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Abstract—In this paper, we propose to perform clustering 

and temporal prediction on network-level traffic states of 

large-scale traffic networks. Rather than analyzing dynamics of 

traffic states on individual links, we study overall spatial 

configurations of traffic states in the whole network and 

temporal dynamics of global traffic states. With our analysis, 

we can not only find out typical spatial patterns of global traffic 

states in daily traffic scenes, but also acquire long-term general 

predictions of the spatial patterns, which could be used as prior 

knowledge for modeling temporal behaviors of traffic flows. 

For this purpose, we use a locality preservation constraints 

based non-negative matrix factorization (LPNMF) to obtain a 

low-dimensional representation of network-level traffic states. 

Clustering and temporal prediction are then performed on the 

proposed compact representation. Experiments on realistic 

simulated traffic data are provided to check and illustrate the 

validity of our proposed approach. 

I. INTRODUCTION 

With developments of telecommunication, floating-car data, 

collected directly from vehicular mobile devices, become an 

essential and ever widely available data source for traffic 

data on large networks, including roads/streets for which no 

traffic monitoring infrastructure is available. Acquired 

floating-car data are employed to produce wide-coverage 

information on temporal properties of traffics flows, with 

which we can achieve global analysis of traffic patterns, and 

even predictions of traffic states several future time steps 

ahead. Through the processing of floating-car data, we are 

able to obtain helpful traveling information for vehicles, like 

estimated traveling time. Therefore, traffic data mining has 

become a hot research topic during recent years. 

In previous research progress in traffic data mining, 

traditional methods use parametric models of traffic flows, 

in which a few parameters are calibrated with structural 

assumptions to simulate temporal evolution of traffic states 

[1]. In this kind of methods, cellular automata [2] is a typical 

instrument for powerful simulation and prediction systems. 

Data driven approaches, which adopt machine-learning 

techniques to extract statistical dependencies between data 

[3]-[5], become popular due to increasingly larger volume of 

collected floating-car data. These methods allow to "let the 

data speak for itself" and loosen assumed constraints of the 

proposed traffic dynamic model. Therefore, they are more 

flexible to describe and simulate temporal properties of 

traffic flows. However, in previous progress of both kinds of 
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research, mining temporal patterns of traffic states measured 

on individual links plays a key role in traffic data analysis. 

Variations of traffic states in the whole network are 

described by analyzing temporal dynamics of traffic flows in 

each individual link. Actually, in a typical urban traffic 

scene, traffic states of one local region are highly correlated 

with neighboring areas. Such spatial configurations of traffic 

states can be used as prior knowledge during modeling 

traffic temporal dynamics for the whole network. They are 

useful in improving performances of traffic guidance.  

In this paper, we propose to treat traffic states of all links 

in a large-scale link network as a whole, and to perform data 

mining task, clustering and long-term prediction on the 

network-level traffic states. Through our work, we aim to 

unveil typical spatial patterns and temporal dynamics of 

network-level traffic states, which provides overall 

descriptions traffic states over the whole link network. For 

large-scale urban traffic networks, network-level traffic 

information is often represented in a high-dimensional 

feature space, which makes it difficult to extract 

characteristics of global traffic states. In our work, we firstly 

adopt a geometrical weighted distance to evaluate similarity 

between network-level traffic patterns, which is described in 

section II.A. Then, we use a locality preservative non-

negative matrix factorization method (LPNMF) to project 

network-level traffic state onto a compact representation 

model with much less dimensionality, as described in section 

II.B. In a further step, we perform clustering and temporal 

dynamic prediction on the low-dimensional LPNMF 

projection in section II.C. Finally in sections III and IV, we 

present clustering and prediction results of network-level 

traffic patterns on realistic simulated traffic data, and 

conclude the paper.  

II. GEOMETRICAL SIMILARITY DISTANCE AND LOCALITY 

PRESERVATIVE NON-NEGATIVITY FACTORIZATION 

A. Geometrical weighted similarity measure 

    Network-level traffic states are defined to be spatial 

configurations of link traffic states in a network, which is 

normally represented in n-dimensional vector, with n being 

the number of links in the network. Different network-level 

traffic states represent different global traffic state patterns. 

In a typical network, traffic state of one specific link is 

correlated with its up-stream or down-stream nearest 

neighbors in most cases.  

Let links  and  respectively denote up-stream and 

down-stream nearest neighbors of link i. If link i is 
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congested, its neighboring links  and  are more likely 

to be congested together than those located far from the link 

i and vice-versa. Motivated by this property, we adopt a 

weighted fusion among traffic states in geometrical 

neighborhoods to evaluate similarity between network-level 

traffic states. For the link i, we derive a weighted sum of the 

link-wise difference values with respect to the link i and its 

up-stream and down-stream neighbors, which is defined to 

be local variation  of traffic states around the link i, as 

expressed in Eq.1: 

                    (1) 

 is the link-wise difference between traffic states of the 

corresponding link. , and  are weights attached to 

up-stream neighbors, down-stream neighbors and the link i 

respectively. After that, we map L1 norm of { } into 

[0,1] using a Gaussian kernel in Eq.2 as the final similarity 

measure between network-level traffic states:  

                                                                (2) 

To normalize range of the weighted sum, the sum of all 

weights is required to be 1. The weight  corresponding to 

the link i should be the largest one. Without loss of 

generality, in this paper, we just treat that all neighboring 

share with the same weight value. By performing fusion 

among local neighborhoods, the derived similarity measure 

can be used as an indictor of spatial correlations between 

local neighborhoods. 

B. LPNMF based network-level traffic state representation 

    Dimensionality of network-level traffic state 

representation is directly proportional to the number of links 

in the network. Given a large-scale network that is common 

with application, the resultant high-dimensional traffic state 

representation is difficult to store or use for analysis due to 

curse of dimensionality. To attack this issue, we propose to 

use locality preserving non-negative matrix factorization 

(LPNMF) [6][7] to obtain low-dimensional representation of 

global traffic states. Assuming that p samples of n-

dimensional network-level traffic states are stored as n*p 

matrix , LPNMF factorize  into the non-negative n*s 

matrix  and s*p matrix , which minimizes the 

following objective function: 

                                          (3)                  

The first term is known as Frobenius reconstruction error. In 

this algorithm, each network-level traffic state is actually 

approximated by a linear combination of column vectors in 

, weighted by components of the corresponding column 

vectors in . Therefore,  can be regarded as a group of 

basis for representing global traffic states, while columns of 

 are s-dimensional coordinates of original traffic 

observations with respect to the basis . In the setting of 

NMF, s is much less than the original dimensionality n. 

Therefore,  is a much lower dimensional representation of 

network-level traffic states after factorization. In contrast 

with SVD decomposition, derived manifold space is not 

necessarily orthogonal in NMF. Each data sample takes 

positive coordinates in the low-dimensional projection 

space. The above two properties makes NMF more suitable 

to describe the latent distribution structures, especially when 

overlap exists among different clusters of data samples. In 

the second term of the object function in Eq.3,  is Graph 

Laplacian [8], defined as . In the matrix W, is a 

pair-wise geometrical weighted similarity measure matrix 

between the ith and jth network-level traffic state 

observation. D is a diagonal matrix whose entries are 

column sums of W, defined as Eq.4:  

                                                                        (4) 

By adding the Graph Laplacian based constraint, the 

obtained low-dimensional representation  are calibrated to 

keep similar topological structures as original data set X, 

which means that the similarity measure between the ith and 

jth column  and  reflects similarity of spatial patterns 

between the corresponding original network-level traffic 

state observations. Therefore, the low-dimensional LPNMF 

projection can denote structural information of general 

spatial configurations of traffic states in link networks, 

which makes it a suitable choice for performing predictive 

analysis of temporal dynamics. 

C. Clustering and temporal prediction of network-level 

traffic states 

   According to the non-negativity property inherited from 

classical NMF settings, each component in  is 

proportional to contribution of the corresponding basis to 

represent general appearances of the original network-level 

traffic state observation .  Based on this property, we 

propose to use a simple scheme to determine cluster labels 

of each network-level traffic state observation. For each , 

we examine and assign  to the jth cluster if the jth 

component of  takes the largest value in . Simply as it 

is, we can still find out the intrinsic distributional properties 

of network-level traffic states based on the LPNMF 

factorization method.  

    In our work, we introduce a k-Nearest-Neighbor (k-NN) 

based scheme to model temporal transition of network-level 

traffic states in a non-parametric way. Assuming we have a 

set of historic records of network-level traffic states { } 

(i=1…S, j= 1…T), which record traffic states for S different 

traffic scenes. Each scene contains T time sampling steps. 

We perform LPNMF on this data set.  corresponds to a 

LPNMF based representation of . In a typical application 

of traffic state prediction, we usually have observed a 

sequence of network-level traffic states from the beginning 

time to the t-th time sampling step of one specific day and 

expect to predict how spatial configurations of network-level 

traffic states evolve in the following time until end of the 

day, which is a long term estimation of temporal dynamics 

of overall traffic states in the whole network. To solve this 



  

problem, we firstly project the sequence of currently 

obtained observations { } (j=1…t ) onto low-dimensional 

representations { } (j=1…t ) with the basis  learned 

from historical data set. This procedure could be performed 

using Non-negative Least Squares (NNLS) [9], as illustrated 

in Eq.5.  

                               (5) 

Due to fixed structures of the learned basis M and convexity 

of least square reconstruction, the obtained low-dimensional 

manifold representations { } (j=1…t) have unique 

solutions. After that, we evaluate similarity between the 

obtained sequence { } and the sub-sequences { } 

(i=1…S, j=1..t) obtained from the historical records with the 

same time interval, following Eq.6 and 7: 

                                      (6) 

 

                                           (7) 

                                      

is cosine distance between the LPNMF based 

representations. According to Eq.6, the distance between 

temporal sequences of the low-dimensional representations 

is measured by a weighted sum of differences between the 

low-dimensional representations that are obtained at the 

corresponding time steps. The weight values are decayed 

exponentially as increasing interval values along the time 

axis between the stopping time t and a preceding sampling 

time j, which follows markovian assumption in time-series 

analysis [10]. Traffic states captured at earlier time than the 

current time t have less effecting on predictions of the future 

states. Based on the setting of distance measure, we can find 

the k nearest neighbor and their indices { } (m =1,2…,k) 

of the obtained sequence {  } (j =1…t) in the historic 

records. Finally, predictions of unknown network-level 

traffic states for all following time steps from t+1 to T in the 

specific day are constructed using weighted average of the k 

nearest neighbors, as illustrated in Eq.8.  

                                           (8) 

Through k-NN operation, we aim to search for the first k 

traffic scenes in the link network that have with the most 

similar temporal evolution mode with the currently observed 

data. Due to fixed topological structures of the link network 

and regular patterns of demand and supply of traffic 

resources in daily traffic scenes, it is of high possibility that 

similar preceding temporal dynamics of traffic states leads to 

also similar future temporal behaviors of network-level 

traffic patterns. Therefore, as we can see in Eq.8, the 

contribution of each nearest neighbor is measured according 

to the similarity between historical records and the current 

observed data. Following this intuitive characteristic, k-NN 

based prediction can provide general descriptions of long-

term dynamics of network-level traffic states with only one 

time of parsing in the historic records.  

III. EXPERIMENTAL RESULTS OF CLUSTERING AND 

TEMPORAL DYNAMICS PREDICTION 

A. Metropolis software and IAU-Paris Database 

        

 
                Fig. 1. Traffic network of Paris and suburb regions 

 

   To verify validity of the proposed method in clustering and 

modeling network-level traffic states, we firstly simulate real 

traffic scenes of the large-scale traffic network of Paris and 

its suburb regions using Metropolis [11], in order to generate 

a benchmark traffic database. Metropolis is a planning 

software that is designed to model transportation systems. It 

contains a complete environment to handle dynamic 

simulations of daily traffic in one specific traffic network, 

which allows the user to study impacts of transportation 

management policies in a large-scale urban traffic network 

in a time-dependent manner. The built traffic database is 

composed of 4660 intersections and 13627 links in the 

network shown on Fig. 1. Each simulated traffic scene is 

generated to cover 8 hours of traffic data observations, 

including congestion in morning rush hours. Different traffic 

situations are obtained by adding random events and 

fluctuation in the O-D matrix (Origin-Destination) and 

capacity of network flow. There are totally 108 simulated 

traffic scenarios in our benchmark data set. Each one 

contains 48 time steps, corresponding to 15-minute bins over 

which the network traffic flow are aggregated. To represent 

traffic states, we propose to use traffic index [12] in each 

link at a specific time, as in Eq.9. 

                                                                          (9) 

The denominator is the observed travel time in link  at time 

, the nominator is the free-flow travel time on this link. The 

smaller the traffic index is, the corresponding link is more 

congested. To perform clustering analysis, we concatenate 

all observations of traffic states into a 13627*5184 matrix. 

Each column corresponds to a network-level traffic status 

obtained at each time step, which is a 13627-dimensional 

vector. In the experiment of clustering, the number of 



  

clusters is 3 and 5 respectively. For convenience of 

visualization, we project all the column vectors into 3-

dimensional PCA space to illustrate structures of the 

obtained clusters. For modeling temporal dynamics of 

network-level traffic states, we set the number of LPNMF 

basis to be 30 to keep more information about spatial 

structures of global traffic states. 

           

B. Clustering results of networked-level traffic states 

 
Fig. 2. Three-views diagram of network-level traffic states in 3D PCA space 

 

   We illustrate distributions of network-level traffic states in 

IAU-Paris database in 3D PCA space, as shown in three 

different viewpoints in Fig. 2. As we can see, the data points 

corresponding to the free-flowing network-level states 

concentrate within a small region in the PCA space. 

Compared with them, the data points corresponding to the 

scenes in which congestions occur in certain links are 

distributed rather sparsely and far from the region containing 

free-flowing states. Furthermore, while congestion in the 

link network become severer and severer, variations of data 

points become larger and larger. In fact, spatial 

configurations of network-level traffic states keep to be 

similar with each other if the whole network is almost free-

flowing everywhere. On the contrary, congestion occurred at 

different parts of the network change spatial patterns of 

traffic states in different ways, which introduces large 

variations into distributions of network-level traffic patterns. 

We firstly divide all network-level traffic states in the 

database into three clusters, as we can see in Fig. 3. 

   The cluster labeled by blue legends represents that almost 

all links are free-flowing in the link network. Both red and 

dark green clusters indicate that traffic jam occurs in the 

certain parts of the link network. In Fig. 3, we select spatial 

configurations of network-level traffic states with the 

severest congestion in each cluster, which have the least 

average value of traffic indices among the corresponding 

clusters. They are used here as representative exemplars of 

spatial patterns of traffic states in each cluster. According to 

Fig. 3, in spatial configuration of each exemplar, red color is 

used to label congested links whose traffic indices are less 

than a specified threshold, while green color used for fluid 

links. We can see that the exemplar extracted from the red 

cluster contains much less busy links than the one from dark 

green cluster. It denotes that network-level traffic states in 

the dark green cluster contain severer congestion in the link 

network then the red cluster. Furthermore, as shown in both 

exemplars of the red and dark green clusters, most of 

congested links locate within the central region of the 

network. It implies that most traffic congestion occurs inside 

Paris. Suburb regions are free-flowing most of the time. 
 

 
Fig. 3. Three clusters and exemplars of network-level traffic states 

 

 
         Fig. 4. Division of clusters after increasing the number of cluster 

 

In Fig. 4, we increase the number of clusters from 3 to 5. 

Fig. 5 illustrates exemplars of clusters except the one 

corresponding to the free-flowing state, following the same 

settings in Fig. 3. We also compare structures of the three 

clusters shown in Fig. 3 and the five obtained clusters in 

Fig. 4. The cluster corresponding to network-level traffic 

state with light traffic congestion, labeled by red legends in 

Fig. 3, is further split into two parts that are labeled by pink 

and purple legends respectively in Fig. 4. These two sub-

clusters have elongated shapes oriented to different 

directions in 3D-PCA space, which represents different 

distribution settings of congestion in the network. Exemplars 

of these two clusters illustrate the difference clearer, as 

shown in Fig. 5(a) and 5(b). In the exemplar of the sub-

cluster labeled by pink legends, illustrated in Fig. 5(a), busy 

links tend to be closer to the central region than in the 

exemplar of the sub-cluster labeled by purple legends, as 

shown in Fig. 5(b). Despite of similar degrees of network-

level congestion in both two exemplars, they indicate 



  

different spatial configurations of traffic states in the 

network, which is consistent with the difference of 

orientations of the two elongated sub-clusters. 

 

 
Fig. 5. Exemplars of sub-clusters. (a) and (b) are exemplars of sub-clusters 

labeled by pink and purple legends respectively. (c) and (d) are exemplars 

of sub-clusters labeled by black and light green legends respectively 

 

Similar hierarchical way of splitting can also be observed in 

the dark green cluster in Fig. 3. As we can see in Fig. 4, this 

cluster is split to two sub-clusters labeled light green and 

black legends. Due to large variations of spatial 

configurations of traffic congestions, data points in both of 

two sub-clusters are sparsely distributed. However, these 

two sub-clusters still differ in spatial layout of network-level 

traffic congestion. In Fig. 5(c) and 5(d), we compare the 

exemplars of the two sub-clusters labeled by black and light 

green legends in Fig. 4 respectively. Generally, the exemplar 

in Fig. 5(d) contains more congested links. Furthermore, 

although the central region of the network is highly 

congested in both exemplars, the area to which network-

level traffic congestion extend is more wide in the exemplar 

shown in Fig. 5(d), especially in suburb regions. This 

implies a different setting of traffic scenes during simulation. 

C. Temporal prediction of network-level traffic states 

   We employ repeated random sub-sampling validation in 

our experiment: 88 of the whole 108 simulations of traffic 

scenes in the IAU-Paris database are selected randomly to 

form the historic observation records, and the remaining 20 

are taken to be the testing set. Such random split is repeated 

for 200 times. In each split, in order to evaluate predicting 

accuracy between the estimated network-level traffic state 

 and the corresponding target   at the jth 

time step of the ith traffic scene, we calculate absolute 

difference  between mean of traffic index values in 

 and  as in Eq.10. Larger  means less 

prediction accuracy.  

                    (10) 

For evaluating overall prediction performances for all time 

steps in the testing set, we calculate the average of 

all obtained in the testing data. Final overall evaluation 

result is then averaged over the total 200 iterations. In IAU-

Paris database, there are 48 time steps of traffic observations 

in each simulation of traffic scenes. We choose the first 20 

time steps as the observed sub-sequence of network-level 

traffic states, which covers early hours of each simulation. 

Long-term temporal dynamics of left 28 time steps are used 

to be targets of prediction. We compare the overall 

prediction performances of the proposed method with the 

historical data based prediction that uses average patterns of 

historical network-level traffic states at corresponding time 

steps as prediction results. The historical data based 

prediction is a baseline algorithm, because it doesn't make 

use of any heuristic knowledge about temporal dynamics of 

traffic states. Compared with it, k-NN operation in our 

method can select a group of historical traffic data that are 

more specific to the current traffic scenes. As a result, our 

method is expected to achieve higher accuracy in estimating 

spatial configurations of traffic states. In table 1 and Fig. 6, 

we compare overall prediction performances with different 

settings of the number k of the nearest neighbors. 

 

 
Fig. 6. Overall prediction performances with different settings of k in the 

proposed k-NN based method 

 

TABLE 1. Prediction performances with different settings of k in k-NN 

 

         K Historical data 

based method 

KNN based method 

           3    2.96e-04      1.43e-04 

           5    3.22e-04      1.96e-04 

           7    3.92e-04      2.75e-04 

           9    3.84e-04      2.72e-04 

          11    3.80e-04      3.05e-04 

          13    4.20e-04      3.11e-04 

          15    2.82e-04      1.49e-04 

          17    2.99e-04      1.83e-04 

 

According to table 1, we can find that average differences 

between predicted network-level traffic states and the 

ground truths are rather small. The main reason is that most 

links are free of traffic congestions in IAU-Paris database. 

Both of two methods involved in the comparison depend on 

historical records to reconstruct spatial configurations of 



  

network-level traffic states. Thus, prediction errors that are 

aroused in congestion regions of the link network become 

small. The variations of prediction accuracies with respect to 

both methods are caused by random selection of historical 

data set and testing set. Nevertheless, by comparing 

prediction performances of the k-NN based method with the 

historical data based one, it is obvious that the former 

achieves much better prediction than the latter, which 

confirms our idea that heuristic knowledge of temporal 

dynamic patterns is useful for long-term prediction in traffic 

data analysis. Furthermore, in Fig. 6, we can see that the 

difference of prediction performances between the two 

methods varies only a little by increasing k.  It denotes that 

the top members in the nearest neighboring list play a 

dominant role in estimating the unknown temporal evolution 

patterns. 

 

 
                                               (a) 

 
                                               (b) 

Fig. 7. (a) (b) Comparison of prediction performances on two different 

traffic scenes 

 

Furthermore, Fig. 7 (a) and 7(b) show the subsequences of 

mean traffic indexes obtained from our proposed KNN 

based prediction, the historical data based prediction and 

ground truth in two traffic scenes of the testing data set in 

one iteration of random repeated random sub-sampling. The 

time sampling steps range from 21 to 48.  Using the 

proposed KNN-based method, we can estimate temporal 

dynamic patterns more accurately than the historical data 

based method. Even around the turning point when network-

level traffic states begin to recover from congestion, our 

method can still fit variation mode of traffic states in ground 

truth well, especially in Fig. 7(b). Interestingly, according to 

Fig. 7(a), the largest estimation error occurs during the time 

intervals around the turning point that contains more 

variations of spatial traffic state patterns than any other 

temporal periods. 

IV. CONCLUSIONS 

Our main contribution is to propose locality preservative 

non-negative matrix factorization (LP-NMF) to project high 

dimensional network-level traffic state observations into a 

smooth and compact manifold. Based on the derived low 

dimensional projection, we can describe typical spatial 

patterns and estimate long-term temporal dynamics of 

network-level traffic states more flexibly. Experimental 

results also indicate promising use of network-level traffic 

state modeling as prior knowledge in predicting temporal 

behaviors of global network traffic states. 
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