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Abstract

Overview

Notions of community quality underlie the clustering of networks. While studies surrounding

network clustering are increasingly common, a precise understanding of the realtionship

between different cluster quality metrics is unknown. In this paper, we examine the relation-

ship between stand-alone cluster quality metrics and information recovery metrics through

a rigorous analysis of four widely-used network clustering algorithms—Louvain, Infomap,

label propagation, and smart local moving. We consider the stand-alone quality metrics of

modularity, conductance, and coverage, and we consider the information recovery metrics

of adjusted Rand score, normalized mutual information, and a variant of normalized mutual

information used in previous work. Our study includes both synthetic graphs and empirical

data sets of sizes varying from 1,000 to 1,000,000 nodes.

Cluster Quality Metrics

We find significant differences among the results of the different cluster quality metrics. For

example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out

of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone

quality metric that best indicates performance on the information recovery metrics. Addition-

ally, our study shows that the variant of normalizedmutual information used in previous work

cannot be assumed to differ only slightly from traditional normalized mutual information.

Network Clustering Algorithms

Smart local moving is the overall best performing algorithm in our study, but discrepancies

between cluster evaluation metrics prevent us from declaring it an absolutely superior algo-

rithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our

study, contradicting the results of previous work in which Infomap was superior to Louvain.

We find that although label propagation performs poorly when clusters are less clearly

defined, it scales efficiently and accurately to large graphs with well-defined clusters.
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Introduction

Clustering is the task of assigning a set of objects to groups (also called classes or categories)

so that the objects in the same cluster are more similar (according to a predefined property)

to each other than to those in other clusters. This is a fundamental problem in many fields,

including statistics, data analysis, bioinformatics, and image processing. Some of the classical

clustering methods date back to the early 20th century and the cover a wide spectrum:

connectivity clustering, centroid clustering, density clustering, etc. The result of clustering may

be a hierarchy or partition with disjoint or overlapping clusters. Cluster attributes such as

count (number of clusters), average size, minimum size, maximum size, etc., are often of

interest.

To evaluate and compare network clustering algorithms, the literature has given much

attention to algorithms’ performance on “benchmark graphs” [1–5]. Benchmark graphs are

synthetic graphs into which a known clustering can be embedded by construction. The

embedded clustering is treated as a “gold standard,” and clustering algorithms are judged on

their ability to recover the information in the embedded clustering. In such synthetic graphs

there is a clear definition of rank: the best clustering algorithm is the one that recovers the

most information, and the worst clustering algorithm is the one that recovers the least

information.

However, judging clustering algorithms based solely by their performance on benchmark

graph tests assumes that the embedded clustering truly is a “gold standard” that captures the

entirety of an algorithm’s performance. It ignores other properties of clustering, such as modu-

larity, conductance, and coverage, to which the literature has given much attention in order to

decide the best clustering algorithm to use in practice for a particular application [6–8].

Furthermore, previous papers that have evaluated clustering algorithms on benchmark

graphs have used a single metric, such as normalized mutual information, to measure the

amount of “gold standard” information recovered by each algorithm [3–5]. We have seen no

studies that evaluate how the choice of information recovery metric affects the results of bench-

mark graph cluster analysis.

In this paper, we experimentally evaluate the robustness of clustering algorithms by their

performance on small (1,000 nodes, 12,400 undirected edges) to large-scale (1M nodes, 13.3M

undirected edges) benchmark graphs. We cluster these graphs using a variety of clustering

algorithms and simultaneously measure both the information recovery of each clustering and

the quality of each clustering with various metrics. Then, we test the performance of the clus-

tering algorithms on real-world network graph data (Flickr related images dataset and DBLP

co-authorship network) and compare the results to those obtained for the benchmark graphs.

Fig 1 outlines our entire experimental procedure.

Specifically, we address the following questions:

1. How sensitive is a clustering algorithm’s performance on benchmark graphs to the choice of

information recovery metric?

2. How does a clustering algorithm’s performance on the metric of information recovery in

benchmark graphs compare to its performance on other metrics such as modularity, con-

ductance, and coverage?

3. How does a clustering algorithm’s performance on benchmark graphs scale as the size of

the graphs increases?

4. How does an algorithm’s performance on benchmark graphs compare to its performance

on real-world graphs?
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Implementations of all algorithms and all metrics together with links to the synthetic data-

sets used in this study can be found at http://cns.iu.edu/2016-ClusteringComp in support of

replication and future clustering algorithm comparisons.

Methods

Benchmark and Empirical Graphs
Work on benchmark graphs includes the Girvan-Newman (GN) benchmark [1] that consists

of 128 nodes grouped into 4 equal-size clusters, for which the internal edges (edges within clus-

ters) exceeds the external edges (edges between clusters). The GN benchmark intuitively cap-

tures the idea of a benchmark graph, a graph constructed with an ideal clustering, but it makes

no attempt to reflect the structure found in real-world networks which exhibit “small world” or

“scale free” properties [9–11].

Lancichinetti et al. [2] introduced a new class of benchmark graphs, now known as the the

LFR benchmark. This benchmark improves upon the GN benchmark by simulating the prop-

erties of networks found in nature with both clusters sizes and node degrees following a power

law distribution. These graphs embed a “gold standard” clustering by defining a cluster as a set

of nodes for which the probability that each node is linked to a node within its cluster is greater

than the probability that it is linked to a node outside its cluster, and the LFR graphs have a

tunable “mixing parameter” μ that determines the fraction of a node’s edges that are external to

its assigned cluster. It becomes more difficult to detect clusters as μ increases, which we illus-

trate in Fig 2. Recovering the “gold-standard” communities in the LFR benchmark is a greater

challenge for clustering algorithms than in the GN benchmark, allowing for more rigorous

algorithm testing.

The LFR benchmark has become a standard on which to test algorithms. Lancichinetti and

Fortunato used it to compare the performance of twelve clustering algorithms [3], and develop-

ers of new clustering algorithms have used it to illustrate competitiveness with existing algo-

rithms [4, 5]. In this study, we use the LFR benchmark for all of our synthetic graphs.

Fig 1. The experimental procedure of our clustering algorithm comparison.

doi:10.1371/journal.pone.0159161.g001
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In addition to LFR benchmark synthetic graphs, we also consider real-world graphs to help

us gain some intuition about the performance of the clustering algorithms under consideration.

Specifically, we use two datasets, one of Flickr related images comprised of 105,938 nodes and

2,316,948 undirected edges [13], and another of DBLP co-authorships comprised of 317,080

nodes and 1,049,866 undirected edges [14]. Both of these datasets are publicly available from

the Stanford Network Analysis Project (snap.stanford.edu/data/).

Clustering Algorithms
Clustering, is the task of assigning a set of objects to communities such that objects in the same

community are more similar to each other than to those in other communities. In network

clustering, the literature defines “similarity” based on topology. Clustering algorithms seek to

capture the intuitive notion that nodes should be connected to many nodes in the same com-

munity (intra-cluster density) but connected to few nodes in other communities (inter-cluster

sparsity). We compare four clustering algorithms in this study. Each scales to networks of

greater than one million nodes.

Louvain. The Louvain algorithm [15] is one of the first scalable methods to build on New-

man-Girvan modularity maximization. It is a hierarchical agglomerative method that takes a

greedy approach to local optimization. The algorithm is based on two steps. In the first step,

the algorithm iterates over the nodes in the graph and assigns each node to a community if the

assignment will lead to an increase in modularity. In the second step, the algorithm creates

super-nodes out of the clusters found in the first step. The process repeats iteratively, always

using the base-graph to compute the gains in modularity. Although the underlying computa-

tional problem is NP-hard, the Louvain algorithm relies on an efficient and effective heuristic

that balances solution quality, measured by modularity, and computational complexity, which,

although not precisely known, scales roughly linearly with the number of edges.

Smart Local Moving (SLM). The smart local moving (SLM) algorithm [16] is a more

recent modularity optimization method that has been shown to attain high levels of modularity

on graphs with tens of millions of nodes and hundreds of millions of edges. The algorithm fur-

thers ideas found in the two-step Louvain algorithm and the multilevel refinement method of

Fig 2. The impact of μ on cluster detectability, visualized using the spring-embedded “ForceAtlas” algorithm of the
software Gephi [12].

doi:10.1371/journal.pone.0159161.g002
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Rotta and Noack [17] by introducing a more advanced local moving heuristic. For example,

the SLM algorithm searches the subgraphs of identified communities for the opportunity to

split the communities for an increase in modularity.

Infomap. The Infomap algorithm [18] is based on the principles of information theory.

Infomap characterizes the problem of finding the optimal clustering of a graph as the problem

of finding a description of minimum information of a random walk on the graph. The algo-

rithm maximizes an objective function called the Minimum Description Length [19, 20], and

in practice an acceptable approximation to the optimal solution can be found quickly. Previous

studies have found Infomap’s performance to remain stable for networks with up to 100,000

nodes [3].

Label Propagation. The label propagation algorithm [21] uses an iterative process to find

stable communities in a graph. The method begins by giving each node in the graph a unique

label. Then, the algorithm iteratively simulates a process in which each node in the graph

adopts the label most common amongst its neighbors. The process repeats until the label of

every node in the graph is the same as the label of maximum occurrence amongst its neighbors.

While label propagation does not utilize a pre-defined objective function, it is equivalent to a

Potts model approach [22].

Cluster Quality Metrics
A cluster in a network is intuitively defined as a set of densely connected nodes that is sparsely

connected to other clusters in the graph. However, there exists no universal, precise mathemat-

ical definition of a cluster that is accepted in the literature [3]. There are a variety of different

metrics that attempt to evaluate the quality of a clustering by capturing the notion of intra-clus-

ter density and inter-cluster sparsity. Letting G = (V, E) be an undirected graph with adjacency

matrix A, we use three of the standard cluster quality metrics in our study: modularity, conduc-

tance, and coverage. All three are normalized such that scores range from 0 to 1, and 1 is the

optimal score.

Modularity. The modularity of a graph compares the presence of each intra-cluster edge

of the graph with the probability that that edge would exist in a random graph [23, 24].

Although modularity has been shown to have a resolution limit [25], some of the most popular

clustering algorithms use it as an objective function [15, 16]. Modularity is given by Eq (1),
P

kðekk � a2kÞ ð1Þ

where ekk, the probability of intra-cluster edges in cluster Sk, and ak, the probability of either an

intra-cluster edge in cluster Sk or of an inter-cluster edge incident on cluster Sk, are

ekk ¼ jfði; jÞ : i 2 Sk; j 2 Sk; ði; jÞ 2 Egj=jEj;

ak ¼ jfði; jÞ : i 2 Sk; ði; jÞ 2 Egj=jEj

and where Sk � V. For example, the graph shown in Fig 3 has modularity equal to
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� 0:34.

Conductance. We define the conductance of a cluster by the number of inter-cluster edges

for the cluster divided by either the number edges with an endpoint in the cluster or the num-

ber of edges that do not have an endpoint in the cluster, whichever is smaller. The conductance

for a cluster is given by Eq (2),

�ðSkÞ ¼

P

i2Sk ;j=2Sk
Aij

minfAðSkÞ; AðSkÞg
ð2Þ
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where Sk � V and A(Sk) = ∑i2Sk ∑j2V Aij − ∑i2Sk ∑j2Sk Aij, the number of edges with an endpoint

in Sk.

We define the conductance of a graph G to be the average of the conductance for each clus-

ter in the graph, subtracted from 1. The conductance for a graph falls in the range 0 to 1, and

the subtraction makes 1 the optimal score. The conductance for a graph is given by Eq (3),

�ðGÞ ¼ 1�
1

k

X

k
�ðSkÞ ð3Þ

There are several possible ways to define the conductance of a graph that has already been

clustered. In this paper we use inter-cluster conductance as opposed to intra-cluster conduc-

tance because the next metric (coverage) deals with intra-cluster density. Still, it is worth men-

tioning that this definition of conductance emphasizes the notion of inter-cluster sparsity but

does not wholly capture intra-cluster density. For a more detailed discussion of measures of

conductance, including intra-cluster conductance, see Almeida et al. [26]. For example, the

graph shown in Fig 3 would have conductance equal to 1� 1

3

1

4
þ 3

7
þ 2

3

� �

� 0:55.

Coverage. Coverage [8] compares the fraction of intra-cluster edges in the graph to the

total number of edges in the graph. Coverage is given by Eq (4),
P

i;jAijdðSi; SjÞ
P

i;jAij

ð4Þ

where Si is the cluster to which node i is assigned and δ(a, b) is 1 if a = b and 0 otherwise. Cov-

erage falls in the range 0 to 1, and 1 is the optimal score.

While coverage captures the notion of intra-cluster density, optimizing too heavily for the

measure leads to a trivial clustering in which all nodes are assigned to the same cluster. For

example, the graph shown in Fig 3 would have coverage equal to 9

12
¼ 0:75.

Information Recovery Metrics
When working with an input graph with well-defined clusters, we would like to be able to com-

pare how well a particular clustering algorithm finds the correct clusters. It is not trivial to

quantify the agreement between the community assignments returned by a clustering algo-

rithm with the “gold standard” community assignments embedded in the LFR benchmark

graph. Two popular metrics to measure the similarity of clusters are the adjusted Rand score,

Fig 3. A sample network for which modularity� 0.34, conductance� 0.55, and coverage = 0.75. The
color of each node defines its cluster.

doi:10.1371/journal.pone.0159161.g003
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which is based on counting, and normalized mutual information, which is based on the Shan-

non entropy of information theory [27, 28]. Lancichinetti et al. use a third measure that is a

variant of normalized mutual information for covers [3], or clusterings with overlapping com-

munities. Although it is known that this variant does not agree with the traditional value of

normalized mutual information when no overlap is present, Lancichinetti et al. assume the dis-

crepancy is negligible [3]. We employ all three metrics to study their properties and relation-

ships in benchmark graph analysis, subsequently describing each in more detail.

Adjusted Rand Index. The adjusted Rand index is based on counting. If X and Y are com-

munity assignments for each node in the graph, each pair of nodes i and j can be fit to one of

four categories:

N11—i and j are assigned to the same cluster in both X and Y

N00—i and j are assigned to different clusters in both X and Y

N10—i and j are assigned to the same cluster in X but to different clusters in Y

N01—i and j are assigned to different clusters in X but to the same cluster in Y

Intuitively, N11 and N00 indicate agreement between X and Y, while N10 and N01 indicate

disagreement between X and Y. The Rand index, often attributed to Rand et al. [29], measures

the level of agreement between X and Y as the fraction of agreeing pairs of nodes to all possible

pairs of nodes, given by Eq (5) [29, 30],

RIðX;YÞ ¼
N

00
þ N

11

N
00
þ N

11
þ N

10
þ N

01

¼
N

00
þ N

11

N
2

� � ð5Þ

where N is the number of nodes in the graph.

While the Rand index has a range of [0, 1], chance leads it generally to fall within the more

restricted range of [0.5, 1]. To correct for chance, the adjusted Rand index, given by Eq (6), was

developed [28, 30].

ARIðX;YÞ ¼
Index � ExpectedIndex

MaxIndex � ExpectedIndex

¼
2ðN

00
N

11
� N

01
N

10
Þ

ðN
00
þ N

01
ÞðN

01
þ N

11
Þ þ ðN

00
þ N

10
ÞðN

10
þ N

11
Þ

ð6Þ

The adjusted Rand index equals 0 when the agreement between clusterings equals that

which is expected due to chance, and 1 when the agreement between clusterings is maximum.

In our experiments we use the Scikit-learn implementation of adjusted Rand score [31].

Normalized Mutual Information. Normalized mutual information is built on the Shan-

non entropy of information theory. Let partitions X and Y define community assignments {xi}

and {yi} for each node i in the graph. The Shannon entropy for X is H(X) = −∑x P(x)log P(x),

where P(x) is the probability that a node picked at random is assigned to community x. Like-

wise,H(Y) = −∑y P(y)log P(y) andH(X, Y) = −∑x∑y P(x, y)log P(x, y), where P(x, y) is the proba-

bility that a node picked at random is assigned both to x by X and to y by Y. From these

entropies of X and Y, the mutual information of X and Y is given byH(X) + H(Y) −H(X, Y),

resulting in Eq (7).

IðX;YÞ ¼
P

x

P

yPðx; yÞ log
Pðx; yÞ

PðxÞPðyÞ
ð7Þ
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The mutual information of X and Y can be thought of as the informational “overlap” between

X and Y, or how much we learn about X from knowing Y (and about Y from knowing X).

In order to normalize the value of mutual information in the range 0 to 1, we define the nor-

malized mutual information [28] of X and Y by Eq (8).

InormðX;YÞ ¼
2IðX;YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðXÞHðYÞ
p ð8Þ

A normalized mutual information value of 1 bewteen two clusters denotes perfectly similar

clustering, whereas a value of 0 denotes perfectly dissimilar clustering. In our experiments we

use the Scikit-learn implementation of normalized mutual information [31].

Normalized Mutual Information Variant. Lancichinetti et al. [32] created a variant of

normalized mutual information to deal with covers, or clustering assignments in which at least

one node is assigned to multiple communities. They let the partitions X and Y define commu-

nity assignments {xi} and {yi} for each node i in the graph, where {xi} and {yi} are binary arrays

whose lengths equal the number of different communities in X and Y. They denote xki ¼ 1 if

node xi is in the kth cluster of X and xki ¼ 0 otherwise, ascribing the kth entry of xi to a random

variable Xk of probability distribution PðXk ¼ 1Þ ¼ nk
N
; PðXk ¼ 0Þ ¼ 1� nk

N
, where nk is the

number of nodes of community k and N is the total number of nodes in the graph. They denote

yi in the lth cluster of Y equivalently.

Lancichinetti et al. [32] use the probability distributions X and Y to derive the joint proba-

bilities P(Xk = 1, Yl = 1), P(Xk = 0, Yl = 1), P(Xk = 1, Yl = 0), and P(Xk = 0, Yl = 0). The addi-

tional information of a given Xk to a given Yl,

HðXkjYlÞ ¼ HðXk;YlÞ � HðYlÞ;

follows. In calculating the additional information needed to determine Xk from Y, Lancichinetti

et al. consider the minimum additional information to determine Xk from all choices of Yl

from L total clusters, yielding

HðXkjYÞ ¼ min
l2f1;2:::Lg

HðXkjYlÞ:

Dividing byH(Xk) to normalize the expression and averaging the value of each assignment k,

from K total clusters, yields Eq (9), the normalized entropy of X conditional to Y.

HðXjYÞnorm ¼
1

K

X

k

HðXkjYÞ

HðXkÞ
ð9Þ

The symmetric conditional entropy H(Y|X)norm is defined equivalently. Lancichinetti et al. [3]

use these conditional entropies to construct their variant of normalized mutual information,

given by Eq (10), subject to an additional constraint discussed in [3] to control for the case of

complementary clusterings.

InormðX;YÞ ¼ 1�
1

2
½HðXjYÞnorm þ HðY jXÞnorm� ð10Þ

Note that the normalized mutual information variant of Eq (10), used in the community

detection algorithm comparison of Lancichinetti et al. [3], differs from traditional normalized

mutual information in the case of non-overlapping cluster assignments. It is not clear exactly

how different these two metrics are.
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Experimental Procedure
First, we generated a total of 930 undirected LFR benchmark graphs using the parameters out-

lined in Table 1. We experimented with incrementally increased sizes for the benchmark

graphs in powers of ten in order to study the performance of clustering algorithms as networks

scale, and we varied the value of the mixing parameter μ to study performance as the commu-

nities embedded within the graphs become more difficult to recover. We chose the final LFR

benchmark graph generation parameters based on the literature, conversations with other net-

work scientists, and our own experimentation. We most significantly differ from the parame-

ters of Lancichinetti et al. [3] by choosing larger values for the maximum node degree and the

maximum community size. We generated 100 realizations of the LFR benchmark for the three

values of the mixing parameter μ = 0.4, 0.5, and 0.6 for sizes N = 1,000, 10,000, and 100,000,

creating 900 graphs. Additionally, we generated 10 realizations of the LFR benchmark for each

of the three values of μ, creating 30 graphs at size N = 1,000,000, the largest size we know of in

the literature for a comprehensive algorithm comparison study to date. While we would have

preferred 100 realizations for each value of μ at N = 1,000,000, the large computational time

required to generate the graphs limited us.

We also used two large real-world graphs obtained from analyzing a dataset of related

images on Flickr [13] and a DBLP co-authorship network [14]. These data sets are relatively

large in size, but not so large that the task of clustering is computationally infeasible. The Flickr

related images network has 105,938 nodes and 2,316,948 undirected edges. The DBLP co-

authorships network has 317,080 nodes and 1,049,866 directed edges. Both of these real-world

data sets are available from the Stanford Network Analysis Project (snap.stanford.edu/data/),

enabling reproducability of our experiments.

Second, we clustered each of the 932 graphs using undirected implementations of the Lou-

vain, smart local moving, Infomap, and label propagation algorithms. We used undirected

implementations of all algorithms for consistency with Lancichinetti et al.’s comparison of

Louvain and Infomap [3]. We also used the lowest hierarchical level of clustering returned by

all algorithms, consistent with the study of Lancichinetti et al. [3] who chose the lowest hierar-

chical level of Louvain in order to avoid modularity’s resolution limit. For each run of Louvain,

we used 10 modularity maximization iterations and took the clustering with the greatest modu-

larity. For smart local moving, we used 10 random starts, 10 iterations per random start, and

the standard modularity function with a resolution parameter of 1.0. For Infomap and label

propagation, we used the default parameters of the implementations at https://sites.google.

com/site/andrealancichinetti/clustering_programs.tar.gz.

Table 1. LFR benchmark graph parameters.

Param. Description Value Notes

N Number of nodes [1K. . .1M] In power of ten increments

k Average node degree 25 Same constant for all sizes

maxk Maximum node degree N/10 To scale with size of graph

μ Mixing parameter 0.4, 0.5, 0.6 To see impact on performance

τ1 Node degree distrib. exp. -2 The default value

τ2 Community size distrib. exp. -1 The default value

minc Min community size 50 Same constant for all sizes

maxc Max community size N/10 To scale with size of graph

doi:10.1371/journal.pone.0159161.t001
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We clustered the 930 benchmark graphs using a Dell C6145 cloud server with 4 central pro-

cessing units, 64 cores, and 256 gigabytes of random-access memory. We clustered the 2 real-

world data sets using Karst, a supercomputer of Indiana University. Karst’s compute nodes are

IBM NeXtScale nx360 M4 servers. Each contains two Intel Xeon E5-2650 v2 8-core processors,

32 gigabytes of random-access memory, and 250 gigabytes of local disk space.

Finally, we computed the information recovery of the 930 produced clusterings of the

benchmark graphs with the embedded gold standard clusterings using the metrics of adjusted

Rand index, traditional normalized mutual information, and the variant of normalized mutual

information used by Lancichinetti et al. in [3]. We calculated the stand-alone quality metrics of

modularity, conductance, and coverage for all 932 of the produced clusterings, including both

those of benchmark graphs and of real-world graphs.

The code we developed to implement this study, including all scripts, statistics, and analyses,

is available and documented at http://cns.iu.edu/2016-ClusteringComp.

Results

Overview of Resulting Measurements
We present our results using violin plots. A violin plot is an adaptation of the box plot that

enables viewers to make better inferences about the data shown, by capturing sample density, in

addition to summary statistics, such as the min, mean and max values [33, 34]. Three matrices of

violin plots—one for μ = 0.40, μ = 0.50, and μ = 0.60 in Figs 4–6—capture the entirety of our syn-

thetic graph results. We rendered the violin plots with lines for the minimum, maximum, and

mean of the data, using a Gaussian kernel density estimation for the violin curve [35].

For a given matrix, each of the clustering algorithms in our study defines a row, and each of

the cluster quality metrics in our study defines a column. In this way, each cell in these matrices

is a violin plot of the performance of one clustering algorithm by one cluster quality metric.

The structure of these matrices allows one to compare the performance of different algorithms

by scanning the columns, and to compare performance of different metrics by scanning the

rows.

A fairly clear overall trend is that performance decreases as μ and the size of the network

graphs increases. We expected performance to decrease as μ increases because higher values of

μ indicate that the embedded clusters are less well-defined. Previous work also conjectured that

increases in the size of the network graphs might significantly impact performance [3], but our

results are the first that we know to verify this claim at this scale. As we discuss in more detail

later in the paper, our LFR benchmark graph generation parameters, the “resolution limit”,

and the “field-of-view limit” cause decreased performance as the size of the network graph

increases [25, 36].

Comparison of Cluster Quality Metrics
Our results show that the choice of information retrieval metric has a significant impact on the

performance of algorithms. For example, at μ = 0.40 and N = 1,000,000, Lancichinetti’s variant

of normalized mutual information ranks label propagation the highest while traditional nor-

malized mutual information and adjusted Rand score rank SLM the highest. Louvain outper-

forms Infomap on traditional normalized mutual information but loses on adjusted Rand

score; see Fig 4. These results indicate that a more careful study of cluster quality metrics is

needed.

Lancichinetti’s variant of normalized mutual information does not match traditional nor-

malized mutual information when there is no overlap between clusters, which we expected.

Unexpectedly, our results show that the variant can differ from the traditional formulation by
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as much as 0.4; see Louvain’s performance at N = 1,000,000 in Fig 4. This indicates that the

results of Lancichinetti et al. [3], which rely solely on this variant of normalized mutual infor-

mation, cannot be directly applied to the traditional formulation.

Our results suggest that coverage is a poor cluster quality metric. Although we would expect

metrics of cluster quality to decrease as μ and the difficulty of clustering increase, the coverage

of label propagation in Figs 4–6 increases as μ increases. Intuitively, as coverage nears a perfect

value of 1.0, the clustering of the graph nears the trivial case in which all nodes are assigned to

the same cluster, which suggests that the clustering is too coarse.

Fig 4. A matrix of violin plots illustrating the synthetic graph experiment results at μ = 0.40.We drew each “violin” using a Gaussian kernel density
estimation. Red lines indicate the minimum, maximum, and mean of the data.

doi:10.1371/journal.pone.0159161.g004
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Our results show that modularity is also an unreliable metric to indicate benchmark graph

performance. A clustering algorithm’s performance can deteriorate on information recovery

metrics without dropping in modularity. Louvain’s performance at μ = 0.50, shown in Fig 5, is

an example of this. Interestingly, Louvain and SLM—the two clustering algorithms that opti-

mize modularity—do not exhibit this behavior any more than does Infomap, which suggests

that they are not optimizing the measure too heavily. For example, in Fig 5 at μ = 0.50 all three

of these clustering algorithms show a similar pattern of performance on modularity.

Fig 5. A matrix of violin plots illustrating the synthetic graph experiment results at μ = 0.50.We drew each “violin” using a Gaussian kernel density
estimation. Red lines indicate the minimum, maximum, and mean of the data.

doi:10.1371/journal.pone.0159161.g005
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These results question the validity of using metrics such as coverage and modularity to eval-

uate an algorithm’s clustering performance when a gold standard is not known. Because cover-

age and modularity do not reflect performance on benchmark graph tests, these two measures

capture fundamentally different properties of clustering than does benchmark graph testing.

Conductance is the metric that best indicates benchmark graph performance in our experi-

ments. The performance of Louvain and Infomap in Fig 5 at μ = 0.50 illustrates this point well.

While all three information recovery metrics show a steady decline in performance,

Fig 6. A matrix of violin plots illustrating the synthetic graph experiment results at μ = 0.60.We drew each “violin” using a Gaussian kernel density
estimation. Red lines indicate the minimum, maximum, and mean of the data.

doi:10.1371/journal.pone.0159161.g006
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conductance is the only stand-alone metric to decline. However, conductance is still an imper-

fect representation of the information recovery metrics, and there are other instances in which

it fails to reflect a change in information recovery performance.

Comparison of Clustering Algorithms
A surprising result of our work is Louvain’s performance, which surpasses Infomap’s in nearly

all of our experiments. This contradicts the previous work of Lancichinetti et al. [3] in which

Infomap outperformed Louvain.

The “resolution limit” of modularity and the “field-of-view limit” of both Louvain and Info-

map explain how our choice of a relatively large maximum community size leads to this con-

tradictory result. The resolution limit of modularity is the well-known limitation that

modularity has in detecting small communities [25]. In our experiments, the resolution limit of

modularity works in Louvain’s favor because our community sizes are relatively large. Analo-

gously, the field-of-view limit marks an upper limit on the size of communities that Louvain

and Infomap can detect [36]. Infomap’s lack of a resolution limit causes it to suffer acutely

from the field-of-view limit and identify smaller clusters than Louvain identifies. In this way,

the resolution limit and the field-of-view limit favor Louvain over Infomap in our experiments

with large communities.

Note that while our experiments use the bottom hierarchical level of Infomap, which suffers

from the field-of-view limit, Schaub et al. have shown how to overcome the field-of-view limit

[37]. Additionally, Kheirkhahzadeh et al. have shown how to overcome the field-of-view limit

with the map equation [38].

Lancichinetti et al. [3] conclude that the performance of Infomap does not seem to be

affected by size. Our results show that Infomap scales remarkably well to larger sizes but does

suffer some performance loss. For example, at μ = 0.50 Infomap falls from a 1.0 mean value of

traditional normalized mutual information at N = 1,000 to a mean value of 0.70 at

N = 1,000,000; see Fig 5.

Label propagation shows the widest variability in performance of the four clustering algo-

rithms, which is illustrated by the length of its distribution curve in Fig 5 at μ = 0.50. Label

propagation’s performance is particularly sensitive to μ. When μ is low, such as at μ = 0.40,

label propagation scales to size N = 1,000,000 and outperforms other algorithms such as Lou-

vain and Infomap. However, at higher values of μ, such as μ = 0.60 in Fig 6, label propagation’s

performance rapidly deteriorates.

Label propagation’s relative sensitivity to μ, but relative insensitivity to size, suggests a larger

consequence that the best clustering algorithm to be used in practice for networks of large size

depends on how well-defined the clusters are. If the clusters are well-defined, an algorithm that

performs well on lower values of μ, such as label propagation, should be employed. If the clus-

ters are less well-defined, algorithms such as Louvain and Infomap are superior.

Smart local moving performs best of the algorithms in our study by far. It has an equal to or

higher value than the other algorithms on traditional normalized mutual information and

adjusted rand score on virtually all benchmark graph sizes at all values of μ in our tests.

Evaluation on Empirical Data Sets with Unknown Gold Standards
In order to inform the choice of which clustering algorithm to use in practice, we would like to

be able to rank the performance of clustering algorithms on real-world data sets that do not

have a “gold standard” clustering using stand-alone quality metrics. However, our earlier

results from the synthetic graph analysis reveal that such an absolute ranking of clustering algo-

rithms based on stand-alone quality metrics does not exist. There is disagreement on the
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performance of clustering algorithms both amongst the different stand-alone quality metrics

and between the information recovery metrics and the stand-alone quality metrics.

We are not able to make definitive statements about the superiority of clustering algorithms,

but it is possible to compute the stand-alone quality metrics, such as those shown in Fig 7. For

example, we see that for the Flickr data set, although smart local moving is nearly the best per-

former on modularity, it is the worst performer on conductance. Similarly, smart local moving

is the top performer on modularity but the bottom performer on conductance in the DBLP

data set. In data sets without knowledge of ground truth, there is not a well-defined way to

resolve this disagreement of metrics.

Discussion

We evaluate clustering algorithms and cluster quality metrics on graphs ranging from 1,000 to

1M nodes. Our results show overall disagreement between stand-alone quality metrics and

information recovery metrics, with conductance as the best of the stand-alone quality metrics.

Our results show that the variant of normalized mutual information employed by Lancichinetti

et al. [3] may significantly differ from traditional normalized mutual information.

Overall, smart local moving is the best performing algorithm in our study. Note that dis-

agreement between stand-alone quality metrics and information recovery metrics prevents us

from claiming that smart local moving is absolutely superior to the other clustering algorithms.

Additionally, the high performance of smart local moving on our LFR benchmark graph tests

must be taken with a caveat. The LFR benchmark graphs rely on a synthetic model for their

construction with assumptions such as a power law distribution of node degrees. There is

inherent circularity in judging a clustering algorithm by its performance on benchmark graphs,

and smart local moving’s high performance on the LFR benchmark graphs shows that it is

based on a model similar to that of the LFR model. However, one may still challenge the LFR

model, and potential future work includes analyzing models such as “CHIMERA” that enable

more precise control of network structure than the LFR benchmark [39].

Practitioners seeking to use the best clustering algorithm for a particular application must

rely on testing of effectiveness in their respective domain. Lack of a rigorously defined notion

of “community”, which is intuitively appealing but remains in general to be mathematically

defined, is the root of discrepancies amongst stand-alone quality metrics and information

recovery metrics. Without a rigorous notion of a community, which may vary depending on

Fig 7. (A) A comparison of clustering algorithm performance by modularity on the real-world graphs. (B) A comparison of clustering algorithm
performance by conductance on the real-world graphs. (C) A comparison of clustering algorithm performance by coverage on the real-world graphs.

doi:10.1371/journal.pone.0159161.g007
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the domain, absolute statements about the superiority of clustering algorithms cannot be

made.

Our results suggest future work in unifying various notions of community, as well as pre-

cisely quantifying how current notions of community differ. Additionally, better understand-

ing of the significance of cluster quality metric values (e.g., what does it mean when one

clustering algorithm scores 0.1 higher than another in modularity?), will enable more meaning-

ful claims based on these metrics.
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