

Many different techniques have been used to obtain the
performance of caches: trace-driven simulation, hardware meas-
urement, and analytical models [Smit82, Clar83, Agar89]. It has
been observed, although not completely validated, that the miss
ratio (m), as a function of the size of the cache, can be approxi-
mated by m = A S −K , where S is the cache size, and A and K
are positive constants that depend on the workload3. The above
miss ratio formula appears to be valid for caches between 1K
and 256K bytes under uniprocessor execution. We will use this
miss ratio approximation to obtain an expression for the miss
rate rate for N contexts in terms of the miss ratio of one context
using all the cache. For, example, if the total cache size is 256K
���������������������

2 This does not reflects that there may be some minimum miss rate, re-

gardless of cache size, due to communication of data between processors,

but could be easily extended to do so.

3 D. Thiebaut argues in [Thie89] that this relationship
can be explained by considering the program’s execution as
a fractal random walk over the address space. In his model
constant K is related to the fractal’s dimension and this
value depends on the particular intermiss gap distribution
of the program.

bytes the above formula can be used to obtain approximate miss
ratios for up to 128 contexts, each using a cache partition of 2K
bytes, or 4 contexts each using a cache partition of 64K bytes.

Let m (N) be the miss ratio when there are N contexts,
each using a cache of size SN = S 1/ N . An expression for m (N)
can be obtained in the following way

m (N) = A SN
−K = A S 1

−K
�
�
� S 1

SN���
�
�
�

−K

= m (1) N K .

This expression for m (N) is a monotonicly increasing function
and does not take into consideration that the miss ratio cannot be
greater than one. Thus, a better expression for the miss ratio
should be:

m (N) =

�
�
�
�
�

1,

m (1) N K ,

if N >
�
�m (1)−1/K �

	.

if N ≤ �
�m (1)−1/K �

	;

Now, m (1) equals p over the average number of cache queries
per instruction (pload), thus we can easily express the run length
with N contexts as

R (N) =

�
�
�
�
� pload

1����� ,

R (1) N −K ,

if N >
�
�R (1)1/K �

	.

if N ≤ �
�R (1)1/K �

	;
(9)

The smallest possible value for R (N) is the average run length
between loads (1/pload); this is the case when every load misses
on the cache. An estimate of R (1) and K can be obtained from
uniprocessor simulations under different cache sizes.

6

403020100 403020100

403020100 403020100

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
f
f
i
c
i
e
n
c
y

E
f
f
i
c
i
e
n
c
y

Number of Contexts Number of Contexts

cache includedcache ignored

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
f
f
i
c
i
e
n
c
y

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

E
f
f
i
c
i
e
n
c
y

Number of Contexts Number of Contexts

cache includedcache included

K = 0.00 K = 0.20

K = 0.40 K = 0.57

m(1) = .01 m(1) = .04

m(1) = .08

m(1) = .16

m(1) = .01 m(1) = .04

m(1) = .08

m(1) = .16

m(1) = .16

m(1) = .08

m(1) = .04

m(1) = .01m(1) = .01

m(1) = .08

m(1) = .16

m(1) = .04

Np

Np

Ns

Np
Ns

Ns

Np Ns

Np

Ns

(peak)

(99% saturation)

Np
Ns

Ns
Np

Np
Ns

Ns
Np

Ns Np

Ns Np

Np
Ns

Ns

Np

(a) (b)

(c) (d)

Figure 4: Efficiency versus the number of contexts for different values of m (1) and K .

5.1. Results Including Cache Dependency

Equation (9) can be replaced in formulas (2)-(8) to obtain
a new set of equations that reflect how the miss ratio depends on
the number of contexts. Figure 4 compares the processor effi-
ciency computed using the original equations and the new ones
for various values of K . The four curves in each graph assume a
single context miss ratio of 0.01, 0.04, 0.08, and 0.16, a latency
nof 128 cycles, and a context switch cost of 4 cycles. The set of
values for the cache degradation constant, K , are 0.0, 0.2, 0.4,
and 0.57, and the size of the cache is, in the case of a single con-
text, 256K bytes4. We also assume that pload , the fraction of
loads executed in the workload, equals 25 percent.

The graphs in figure 4 indicate that utilization degrades
considerably when the initial miss ratio or the cache degradation
constant is large. When K > 0.0, we observe that the utilization
increases up to some maximum (εpeak) and then drops as N
increases. This maximum value diminishes as K becomes larger
����������������

4 For most programs K lies between .2 and .5, but is not
unusual to find programs with a value as large as the one
we have selected. The large value reflects a scenario where
the miss ratio increases rapidly as the cache size is de-
creased.

and more contexts are needed in order to reach the maximum.
The flat segment in the curve with m (1) = .16 and K = .57
reflects a regime where every query to the cache misses,
(m (N) = 1).

An estimate of the saturation point (N’ sub s) in the pres-
ence of cache degradation is easily obtained using (8) with R
replaced by R(N), as given in (9), by computing the fix-point of
the resulting non-linear equation. (R(N) is monotonically non-
increasing). As demonstrated in figure 4, N’sub s, computed
with lpha = 1.5, is a good predictor of the number of contexts
needed to obtain maximum efficiency (Npeak). Moreover, in
the deterministic model with cache degradation, it can be proved
that the point where the system saturates corresponds exactly to
that of maximum efficiency, independent of the values of m (1)
and K .

6. Comparison with Published Measurements

The analytic model developed above employs only a
crude characterization of program behavior and the machine
organization, so the "proof of the pudding" is the ability to
predict actual behavior. We now compare predictions from our
model against trace-driven simulation results for a multiproces-
sor currently being studied at Stanford [Webe89]. The simulated
architecture consists of several nodes connected via a network.

7

program run length latency cache degradation miss rate loads per

R (1) L K m (1) instruction

LOCUS_ROUTE 156 22 .5747 .0055 .166
P_THOR 50 25 .1988 .0160 .250
MP3D 16 32 .1315 .0350 .786

�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

program switch 1 context 2 contexts 4 contexts

cost Weber Model Weber Model Weber Model

LOCUS_ROUTE 1 0.890 0.876 0.946 0.975 0.946 0.986

4 0.890 0.876 0.948 0.952 0.904 0.946
16 0.890 0.876 0.864 0.867 0.780 0.815

P_THOR 1 0.690 0.666 0.846 0.894 0.882 0.972
4 0.690 0.666 0.824 0.856 0.834 0.904

16 0.690 0.666 0.728 0.723 0.660 0.703

MP3D 1 0.385 0.333 0.550 0.561 0.652 0.837

4 0.385 0.333 0.536 0.527 0.612 0.744
16 0.385 0.333 0.470 0.421 0.410 0.455

�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1: Comparison between trace-driven simulation and the stochastic model modified to include the cache degradation due to the number
of contexts. The first table gives the relevant parameters needed for our equations.

Each node consists of a processor supporting some number of
contexts, a direct-mapped instruction and data cache of size 64K
bytes, a fraction of the global memory, and a network interface.
The caches are maintained consistent by a directory-based cache
coherency protocol. A context executes until it requires infor-
mation not available in its processor cache or attempts to write
data marked "read-shared".

Restating measurements presented in [Webe89] in terms
of our model we obtain values for the relevant parameters shown
in the top portion of table 1. These are used as input for our
model and the comparison with reported simulation results is
presented in the remainder of table 1.

The predictions are within 10% of the reported simulation
results, except on MP3D, for 4 contexts and a small context
switch overhead. Observe that where a degradation is observed
in going from 2 contexts to 4 contexts, the prediction shows a

similar quality and magnitude. This behavior matches well
with the efficiency curves presented figure 4. The discrepancy
in the case of program MP3D seems to be a result of using the
same latency for different number of contexts. Weber and Gupta
report that, in the case of MP3D, an increase in the number of
contexts resulted in significantly larger network delay due to
higher global traffic. Unfortunately, they do not report the new
value for the latency. Using our model, we calculate that the
reported efficiency would be obtained with an average latency of
55 cycles, rather than 32.

7. Designing a Multithreaded Machine

We now proceed to show how our analytical model can
be used to explore the space of possible design choices in build-
ing an effective multithreaded machine. To make the exercise
more realistic, we will consider the parameters values used in the
last section.

We consider memory latencies of 32, 64, and 128 cycles.
A latency of 128 cycles may seem large, but it will help us
evaluate how much multithreading can hide latency and improve
efficiency. With respect to context switching, we consider four
possible design points; the most aggressive design attempts to
switch contexts immediately, for a value of C = 0; three more
conservative designs require 1, 4 and 16 cycles of overhead to
switch, respectively. Although a context switch overhead of 16

cycles may appear large, such a system needs only to maintain
one context on-chip and keep the others off-chip in fast memory
(engineering such a system is still a challenge). This implemen-
tation is interesting because it supports a large number of con-
texts with only a small increase in processor cost. We consider
three miss ratio values of approximately 1.1%, 2.2%, and 3.1%
with 1.4 memory references per instruction to give average run
lengths of 16, 32 and 64 cycles. We further assume a cache
degradation constant (K) of .57, which is large compared to
magnitudes normally found in other workloads.

For these parameters, table 2 gives the number of contexts
(Npeak) needed to achieve maximum efficiency and the ratio
between the maximum utilization and the utilization with only
one context (εpeak /ε1). The results show large variability in the
number of contexts needed to achieve saturation and relative
improvements that vary from a mere four percent to a nine fold
increase.

In the real world, a machine designer never has an unlim-
ited amount of resources; generally, the goal is to produce the
largest improvement with the smallest increase in cost and com-
plexity. Therefore, we might consider how many contexts are
needed to improve utilization by some constant factor across a
range of design values. As a possible answer to this question,
the ‘Improvement’ column of Table 2 shows the number of con-
texts needed to increase utilization by 50 and 100 percent with
respect to a single context. The results show that only three con-
texts are needed to achieve a 50 percent improvement, wherever
this is possible. That only three contexts are sufficient to obtain
a 50 percent improvement across a wide range of values for L ,
C , and R is not surprising, considering that with three contexts
most of the configurations are in the linear regime. The
improvement in utilization can be easily approximated using
equation (4) as N .R (N)/R (1) ∼∼ 1.6. In the case of 100 percent
improvement, a similar pattern emerges; only 5 contexts are
required.

The last two columns of table 2 give the number of con-
texts needed to achieve fifty and seventy-five percent of the
maximum utilization. Entries having a value of one indicate that
multithreading does not provide a substantial improvement. The
configurations where multithreading looks most promising are
those where the last four columns have increasing values;

8

Parameters Maximum Improvement Fraction of Maximum

L C R Npeak εpeak /ε1 1.5.ε1 2.0.ε1 .50.εpeak .75.εpeak

32 0 16 16 3.00 2 4 2 6

32 0 32 8 2.00 3 8 1 3

32 0 64 5 1.50 5 − 1 2

32 1 16 10 2.41 3 5 2 4

32 1 32 7 1.82 3 − 1 2

32 1 64 5 1.44 5 − 1 1

32 4 16 5 1.78 3 − 1 2

32 4 32 5 1.52 5 − 1 1

32 4 64 4 1.30 − − 1 1

32 16 16 3 1.04 − − 1 1

32 16 32 2 1.06 − − 1 1

32 16 64 2 1.06 − − 1 1

64 0 16 40 5.00 3 4 7 17

64 0 32 17 3.00 3 4 3 6

64 0 64 8 2.00 3 8 1 3

64 1 16 21 3.63 3 5 4 9

64 1 32 13 2.62 3 6 2 4

64 1 64 8 1.89 3 − 1 2

64 4 16 10 2.54 3 5 2 4

64 4 32 8 2.11 3 6 1 3

64 4 64 6 1.69 3 − 1 2

64 16 16 4 1.50 4 − 1 1

64 16 32 4 1.42 − − 1 1

64 16 64 3 1.31 − − 1 1

128 0 16 128 9.00 3 5 27 58

128 0 32 45 5.00 3 5 7 17

128 0 64 18 3.00 3 4 3 6

128 1 16 48 5.60 3 5 10 22

128 1 32 30 4.07 3 5 5 11

128 1 64 16 2.77 3 5 2 5

128 4 16 21 3.65 3 5 4 10

128 4 32 15 3.08 3 5 3 6

128 4 64 10 2.39 3 5 2 4

128 16 16 7 2.12 3 6 1 4

128 16 32 6 1.98 3 6 1 3

128 16 64 5 1.77 3 − 1 2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2: The two columns under label ‘Maximum’ give the number of contexts and utilization increase with respect to a single context pro-
cessor. The columns under label ‘Improvement’ give the number of contexts needed to improve utilization with respect to a single
context by 50 and 100 percent. The last two columns give the number of contexts needed to achieve 50 and 75 percent of the max-
imum utilization.

meaning that it is possible to achieve good improvement in utili-
zation and that there is room for improvement by increasing the
number of contexts.

8. Conclusion

We have presented and analyzed a series of models for a
multithreaded processor, each progressively more realistic than
the previous one, and in each case derived efficiency equations
in terms of the memory latency, context switch overhead, run
length, and number of contexts. The simplest model assumes
that all state transitions take a constant amount of time and
ignores the effect of multithreading on the cache miss ratio.
Next, we took into consideration the stochastic nature of the exe-
cution run length and found the exact solution for the
corresponding Markov chain.

In the first two models the cache miss ratio was assumed
to be independent of the number of contexts supported by the

processor. This unrealistic assumptions was later dropped, by
incorporating a new expression for the run length in terms of the
number of contexts into the solution to the Markov chain. This
more realistic model correlates well with the limited empirical
results available to date, and the discrepencies show where
further improvements in the model are possible.

Finally, we used our solution to explore the design space
of a particular multithreaded machine. We showed how our
equations can be used to compare various alternatives and the
relative improvement in efficiency between a multithreaded pro-
cessor and a conventional single context processor.

Apart from presenting and analyzing the different models,
we identified the principal factors that need to be taken into
account in the design of a multithreaded machine. Some of our
conclusions can be summarized as follows:

� The most critical design parameter in a multithreaded
architecture is the ratio C /R . Unless the context switch

9

cost is essentially zero, the run length must be maxim-
ized, in which case the number contexts required is small.

� Within the saturation region, the utilization of the proces-
sor is only a function of the run length and the context
switch overhead and substantial increases in latency can
be tolerated.

� Caches are important in a multithreaded environment, as
they allow large run lengths between misses and may per-
form well even when the number of contexts is increased.
The reduction in the run lengths in a multithreaded
machine due to a larger number of contexts can be
modeled as reducing the size of the cache that each con-
text can use.

� A processor supporting a small number of contexts,
between 2 and 5, can expect an improvement in utiliza-
tion between 50 and 75 percent over a large range of
latencies, context switch overheads, and run lengths.

In this paper, we have ignored the issue of synchroniza-
tion. At this point there is no general agreement in how much it
will impact execution, nor of the level at which it should be han-
dled. Whether a multithreaded machine will provide an accept-
able solution to the synchronization problem remains an interest-
ing problem that will require considerable attention in the near
future.

Acknowledgements

We would to thank Jose A. Ambros-Ingerson, Herve
Touati, Bob Boothe and David Cross for their comments on ear-
lier drafts. The material presented here is based on research sup-
ported in part by NASA under consortium agreement NCA2-128
and cooperative agreement NCC2-550. Computing resources
were provided in part by the National Science Foundation
through the UCB Mammoth project under grant CDA-8722788.

References

[Ande67] Anderson, D.W., Sparacio, F.J., and Tomasulo, R.M.,
‘‘The IBM System/360 Model 91: Machine Philoso-
phy and Instruction-Handling’’. IBM Journal, Vol.9,
No.25, January 1967, pp. 8-24.

[Arga88] Agarwal, A., Simoni, R. Hennessy, J., and Horowitz,
M., ‘‘An Evaluation of Directory Schemes for Cache
Coherency’’. Proc. of the 15th Annual Int. Symp. on
Comp. Arch., Honolulu, Hawaii, June 1988, pp. 280-
289.

[Arga89] Agarwal, A., Horowitz, M., and Hennessy, J., ‘‘An
Analytical Cache Model’’. ACM Trans. on Comp.
Sys., Vol.7, no.2, May 1989, pp. 184-215.

[Arvi87] Arvind, and Ianucci, R.A., ‘‘Two Fundamental Issues
in Multiprocessing’’. Proc. of DFVLR - Conf. 1987
on Parallel Proc. in Sc. and Eng., West Germany,
June 1987, pp. 61-88.

[Arvi88] Arvind, Culler, D.E., and Maa, G.K., ‘‘Assessing the
Benefits of Fine-Grain Parallelism in Dataflow Pro-
grams’’. The International Journal of Supercom-
puter Applications, Vol.2, No.3, November 1988.

[Clar83] Clark, D.W., ‘‘Cache Performance in the VAX-
11/780’’. ACM Trans. Comp. Sys., Vol.1, No.1,
February 1983, pp. 24-37.

[Egge88] Eggers, S.J., and Katz, R.H., ‘‘A Characterization of
Sharing in Parallel Programs and its Application to
Coherency Protocol Evaluation’’. Proc. of the 15th

Annual Int. Symp. on Comp. Arch., Honolulu,
Hawaii, June 1988, pp. 373-383.

[Good83] Goodman, J.R., ‘‘Using Cache Memory to Reduce
processor-Memory Traffic’’. Proc. of the 10th
Annual Int. Symp. on Comp. Arch., Stockholm,
Sweden, 1983.

[Hals88] Halstead, R.H., Jr., and Fujita, T., ‘‘MASA: A Mul-
tithreaded Processor Architecture for Parallel Sym-
bolic Computing’’. Proc. of the 15th Annual Int.
Symp. on Comp. Arch., Honolulu, Hawaii, June 1988,
pp. 443-451.

[Ianu88] Ianucci, R.A., ‘‘Toward a Dataflow / von Neumann
Hybrid Architecture’’. Proc. of the 15th Annual Int.
Symp. on Comp. Arch., Honolulu, Hawaii, June 1988,
pp. 131-140.

[Nikh88] Nikhil, R.S. and Arvind, ‘‘Can Dataflow Subsume
von Neumann Computing?’’. Proc. of the 16th
Annual Int. Symp. on Comp. Arch., Jerusalem, Israel,
June 1989.

[Russ78] Russell, R.M., ‘‘The CRAY-1 Computer System’’.
Comm. of the ACM, Vol.21, No.1, January 1978. pp.
63-72.

[Saav90] Saavedra-Barrera, R.H., and Culler, D., ‘‘An Analyti-
cal Solution for a Markov Chain Modeling Mul-
tithread Execution’’, University of California, Berke-
ley, technical report in preparation.

[Smit82] Smith, A.J., ‘‘Cache Memories’’. ACM Computing
Surveys, Vol.14, No.3, September 1982, pp. 473-530.

[Smit78] Smith, B.J., ‘‘A Pipelined, Shared Resource MIMD
Computer’’. 1978 Int. Conf. on Parallel Proc., 1978,
pp. 6-8.

[Thie89] Thiebaut, D., ‘‘On the Fractal Dimension of Com-
puter Programs and its Application to the Prediction
of the Cache Miss Ratio’’. IEEE Trans. on Comput-
ers, Vol.38, No.7, July 1989, pp. 1012-1026.

[This88] Thistle, M.R., and Smith, B.J., ‘‘A Processor Archi-
tecture for Horizon’’. Supercomputing ’88, Florida,
October 1988, pp. 35-40.

[Webe89] Weber, W., and Gupta A., ‘‘Exploring the Benefits of
Multiple Hardware Contexts in a Multiprocessor
Architecture: Preliminary Results’’. Proc. of the 16th
Annual Int. Symp. on Comp. Arch., Jerusalem, Israel,
June 1989, pp. 273-280.

