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Abstract Anomaly detection in communication networks provides the basis for the uncov-

ering of novel attacks, misconfigurations and network failures. Resource constraints for data

storage, transmission and processing make it beneficial to restrict input data to features that

are (a) highly relevant for the detection task and (b) easily derivable from network obser-

vations without expensive operations. Removing strong correlated, redundant and irrelevant

features also improves the detection quality for many algorithms that are based on learning

techniques. In this paper we address the feature selection problem for network traffic based

anomaly detection. We propose a multi-stage feature selection method using filters and step-

wise regression wrappers. Our analysis is based on 41 widely-adopted traffic features that are

presented in several commonly used traffic data sets. With our combined feature selection

method we could reduce the original feature vectors from 41 to only 16 features. We tested

our results with five fundamentally different classifiers, observing no significant reduction of

the detection performance. In order to quantify the practical benefits of our results, we ana-

lyzed the costs for generating individual features from standard IP Flow Information Export

records, available at many routers. We show that we can eliminate 13 very costly features

and thus reducing the computational effort for on-line feature generation from live traffic

observations at network nodes.
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1 Introduction

Today’s communication networks evolve quickly. The same is true for network attacks. New

vulnerabilities appear every day and are quickly exploited in zero-day attacks. Whereas

signature-based detection fails to detect previously unknown attacks, anomaly detection

techniques can find deviations from normal traffic patterns and therefore are an important

instrument to improve network security in today’s communication networks.

Although there is a significant amount of technical and scientific literature on anomaly

detection methods for network traffic, the valuable step of feature selection is often under-

represented and treated inattentively in the literature. Tavallaee et al. (2010) point out three

commonly defective aspects in anomaly detection research: the employed data sets, the char-

acteristics of the performed experiments, and the methods used for performance evaluation.

Within the characteristic of the experiments, the authors underline data preprocessing as one

of the phases usually skipped in related papers, pointing out that feature selection is habitually

freely undertaken without a proper justification. This is quite unfortunate because remov-

ing trivial and redundant features does not only reduce resource consumption for processing,

storing and transmitting data, it also enhances the modelling of the phenomena under analysis

and, therefore, it is a determinant step in the detection of network anomalies.

Guyon and Elisseeff (2003) expose this idea when they say:

The objective of variable selection is threefold: (1) improving the prediction perfor-

mance of the predictors, (2) providing faster and more cost-effective predictors, and

(3) providing a better understanding of the underlying process that generated the data.1

As far as anomaly detection is concerned, the importance of (1) is out of question. (2) is

a prerequisite for the fast installation of countermeasures to prevent the massive propagation

of malware. (3) is necessary in order to generalize solutions and obtain new knowledge that

enables future enhancements and refinements.

The objective of our work is to rank and select network traffic features with regard to their

contribution to the detection of anomalies. The starting point is the widely-adopted set of 41

features, used in the NSL-KDD (2009), the DARPA (1998) and the KDD cup (1999) data

sets, which provided the basis for numerous studies on network anomaly detection. We argue

that using a smaller subset of those features is not only more resource efficient than using all

features but also leads to better detection results for a broad range of typical classifiers.

We label features as highly relevant, medium relevant and negligible; and discuss their roles

in the posterior classification processes. Our feature selection achieved sound conclusions

on feature subsets by smartly combining different filters and stepwise regression techniques,

implemented in wrappers.

In order to evaluate the selection decision, simple models of different classification para-

digms were utilized: Decision Trees (DTC), k-Nearest Neighbor models (kNN), Naïve Bayes

classifiers, Least Absolute Selection and Shrinkage Operator with Least Angle Regression

(LASSO-LAR), Artificial Neural Networks (ANN) and Support Vector Machines (SVM).

The first four models were also deployed for feature subset validation and refinement.

We are aware that the network research community is still short on openly accessible

representative labeled data sets for network traffic analysis. Severe critics have been given

to classical data sets (McHugh 2000), which have been used in many previous works on

anomaly detection. In our research we used the more recent NSL-KDD (2009) database, that

1 Enumeration marks – (1), (2), (3) – are ours.
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has been provided to overcome shortcomings of existing data sets. In addition, we addressed

critical points described in Tavallaee et al. (2010) when conducting our experiments.

2 Related work

Among the copious amount of studies facing anomaly detection in networks, there are some

works that deal with feature selection prior to testing detection and classification techniques.

For a comparison of related work we show the feature subsets proposed by others (if revealed)

together with our results in Fig. 1.

Despite the critiques on the DARPA’98 and the KDD Cup’99 data sets, they embrace a

high percentage of revised studies about anomaly detection, also for feature selection. The

DARPA’98 data set was selected in Sung and Mukkamala (2003) for research on feature

selection and classification with SVM and ANN. The feature selection process is carried out

with a backward elimination wrapper. Authors establish subsets of important and secondary

features depending on the type of attack to detect, as well as a union of important feature

subsets that accounts for 30 features. Differences between evaluations with the important

subset only and adding the secondary subset do not exceed a 0.3 % in the accuracy mea-

sure. Unfortunately, authors do not specify which features are selected. Later, in Sung and

Mukkamala (2004), the same authors carry out feature selection with algorithms based on

SVM, Multivariate Adaptive Regression Splines (MARS) and Linear Genetic Programming

(LGP). They conclude on 6 different imperative features for every method. Switching from

41 to 6 features involves an accuracy performance degradation of 1.74 % on the worst case.

If we superimpose the selection of the three methods, a subset of 11 most important features

is obtained.

For the same data set, in Khor et al. (2009) two algorithms called Correlation-based Feature

Selection Subset Evaluator (CFSE) and Consistency Subset Evaluator (CSE) select features

for a posterior Bayes classifier. The final proposal consists of 7 main features. Also with

DARPA’98, in Chebrolu et al. (2005) Bayesian networks, classification trees and regression

trees discriminate imperative features.

For the KDD Cup’99 data, authors in Nguyen et al. (2010) reduce from 41 features to a

minimum of 1 and a maximum of 22 depending on the type of attack to identify. They use

correlation-based methods and check relevance and redundancy. Unfortunately, features are

Fig. 1 Comparison of feature selection studies for network traffic anomaly detection
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not specified. For the same data set, in Stein et al. (2005) a genetic algorithm (GA) wrapper

with a DTC as a validation model looks for relevant features. They are shown for the DoS

type of attack case.

There are also some works concerning feature selection for the NSL-KDD data set. In

Syarif et al. (2012), GA and Particle Swarm Optimization (PSO) are utilized for feature

selection, counting on Naïve Bayes, DTC, kNN and Rule Induction as learning models for

validation. GA selects 14 features and PSO 9, both obtaining better performances than by

using the original 41 feature subset, at least clearly when using the kNN classifier. In Imran

et al. (2012), authors carry out feature selection by means of Linear Discriminant Analysis

(LDA) and GA, concluding in an optimal subset of 11 features when a Radial Basis Function

(RBF) is in charge of classification. Previously, they directly removed nominal features (i.e.,

protocol_type, service and flag) supposedly to enable linear analysis. Finally, two feature

selection methods extracted from Weka (Correlation-Stepwise-based, and Information-Gain-

based) are applied in Zargari and Voorhis (2012), reaching the best performance with a subset

of 10 features.

All investigated papers are based on the same initial set of 41 features, but even if they use

exactly the same data, they all propose different feature subsets for the detection of anomalies

(Fig. 1 shows the discrepancies). We found several reasons for the disagreement of previous

feature selection work in literature and explicitly address such reasons in the present paper.

1. Different objectives, if not mixed or confusing. Some of the introduced works look for

differentiating specific type of attacks in the data sets, while others mix anomaly detection

and attack identification in the same process. Others even deal with normal traffic as if

it were another threat type, leading to a misleading interpretation of results. It is obvious

that different classification objectives lead to different feature sets. Our work focuses on

anomaly detection (separating normal from anomalous data), not on attack identification.

2. Different attack distributions. Although data sets all use the same 41 features, they intro-

duce different collections of attacks, differently distributed. Attack distribution affects

the feature selection, but even more the performance of feature selection validation meth-

ods. This explains differences between studies of the different data sets and of studies

that use different validation techniques. In our work we use the most recent KDD-NSL

(2009), for which defects of previous data sets have been fixed. Furthermore, we validate

our results with different classifier types to avoid bias.

3. High correlation among features. In our analysis we found several highly correlated fea-

tures. For instance, f13 and f16 show a linear correlation of 0.998 (features are described

in Appendix, Table 6); or the lower linear correlation index among f25, f26, f38 and

f39 equals 0.975. Hence, if a selection method opts for f13 as relevant, it will probably

consider f16 as redundant, therefore neglected. Another method may favor f16, and then

surely reject f13. To decide among high correlated features some methods opt for the fea-

ture most correlated to labels, whereas other approaches check the power of the discussed

features in combination with the pre-selected subsets. Such methodological differences

lead to different results. In our work, we propose a multi-stage feature selection that com-

bines different methods. Furthermore, we use multiple validation paradigms, including

models less sensitive to redundancy (e.g., DTC, kNN).

4. Performance indices. Many of the cited papers use accuracy as the only performance

index. Considering the non-normal attack type distribution, trusting only the accuracy

index is not optimal. For the NSL-KDD database normal traffic and neptune attack

accounts for more than 80 % of samples (similarly in the precedent data sets). The habit-

ual high accuracy values obtained by classifiers make it difficult to elucidate which option
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under test is the best (in this case: which feature subset). Additional indices are necessary,

such as false positive rate, false negative rate, precision, recall or ROC curves (repre-

sented by the area under the curve—AUC). In our work we use multiple performance

indices and display besides accuracy also attack precision, attack recall, and AUC.

5. Insufficient validation techniques. Finally, a common source of lack in statistical signifi-

cance comes from mixing the evaluation of feature selection with the evaluation of clas-

sifiers or detection systems (IDS’s). Such misunderstanding leads researchers to deploy

the original, proposed train/test data set division also to check feature selection. Since

evaluation results are not cross-validated, and considering the narrow accuracy range

where classifiers coexist (mainly in classic data sets), final assessments are not prone

to be representative. To reach maximum significance, we have utilized the whole NSL-

KDD database for feature selection, executing fivefold cross-validation in the decisive

evaluations.

In our research we aimed at a general feature subset not bound to a specific classification

approach. The idea is that future researchers can use the reduced feature set instead of the

full 41 features without degradation of the classifier performance. Furthermore, we looked

at the costs for feature generation and show which of the costly feature can be omitted for

on-line feature generation in IDS’s.

Our contribution can be summarised as follows:

– We reduce the network feature set from 41 commonly used features to only 16 features

without (or with minimal) anomaly detection power degradation.

– We introduce a multi-stage feature selection with different techniques to eliminate bias

introduced by specific methods and understand feature contribution.

– We consider the costs for feature generation and show which of the costly features are

negligible.

– We evaluate our results with six very different classifier types and present all relevant

performance indicators for our experiments.

3 Network data for anomaly detection

Network anomaly detection is challenging due to the dynamic nature of network traffic. Pro-

posed solutions cover techniques inherited from statistics, data mining and machine learning.

The recent work by Bhuyan et al. (2013) offers a comprehensive survey that compares a con-

siderable number of network IDS’s.

Anomalies appear due to network intrusions and attacks, but also because of malfunction-

ing devices or network overloads. According to Thottan and Ji (2003), we define an anomaly

as any circumstance that makes network traffic deviate from normal behaviour. Since we

work with labeled data, we consider an anomaly any vector not labeled as normal traffic in

the database, i.e. labeled as a type of attack (Appendix: Table 6). We differentiate between

anomaly detection and anomaly identification, concepts that sometimes seem to be mixed in

the literature (e.g., references in Sect. 2). Our paper focuses exclusively on anomaly detec-

tion. Note that determinant features for anomaly detection are not necessarily the same as

the features selected for identifying the type of anomaly.

3.1 The NSL-KDD data set

We are aware that due to the variety of networks, traffic profiles and attacks, the represen-

tativeness of any network traffic data set can be questioned. So finding suitable labelled
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datasets is difficult. Many of the published anomaly detection and feature selection propos-

als still utilize DARPA’98 and KDD’99 Cup, although the antiquity of those data sets and

the strong, popular critics received advise against their use (McHugh 2000). In this work we

used the more recent NSL-KDD data set (2009). The NSL-KDD data set (2009) has been

proposed by Tavallaee et al. (2009) to provide a data set for IDS testing that overcomes some

of the inherent problems found in the KDD Cup’99 database (also present in DARPA’98).

NSL-KDD solves the problems concerning the huge number of redundant records and the

duplication of records in the test data; furthermore, a more challenging attack distribution is

provided. The NSL-KDD data set has been already adopted by the IDS research community,

e.g., Panda et al. (2011), Salama et al. (2011).

Like their predecessors, NSL-KDD contains 41 features split into three groups: basic

features, extracted from TCP/IP connections; traffic features, related to the same host or the

same service; and content features, based on data from packet contents. Features are listed

in Table 1 and described in the Appendix, Table 7.

3.2 Attack types

Table 6 in the Appendix displays the labeled attacks with presence rate in the training and

test sets. Threats are clustered according to attack type: Denial of service (Dos), where some

resource is swamped, causing DoS to legitimate users. Probes, gathering network information

to bypass security. Remote to local (R2L) attacks that exploit remote system vulnerabilities

to get access to a system. User to root (U2R) attacks that attempt to gain root access to a

system.

The NSL-KDD data set is released divided into two groups: training (125973 samples)

and test (22544 samples). The division of the data is chosen in a way most demanding for

classifiers. Train and test data do not show the same attack probability distribution; moreover,

16 out of the 38 labeled threats are only present in the test data set. In addition, the presence

of some attacks is very scarce (2 or 3 samples in the whole database).

4 Feature selection

Reducing the number of features brings obvious benefits in terms of computational resources;

i.e., less stored data, faster processing and easier data extraction. Moreover, data mining and

machine learning techniques profit from dimensionality reduction in more complex ways. In

this section, we present feature selection methods, their benefits for classification (beyond

resource optimization), and their implications dealing with network anomaly detection data-

bases.

4.1 Problems of high-dimensionality for classification

From a theoretical perspective, including meaningless or redundant variables to describe

a phenomenon should not entail a degradation in the performance of classifiers. But from

the practical application, we find that learning algorithms by default ignore the underlying

distribution of the data and are habitually forced to discover a solution by approximating

NP-hard optimization problems due to the presence of redundant features (Kohavi and John

1997). This issue can be dramatic for neural networks based classifiers or decision trees

looking for optimality.

Another problem related to a feature excess is known as curse of dimensionality, i.e.,

the complexity of the multi-dimensional input space exponentially increases with every new
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Table 1 Features in the NSL-KDD data set, their relevance for anomaly detection (rel), effort to generate

them (eff) and the required IPFIX Information elements

Id Scale feature Rel Eff IPFIX IE

f1 Integer B: duration ◦ S flowDurationMicroseconds

f2 Nominal B: protocol_type • S protocolIdentifier

f3 Nominal B: service • S destinationTransportPort

f4 Nominal B: flag • H state keeping

f5 Integer B: src_bytes • S octetTotalCount

f6 Integer B: dst_bytes • S octetTotalCount

f7 Binary B: land • M comparison of IEs

f8 Integer B: wrong_fragment • H checksum check

f9 Integer B: urgent ◦ M tcpUrgTotalCount

f10 Integer C: Hot • H content inspection

f11 Integer C: num_failed_logins ◦ H content inspection

f12 Binary C: logged_in • H content inspection

f13 Integer C: num_compromised • H content inspection

f14 Binary C: root_shell • H content inspection

f15 Binary C: su_attempted • H content inspection

f16 Integer C: num_root ◦ H content inspection

f17 Integer C: num_file_creations • H content inspection

f18 Integer C: num_shells • H content inspection

f19 Integer C: num_access_files ◦ H content inspection

f20 Integer C: num_outbounds_cmds ◦ H content inspection

f21 Binary C: is_hot_login ◦ H content inspection

f22 Binary C: is_guest_login • H content inspection

f23 Integer T: count • M comparison of IEs

f24 Integer T: srv_count • M comparison of IEs

f25 Real T: serror_rate • H state keeping

f26 Real T: srv_serror_rate • H state keeping

f27 Real T: rerror_rate • H state keeping

f28 Real T: srv_rerror_rate • H state keeping

f29 Real T: same_srv_rate • M comparison of IEs

f30 Real T: diff_srv_rate ◦ M comparison of IEs

f31 Real T: srv_diff_host_rate ◦ M comparison of IEs

f32 Integer T: dst_host_count • M comparison of IEs

f33 Integer T: dst_host_srv_count • M comparison of IEs

f34 Real T: dst_host_same_srv_rate • M comparison of IEs

f35 Real T: dst_host_diff_srv_rate • M comparison of IEs

f36 Real T: dst_host_same_src_port_rate ◦ M comparison of IEs

f37 Real T: dst_host_srv_diff_host_rate ◦ M comparison of IEs

f38 Real T: dst_host_serror_rate • H state keeping
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Table 1 continued

Id Scale feature Rel Eff IPFIX IE

f39 Real T: dst_host_srv_serror_rate • H state keeping

f40 Real T: dst_host_rerror_rate • H state keeping

f41 Real T: dst_host_srv_rerror_rate • H state keeping

In column 3, ‘B’ stands for basic, ‘C’ for content and ‘T’ for traffic. Column 4 (rel) shows our results for

feature relevance. ◦ negligible, • low contribution and • strong contribution (Sect. 4). Column 5 (eff) shows the

effort to generate the feature: S-small, M-medium, H-high. Column 6 (IPFX IE) shows the IPFIX information

elements that can be used to generate this feature or explains which additional steps (comparison of IEs or

state keeping of connections) are necessary

variable, thus vectors become sparse and dissimilar in the huge universe and the exploration by

classifiers becomes harder. This problem has a strong effect on some classification techniques,

yet in clustering and anomaly detection in general (Zimek et al. 2012).

The performance degradation caused by irrelevant or redundant features varies depending

on the classification technique. Naïve Bayes classifiers are robust dealing with irrelevant

variables, but very vulnerable to the addition of correlated features (even if they are relevant)

(Kohavi and John 1997). In contrast, SVM and kNN models are severely impaired by noisy

and irrelevant variables. Also, some lineal models like LAR are very sensitive to noise data

as well as correlated variables (Efron et al. 2004). In order to reduce the bias introduced by

specific classifiers, we have used 3 different classification paradigms for validation (DTC,

kNN and Naïve Bayes) and up to 5 for evaluation (adding ANN and SVM models to the

previous group). Additionally, we also deploy a LASSO-LAR-based classifier when using

this specific method for feature selection.

4.2 Feature selection versus feature extraction

A habitual misconception related to feature selection comes from the subtle difference

between the two methods that are set to carry out dimensionality reduction, i.e., feature

selection and feature extraction, also called feature construction (Guyon and Elisseeff 2003).

Feature selection performs the removal of features that are irrelevant or redundant in poste-

rior processes for data representation and classification. On the other hand, feature extraction

consists of the projection of the original data set into a new space where the linear dependence

of features (axis or variables of the new space) is minimized, causing therefore a reduction

in the number of required features. An example within the intended application field can

be seen in Wen and Chen (2012). Note that, in feature extraction, the resulting features are

different from the original ones.

In spite of the fact that feature extraction—like PCA (principal component analysis), ICA

(independent component analysis) or SVD (singular value decomposition)—can be used for

feature weighting and therefore selection, it is important to notice that measurements from

all the original variables contribute to define the final subspace, as well as the fact that only

linear relationships among features are considered, i.e., higher order interactions are ignored.

Such aspects make feature extraction methods usually not the most appropriate for feature

selection. In any case, feature selection and feature extraction are not exclusive of each other;

quite the opposite. The elimination of irrelevant features (feature selection) is a useful step

before projecting features onto optimized spaces (feature extraction). Our work deals only

with feature selection, not feature extraction.
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4.3 Types of feature selection techniques

Feature selection techniques are embraced within three different groups (Guyon and Elisseeff

2003):

– Wrappers. A wrapper consists of a search algorithm for progressively selecting feature

subsets and a predictive model (i.e., a classifier) to validate the selection, thus searching

the subset with the best performance. Wrappers demand high computational cost and

have a risk of overfitting; nevertheless, they are reliable in general and have the benefit of

considering feature dependencies.

– Filters. With a much lower computational cost than wrappers, filters are fast and straight-

forward; they measure intrinsic properties of the data and are completely independent of

the classification algorithm. Not being affected by subsequent inference phases can be

an advantage, but it is also the main disadvantage of filters, as they are blind to see the

influence of the selected feature subset in the classification performance.

– Hybrids and/or Embedded. In the middle of the two previous options, embedded solutions

are those selection techniques which have been coupled to the classifier construction in

the training phase. As a results, data exploitation is optimized as the predictive model is

not retrained for every new subset.

The type of data to deal with is determinant to decide the appropriate feature selection

method. In the intended case, the original data set contains mixed types, i.e., some features

are nominal—e.g., the protocol type: tcp, udp, icmp—, and others belong to numerical ratio

scales—e.g., time—(the complete list of features is shown in Table 1 and Table 7). This

characteristic a priori makes approaches based on linear models not suitable, for instance:

selection based on LASSO or SVM. Nevertheless, to enable numerical methods it is always

possible to map nominal features in a continuous space, transforming every nominal value in

a new feature that can equal 0 or 1 (dummy coding). The main drawback of such mapping is

that it can cause a dramatic increase of dimensionality: data become more sparse, processing

times in classifiers are extended and the original balance among features is distorted. In

our application case for instance the feature service alone transforms into 69 new dummy

variables if converted.

Finally, our goal was not only reducing the number of features, but also to understand their

effect. As recommended in Guyon and Elisseeff (2003), we used filters to obtain and compare

variable rankings and baseline results. Later on, we refined our search using wrappers, which

made the most of the filters’ inferences.

Considering the introduced aspects, we opted for the following methods:

– Weight by Maximum Relevance (WMR)

WMR is a simple filter which measures the dependence between every feature x and

the classification feature y (i.e., the label) using Fisher F-test scores, Pearson’s linear

correlation and mutual information (Blum and Langley 1997). A high dependence score

reveals feature relevance. The metric to be used depends on the type of feature. Two

numerical features are scored by linear correlation; F-test score is applied to compare

a numerical feature with a nominal feature, finally, for two nominal features, mutual

information is calculated.

– Minimum Redundancy Maximum Relevance (MRMR)

A step forward with respect to WMR is carried out by the MRMR filter. MRMR performs a

sequential forward exploration, iteratively adding features to the subset by considering the

following aspects: a) the new feature must contain the maximum relevance regarding the

label and b) the minimum redundancy with regard to the feature subset already selected.
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As for the WMR case, relevance and redundancy assessments are calculated using Fisher

F-test scores, Pearson’s correlation and mutual information measurements. As for the

parametrization in the conducted tests, the quotient of relevance and redundancy estab-

lished the relevance redundancy relation. The interested reader is referred to Ding and

Peng (2003) for additional information.

– Significance Analysis for Microarrays (SAM)

SAM is a type of filter that assigns a score to each feature according to the significance of

its changes related to the classification labels. It is done by generating a series of t-test and

taking into account the standard deviations of repeated measurements for each feature.

SAM uses permutations of such repetitions in order to estimate the percentage of vectors

identified by chance, establishing therefore a false discovery rate (Tusher et al. 2001).

An important characteristic of SAM is that it does not assume a priory any statistical

structure in the data set, i.e., the data may not follow a normal distribution. As for the

parametrization, s0, a small constant that ensures the independence of the variance, was

set to 0.1.

– Least Absolute Selection and Shrinkage Operator (LASSO)

Linear classification models can be also useful to perform feature selection by checking

the coefficient vector β, which manifests the feature relevancy. The LASSO operator has

been widely deployed in statistics and data mining. It was firstly proposed by Tibshirani

(1994) as a linear estimator that provides interpretable models with feature coefficients

that are exactly zero (therefore such features can be ignored).

For the experiments, we use a LAR algorithm for finding LASSO solutions where the

shrinkage operator λ has been adjusted to 12.07 after a set of 100 exploratory fivefold

cross validation analysis. LASSO is a hybrid feature selection method.

– Stability Selection

Stability selection has been recently proposed (Meinshausen and Bühlmann 2010) as a

general method for feature selection that can be applied to many different kind of scenarios.

It can be considered as a meta-technique that embeds any feature selection approach and

improves the selection process by providing statistical consistency to the nested method. In

short, it works by submitting the underlying selection method to randomized subsamples of

half-size (with regard to the dataset under analysis); features are finally selected according

to the rate of appearance throughout the conducted runs.

For our experiments we have followed the work by Meinshausen and Bühlmann (2010),

deploying bootstraping (200 runs), and embedding WMR, MRMR, SAM and LASSO.

– Stepwise Regression

In stepwise regression the choice of suitable features is carried out by an automatic pro-

cedure, adding the best feature (or removing the worst) based on a greedy algorithm.

The greedy algorithm wraps a classification model for the comparison of feature sub-

sets, hence stepwise regression is a general term for designating forward selection and

backward elimination wrappers.

For the experiments, we used both forward selection (FS) and backward elimination

(BE), which equally deployed three different classification models—DTC, kNN and Naïve

Bayes—for every test.

5 Feature generation costs

The 41 features collected in DARPA’98, KDD Cup’99 and NSL-KDD data sets represent

typical observations used in IDS’s and were generated from traffic observations in the network
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and auditing processes on hosts. When creating the data set, the costs for feature generation

was not an issue. Sniffers were used to capture full packet traces of the traffic in the network

and auditing tools were installed on hosts. The observed data was stored and could be analysed

offline. Nevertheless, in a live system the costs for feature generation is relevant. Network

operators need to be able to generate those features in a timely and cost-efficient manner and

the 41 features are not equal with regard to the effort required to generate them. If we manage

to remove costly features and still achieve good detection results, we can achieve a higher

resource reduction than when omitting features that are less costly to generate. In order to

check if there is a relation between the usefulness of a feature and the cost to generate it,

we provide a categorisation of features with regard to the costs for feature generation. We

furthermore checked which of the features can be generated from standard flow measurements

on routers and which features require additional analysis functions only available in IDS’s.

5.1 Feature categorization

The NSL-KDD data set distinguishes basic, content and traffic features. Features of the

category basic (f1–f9) can be deduced from packet headers (IP and transport header) of

observed packets in the network. Nevertheless, the effort for generating them (in a live

system) is not equal. Some features need only a simple inspection of header fields (e.g.,

f2 protocol) and are standard features reported by flow measurements on routers (see

Sect. 5.2). Others require a comparison of values (e.g., f7 land) or even state keeping

about the connection status (f4 flag). Such functions demand additional effort, usually

implemented in IDS’s, e.g. Bro.2

Features of category content (f10–f22) require processing of packet content. Capturing

whole packets is much more costly than just capturing packet headers. Furthermore, the

packet payload must be inspected and application data needs to be reassembled. Thus deriving

content features from network measurements is very costly. In addition, if communication is

encrypted end to end, the packet payload can only be decrypted on the communicating hosts

and not in the network. This requires measurements at all hosts in the network, i.e. even more

effort.

Features of the category traffic (f23–f41) take statistics about previous connections into

account. f23–f31 contain statistics about connections to the same destination within the last

2 s, whereas f32–f41 look at the last 100 connections to the same destination, regardless

of the time period. All these features require to keep counters and tables for the different

characteristics of the connections. But some of these features can be generated by inspecting

packet headers (e.g. f23count, f24srv_count, f32dst_host_count), whereas others

require reassembly of the segments of a connection (e.g., f25 serror_rate).

5.2 Extracting features from standard IPFIX measurements

Typical tools for network analysis allow either packet capturing or flow measurements. Packet

capturing collects all packets observed at an observation point that is typically installed on a

router. Most tools allow to configure a snap size that defines how much of the packet payload

is included in the packet capture. Flow measurements aggregate packets with common prop-

erties (e.g., common source, destination, protocol, ports) into a flow (Claise et al. 2013). Since

packets are aggregated into flows, much less data needs to be stored, but also information

2 The Bro Network Security Monitor, http://www.bro.org.
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from individual packets gets lost. Cisco NetFlow is a broadly deployed flow measurement

protocol provided on Cisco routers. The IP Flow Information Export (IPFIX) protocol is

the future standard for flow measurements and provides a flexible flow definition (Claise et

al. 2013). Since NetFlow (and in future IPFIX) is already available on many routers, it is

beneficial if a feature can be deduced directly from IPFIX or NetFlow measurements.

We look at all features derived from network measurements and reason if they can be

deduced from IPFIX or if any additional analysis is required. IPFIX flows are formed using

a flow key, typically derived from packet header fields (Claise et al. 2013). The flow key

definition in IPFIX is quite flexible and can include many different characteristics that allow

to aggregate packets into flows. Nevertheless, most common is to use a flow key that dis-

tinguishes packets based on the 5-tuple from IP and transport header fields: source and

destination IP addresses, source and destination port numbers and protocol type. Character-

istics of a specific flow are then reported to a collector using IPFIX information elements.

An overview of all currently defined IPFIX elements can be found in the IANA Registry.3

The classical 5-tuple flow key allows to distinguish TCP connections using IPFIX mea-

surements. One difference is that IPFIX looks at unidirectional flows, whereas a TCP con-

nection establishes a bidirectional communication. But based on addresses and port numbers

(used in flow keys), flows can be matched to TCP connections (Trammell and Boschi 2008).

protocol_type (f2) is part of the flow key. service (f3) can be derived from the port

number. Those two features are easy to obtain from IPFIX. The duration of a flow (f1)

and the number of bytes transmitted (f5, f6) can be reported in standard IPFIX informa-

tion elements (flowDurationMicroseconds, octetTotalCount). land (f7) is

not directly reported by IPFIX, but can be deduced by a simple comparison of addresses

and ports in the flow key, i.e. some additional effort is necessary. Also some extra effort is

needed to count the number of urgent packets (f9). Although IPFIX provides an information

element for this (tcpUrgTotalCount), the router must check flags in the TCP header of

each observed packet. status (f4) needs to keep the connection state of TCP connections

and is not directly available from IPFIX records. wrong_fragment (f8) requires to count

packets with wrong checksum within a TCP connection. This information is not directly

available from IPFIX either.

Content features (f10–f22) require processing of packet content. This is not part of IPFIX

and demands additional effort for capturing, storing and processing.

The feature count (f23) describes the number of connections to the same host in the past

2 s. This can be deduced by comparing flow keys of the observed flows and start times of flows

(flowStartSysUpTime). So it can be done based on IPFIX, but requires some additional

effort for keeping the statistics about past flows. Also the number of flows to the same host and

to the same service (same_srv_rate, f29), the flows to the same service in the past seconds

(srv_count, f24), the flows to the same host and different services (diff_srv_rate,

f30) and flows to the same service and different hosts (srv_diff_host_rate, f31) can

be equally deduced. The same is true for the features looking at services and destination

hosts from the last 100 connections (f32–f37). For finding out the amount of connections

with SYN errors (f25, f26, f38, f39) or REJ errors (f27, f28, f40, f41) the connection state has

to be maintained, so these features are more costly.

We categorize the effort to generate a feature as small, medium or high. Table 1 shows the

results of the feature selection process (relevance) together with our categorization of features

3 IANA Registry for IP Flow Information Export (IPFIX) Protocol Information Elements, www.iana.org/

assignments/ipfix?.
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Fig. 2 Experiment scheme and steps

with regard to the effort to generate it. We also show which IPFIX information elements (IEs)

can be used to report specific features.

Ideal are features that strongly contribute to anomaly detection and are easy to generate,

i.e., f3 (service). Furthermore, if a feature is costly to generate but contributes little to the

detection, it is beneficial to omit it, i.e., f8 (wrong_fragment).

6 Conducted experiments

Experiments have been carried out with MATLAB4 and RapidMiner,5 on a machine with the

following characteristics: Intel(R) Core(TM) i5-2405S 2.50GHz, 8Gb RAM, Windows 7–64

bits. We focused on the analysis and selection of features for anomaly detection, postponing

anomaly identification to subsequent work. Therefore, there were two possible labels for any

vector: normal or attack.

6.1 Experiment phases

Figure 2 reflects the undertaken steps. They are as follows:

1. Normalization

Databases were normalized using Z-transformation (statistical normalization), in a way

that every feature got x̄ = 0 and σ 2 = 1.

2. Feature weighting and ranking

Taking into account the whole database, different feature ranks were obtained with WMR,

MRMR, SAM and LASSO, with and without applying stability selection. The obtained

subsets as well as the original set containing 41 features were assessed by using five-

fold cross validation (representative cases are shown in Table 2). Cross validation tests

were repeated wrapping every of the introduced classification models able to deal with

mixed nominal and numerical data, i.e. DTC, kNN and Naïve Bayes. In the LASSO case,

4 MATLAB, http://www.mathworks.com.

5 RapidMiner, http://rapidminer.com.
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Table 2 Validation of subsets (WMR, MRMR, SAM, LASSO) after stability selection and fivefold cross

validation

Method (#f) Class. Accuracy (%) Precision (%) Recall (%) AUC Time

WMR (15) DTC 89.67 ± 0.10 96.98 ± 0.20 81.13 ± 0.18 0.905 ± 0.001 3′50′′

kNN 96.66 ± 0.09 97.01 ± 0.17 96.03 ± 0.07 0.978 ± 0.000 26′10′′

Bayes 88.31 ± 0.10 90.92 ± 0.21 84.12 ± 0.30 0.941 ± 0.001 2′′

MRMR (11) DTC 85.47 ± 0.27 99.78 ± 0.07 69.97 ± 0.57 0.913 ± 0.033 3′27′′

kNN 95.48 ± 0.05 96.14 ± 0.15 94.39 ± 0.07 0.968 ± 0.001 15′24′′

Bayes 87.33 ± 0.09 92.09 ± 0.21 80.60 ± 0.41 0.920 ± 0.001 < 1′′

SAM (15) DTC 95.51 ± 0.10 98.48 ± 0.25 92.11 ± 0.20 0.984 ± 0.000 4′31′′

kNN 98.45 ± 0.06 98.42 ± 0.08 98.37 ± 0.18 0.991 ± 0.001 21′56′′

Bayes 86.62 ± 0.15 93.81 ± 0.34 77.28 ± 0.59 0.946 ± 0.001 2′′

LASSO (16) DTC 95.72 ± 0.04 97.45 ± 0.13 93.56 ± 0.10 0.987 ± 0.000 5′29′′

kNN 98.91 ± 0.04 98.92 ± 0.08 98.80 ± 0.06 0.994 ± 0.000 27′25′′

Bayes 87.67 ± 0.16 90.77 ± 0.26 82.79 ± 0.23 0.945 ± 0.001 2′′

LASSOa 94.41 ± 0.16 96.45 ± 0.16 91.76 ± 0.22 0.976 ± 0.000 50′′

aSince LASSO-LAR is a hybrid method, we deploy it also as classifier after performing its own feature selection

also a LASSO-based classifier was cross validated. By averaging filter results, we estab-

lished a tentative baseline of features with a strong contribution. Results are shown in

Fig. 4.

3. Refinement with brute force search

Analysis with filters allowed us to reduce the scope so as to tackle an exhaustive search

by means of stepwise regression. This step was done twofold:

a) On one side, starting with the 41-feature set and running backward elimination (BE).

The stop criterion was stated with the performance maximum.

b) On the other side, taking the obtained strong contribution subset as baseline, forward

selection (FS) added new features until the accuracy improvement was below a certain

threshold �γ = 0.0001 (being γ the classification accuracy with γ = 1 for a

classification without errors). Previously, 2-step BE was also conducted to refine the

strong contribution subset.

Again, the three classifiers were models for validation. In order to reduce computa-

tional costs, stepwise regression runs with simple validation and splits the dataset into

new train and test groups (70 % and 30 % of samples). After significant performances

(turning points), fivefold cross validation was conducted to ensure the correctness of

results obtained by simpler validations (Table 3). In short, this step refined the solution

discovered by filters and generated the definitive assessment of features (Fig. 5).

4. Evaluation with classifiers

In this final step we actually evaluated our proposed feature subsets with different clas-

sifiers comparing them to the original set with 41 features (Table 5). For this we used the

original train/test division proposed by NSL-KDD authors.

In addition to obtain a further validation of the proposed subsets, the aim of this final

step was to state a precedent for further studies and show the rates achieved by simple

classifiers with the proposed features. Future IDS’s could use these results as benchmarks

to build more sophisticated classifiers.

123



Mach Learn (2015) 101:59–84 73

Table 3 Validation of significant subsets after fivefold cross validation

Subset (#f) Class. Accuracy (%) Precision (%) Recall (%) AUC Time

All (41) DTC 98.93 ± 0.58 99.57 ± 0.05 98.20 ± 1.20 0.997 ± 0.001 45′10′′

kNN 99.21 ± 0.04 99.20 ± 0.03 99.16 ± 0.12 0.996 ± 0.000 69′45′′

Bayes 88.46 ± 0.11 87.90 ± 0.32 88.15 ± 0.46 0.947 ± 0.001 3′′

SLC (30) DTC 99.06 ± 0.11 99.36 ± 0.08 98.68 ± 0.23 0.997 ± 0.001 32′47′′

kNN 99.19 ± 0.04 99.16 ± 0.09 99.16 ± 0.09 0.996 ± 0.000 37′39′′

Bayes 88.84 ± 0.09 94.89 ± 0.60 81.18 ± 0.46 0.946 ± 0.001 2′′

SC (16) DTC 96.74 ± 0.47 95.28 ± 1.02 98.10 ± 0.44 0.995 ± 0.000 11′52′′

kNN 98.86 ± 0.07 98.77 ± 0.03 98.85 ± 0.15 0.994 ± 0.000 21′29′′

Bayes 88.84 ± 0.09 94.89 ± 0.60 81.18 ± 0.46 0.946 ± 0.001 2′′

SLC strong and low contribution, SC strong contribution feature datasets

6.2 Classification models

– Decision Tree Classifier (DTC)

A DTC is a multistage decision making model, i.e., an approach that splits a complex

decision into various simpler decisions, deploying a tree-like graph to schematize and

represent the decision making process (Quinlan 1986). We here used a simple DTC in

which pruning and pre-pruning was performed, with a confidence level of 0.25 for the

pessimistic error calculation of pruning and 3 as pre-pruning alternatives. The criterion

for splitting was based on entropy, adjusting the information gain of each feature to allow

the breadth and uniformity of feature values. The minimal size for splitting was 4 samples,

whereas the minimal leaf size was 2. The minimal gain required to split a node was fixed

to 0.1. The maximal tree depth allowed was 20 nodes.

– Naïve Bayes Classifier

A naive Bayes classifier is a probabilistic classification model based on Bayes’s theorem,

which naively assumes that features are independent given class (Lewis 1998). Due to

the data nature, we used laplace correction to prevent a strong effect of zero probabilities

(Zadrozny and Elkan 2001).

– k-Nearest Neighbor Classifier (kNN)

A kNN classifier is a simple nonparametric classifier which links a new vector x to

an existing class based on the votes (classification) of the k nearer training vectors to x

(Samworth 2012). As for the tests, k was set to three neighbours, being the votes weighted

based on the distance between neighbors. The metric for the distance was Euclidean-based.

– Artificial Neural Network (ANN)

An ANN is a computational model with a strongly parallel architecture that emulates

biological neural networks. Among the multiple possibilities, we opted for a classic,

widely used ANN consisting of a feed-forward multi-layer perceptron trained by a back

propagation algorithm (Riedmiller 1994). We used a network with a hidden layer which

size was (# f eatures + #classes)/2 + 1; the training cycles were 500, the learning rate

0.3, the momentum 0.2, and the optimization was stopped if the error rate was below

1 × 10−5.

– Support Vector Machine (SVM)

In short, SVM classify samples by trying to fix cluster boundaries in regions of data space

where there is little data (Chapelle et al. 2002). Parameterization is very sensitive to the
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subset under test. For the results shown in Table 5, we used a SVM with a radial kernel

function; after running parameter optimization, we found the best performance when the

kernel gamma equaled 0.01, the tolerance parameter C was 220.0, and the convergence

epsilon was set to 0.01.

6.3 Performance indices

The validation of feature selection depended on the performances obtained by classifiers

when working with the subsets under test. Scores were based on:

– Accuracy, i.e., percentage of correctly classified vectors.

accuracy = 100 ×
correctly identified vector

total vectors
(1)

– Attack precision (or positive predictive value for attacks), i.e., the fraction of predicted

attacks that are actually real attacks.

precision = 100 ×
correctly identified attacks

vectors identified as attacks
(2)

– Attack recall (or sensitivity for attacks), i.e., the fraction of real attacks correctly predicted.

recall = 100 ×
correctly identified attacks

real attacks
(3)

– Area Under ROC Curve (AUC). The AUC is a metric to compare classifiers. In gen-

eral terms, AUC is suitable for problems with biased or unbalanced class distribution.

Moreover, the AUC of a classifier is equivalent to the probability that the classifier will

rank a randomly chosen positive sample higher than a randomly chosen negative sample

(Fawcett 2006). It is important to remark that, even in situations where distinct classi-

fication approaches obtain even performances, binary classifiers (DTC, kNN) get worse

AUC than probabilistic classifiers (e.g., Bayes-based). Moreover, as smartly analyzed in

Hand (2009), AUC values can give potentially misleading results, hence they should be

interpreted together with other indices.

– Time. We provide the time required by each classifier to carry out the fivefold cross valida-

tion, as well as the original train/test classification task, both with the diverse feature subset

selections (Table 2 and Table 5 respectively). The objective is to show the relationship

between processing time, classification performance and number of features.

7 Results

We here discuss our results on feature ranking, performance of selected subsets, benchmark-

ing and processing time.

7.1 Feature weighting and ranking

Based on its inherent metrics and indices (Sect. 4.3), filters weight the contribution of every

feature for the anomaly identification task. We normalize filters weights according to the

maximum and minimum values and rearrange features in ascending order. Later on, nominal

categories are visually stated according to pronounced changes in the weight slopes obtained

by each filter, e.g WMR and SAM cases are shown in Fig. 3.
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Fig. 3 Weighted, ranked features for the WMR and SAM cases

Fig. 4 Feature ranking and weighting by WMR, MRMR, SAM and LASSO methods, with and without

stability selection

The feature rankings achieved with WMR, MRMR, SAM filters and LASSO, with and

without stability selection are shown in Fig. 4. WMR and SAM filters are quick and straight-

forward, requiring less than 1 s to perform their rankings, whereas MRMR takes 18 s and

LASSO 29 s to carry out their selection. Elapsed times for stability selection are obviously

longer: 1′17′′ for WMR, 27′′ for SAM, 9′45′′ for MRMR and 14′56′′ for LASSO.

An initial statistical analysis of the data revealed obvious irrelevant features. For instance,

feature f20 (number of outbound commands) equals 0 for the whole data set. Thus all filters

agreed ranking f20 as the most irrelevant variable (rank 41 in Fig. 4). f20 is usually scorned

also in related works, except for Stein et al. (2005), which utilizes the KDD Cup’99 (where

also f20 is 0 for all observations).

Beyond this aspect, according to Fig. 4 the estimations of the diverse feature selection

methods showed strong similarities, yet some disagreements too. All methods agreed about

finding traffic features mostly relevant and content features mostly irrelevant, whereas they

disagreed mainly when assessing basic features. In this respect, SAM and LASSO empha-

sized the contribution of basic features and WMR and MRMR completely ignored them.

Table. 2 displays classification performances with the subsets obtained by WMR, MRMR,

SAM and LASSO after stability selection. Classification results disclose that LASSO and

SAM selections slightly outperformed WMR and MRMR, yet it is worth remarking the

notable performance of the kNN classifier only with 11 features in the MRMR case.
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Fig. 5 Final feature classification after BE and FS refinement: 11 negligible, 14 low/medium contribution,

16 strong contribution

7.2 Refinement with brute force search

We used a subset based on a conservative estimation of filters and LASSO rankings for

strong contribution (i.e., f23, f25, f26, f29, f32, f33, f34, f38 and f39) and the 41 feature set

as baselines for FS and BE stepwise regression respectively.

The final feature categorization after wrapper refinement is shown in Fig. 5. The meaning

of the final three-color categories is as follows: The imperative feature subset (dark gray)

led to an acceptable classification performance. From here on, the addition of new features

(light gray) implied low improvements until a performance peak was finally reached. Then,

the addition of new features (white) worsened the performance. Note that we have joined

relevant and highly relevant features in the final strong contribution category.

Stepwise regression suggested that filters were able to correctly discover imperative fea-

tures, but for some incongruities or disagreements due to the highly correlated nature of some

features. In other words, there are features and combinations of features that provide very

similar information and therefore exclude each other. This phenomenon is also the origin of

the disagreement between BE and FS with regard to f8; BE labels it as irrelevant, whereas

FS considers it as relevant. Specific cross-validation tests confirmed the inclusion of f8 into

the strong contribution group before other possible feature combinations. The same reason

caused that, except for f20, filters arbitrarily ranked negligible and low contribution features.

In this respect, it is important to remark that, beyond the contribution of a few set of features

(the conservative subset), the inclusion of new features has a relative value, i.e. it is always

possible to replace such new features with others that contain analogous information and

lead to quite similar performances.

As for the required time, brute force refinement is a high time demanding process compared

to filters (for instance, BE stepwise regression with normal validation using the kNN classifier

requires 5h and 45′ to remove only one feature of the 16-feature subset; this time is ×5 for

the fivefold cross validation case). In the conducted tests, fivefold cross validation checks

around turning points were run after visual inspection of normal validation results of the three

classifiers together. Considering that such decisions are made in an automated manner, and

taking into account that classifiers tests are serialized, the estimated time for the complete

brute force refinement accounts for about 10 days of processing.

7.3 Comparison of the final subsets

Table 3 shows the validation of the final subset selections. Some interesting reasoning can

be inferred by comparing performance outcomes:

– As a general rule, the high scores obtained by the selected classifiers regardless of the

feature subset confirmed their suitability for feature selection validation (Bayes classifier

remains under discussion).

– Starting from the 41-feature set, the removal of negligible features improved the classifi-

cation up to taking into account 30 features. The 41- and 30-feature performances can be

considered equivalent in terms of detection power.
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Table 4 Subset competency based on DTC and kNN performance indices (1st indicates the best performance)

AUC Accuracy Recall Precision

1st all (41)/SLC (30) SLC (30) SLC (30) all (41)

2nd SC (16) all (41) all (41) SLC (30)

3rd LASSO (16) SC (16) SC (16) SAM (15)

SLC strong and low contribution, SC for strong contribution feature datasets. The number of included features

is provided within brackets

– The performance degradation from 30 to 16 features is significantly low, hence the con-

tribution for anomaly detection of the rejected features is also low.

Obviating the less reliable Bayes classifier, feature subsets of Tables 2 and 3 can be

compared based on the provided indices. Such comparison is displayed in Table 4. AUC and

accuracy are global evaluators, whereas a good recall performance is usually considered

more important for anomaly detection than precision (i.e. in terms of security false positives

are less harmful or preferable before false negatives).

In short, obtained outcomes suggest that, with less data to analyze, classifiers work in a

simpler, less noisy space, improve criteria and reduce randomness in classification; on the

other hand, there is a little information loss that otherwise could be useful to detect specific

attacks.

7.4 Evaluation with classifiers

Results show that the original data set with 41 features contains redundant and irrelevant

features. As a consequence, researchers that use the 41 features to detect anomalies should

get similar or even better results when using the 30-feature subset, and minor degradation (or

even non-existing) when using the 16-feature subset. We performed some tests to validate

this statement, i.e., assessing classifiers working with the selected 41, 30 or 16 features and

comparing results (Table 5). For this we used the originally proposed train/test NSL-KDD

division.

Test outcomes confirmed the proposed feature selection classification introduced in

Sects. 7.1, 7.3 and Table 3, as classifiers working with the 30-feature subset improve the

performance if compared to the 41-feature case. Accuracy indices are not so excellent com-

pared to some previous studies. Reasons for this have been already introduced: a) The more

demanding NSL-KDD data set compared to DARPA’98 and KDD Cup’99, b) the original

train/test partitioning, designed to challenge data mining studies c) our simple, straightfor-

ward classification models (since optimizing classifiers is not the focus of this work).

Noteworthy is the evolution of the Bayes classifier, which improved the performance by

exchanging precision and recall rates. With 41 features, it was prone to consider almost any

new vector as an attack, generating many false positives. With 16 features, false positives

were reduced, but losing power to identify some anomalies. It does not imply that missing

threats were distinguished with 41 features, performance indices suggest that the Naïve Bayes

classifier was superficially dividing the input space, unable to dive in a deeper level to classify

the data.

SVM are optimal for binary problems that involve high dimensional input spaces (i.e.,

many features) and myriads of samples (Joachims 1998). SVM showed specially sensitive

to changes in the parameterization, demanding a new adjustment for every different subset
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Table 5 Evaluation of significant subsets with the original train/test division

Subset (#f) Classifier Acc. (%) Prec. (%) Rec. (%) AUC Time

all (41) DTC 75.53 78.12 79.19 0.799 9′02′′

kNN 77.55 96.62 62.76 0.753 13′57′′

Bayes 57.01 57.00 99.66 0.815 1′′

ANN 77.74 66.34 92.79 0.895 145′50′′

SVM 51.90 92.55 16.85 0.648 21′11′′

SLC (30) DTC 78.68 73.49 85.53 0.780 2′35′′

kNN 77.84 95.98 63.74 0.770 6′06′′

Bayes 75.61 92.46 62.23 0.883 < 1′′

ANN 75.99 92.04 63.84 0.802 121′02′′

SVM 74.40 88.54 63.21 0.884 22′18′′

SC (16) DTC 78.22 79.81 82.65 0.772 53′′

kNN 76.65 91.90 64.69 0.734 3′48′′

Bayes 73.38 92.61 57.84 0.879 < 1′′

ANN 79.25 90.35 70.96 0.885 85′15′′

SVM 78.83 87.12 73.70 0.855 34′08′′

SLC strong and low contribution, SC strong contribution feature datasets

selection. In Table 5, results correspond to the set-up that obtained the best performance with

the minimum number of features, after running parameter optimization with an evolutionary

computation approach.

For the ANN and SVM tests nominal features were transformed to numerical features,

significantly increasing the number of dimensions and the sparsity in the feature space.

The inclusion or removal of nominal features implies a determinant effect on the input

space overall shape. Irrespective of the relevance of the contained information, it can be

either beneficial or detrimental when establishing partition boundaries in the SVM case

(depending on which features are already selected). Considering feature by feature, density

estimations revealed that both attack and normal clusters show strong deviation as a general

rule, introducing an environment with non-determinant fluctuations in density and where

areas of existence of both normal and attack classes frequently superimpose. Moreover,

normal traffic accounts for very diverse types of operations, and could be even considered as

a background noise wrapping attack profiles. On the other hand, the attack group is obviously

not homogeneous, and is arranged in little sub-clusters that can also show high dispersion

in several features. Taking into account how SVM establish classification boundaries, such

characteristics suggest a very demanding scenario. In any case, a specific parameterization

for every subset revealed a tendency to improve the performance as features were reduced.

7.5 Processing time

We provide the time required by filter feature selection validation (Table 2) as well as for

the classification benchmarks (Table 5). As expected, as a consequence of utilizing less fea-

tures by the involved algorithms computational costs were highly reduced without impairing

classification performances, which kept acceptable rates, showed minor degradation or even

improved.
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The reasons behind the long-time periods required by ANN have to do with the database

size growth (it is more than double in storage) when transforming nominal data to numerical

data for enabling LASSO, ANN and SVM processing (explained in Sect. 4.3). On the other

hand, input dimensionality does not have a high impact in overall complexity for the SVM,

hence performance times depended more directly on sample size and convergence criteria

inside training algorithms.

8 Conclusions

The main objective of this paper is to set a precedent where future IDS’s can resort to when

selecting network features to be deployed in their analysis. To that end, we have ranked

features from a network traffic database according to a combination of feature selection

filters and wrappers, concluding in: 16 features that shows a strong contribution for the

anomaly detection task, 14 features with a low contribution and 11 features considered as

negligible. Our experiments revealed the existence of irrelevant features, as well as a high

redundancy among some features and inter-dependencies that account for a considerable

group of anomalies.

Considering the recent critics and the disorder attributed to an appreciable part of the

related literature, we have rigorously designed and performed our experiments, carrying out

comparisons with previous approaches, discussing the reasons behind errors and drifts, and

installing precautions to overcome such drawbacks. Finally, we show IDS benchmarks based

on our selected subsets and five well-known classification models. The purpose is to state a

baseline for future evaluation of IDS solutions.

Appendix

See Tables 6 and 7.

Table 6 Types of attacks and distributions in the NSL-KDD dataset—normal traffic accounts for 53.46 %

(train) and 44.54 % (test)

Type Attack Train (%) Test (%) Description

Dos back 0.76 1.75 Denial of service attack against apache webserver where

a client requests a URL with many backslashes

land 0.01 0.03 Denial of service where a remote host is sent a UDP

packet with the same source and destination

neptune 32.72 21.36 Syn flood denial of service on one or more ports

pod 0.16 0.19 Denial of service ping of death

smurf 2.10 3.05 Denial of service icmp echo reply flood

teardrop 0.71 0.06 Denial of service where mis-fragmented UDP packets

cause some systems to reboot

processtable – 0.14 The attack is launched against network services

allocating a new process for each incoming TCP/IP

connection (UNIX systems)

mailbomb – 1.34 The attacker sends many messages to a server,

overflowing server’s mail queue and possibly causing

system failure
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Table 6 continued

Type Attack Train (%) Test (%) Description

Probe ipsweep 2.86 0.65 Surveillance sweep performing either a port sweep or

ping on multiple host addresses

nmap 1.19 0.33 Network mapping using the nmap tool. Mode of

exploring network will vary – options include SYN

portsweep 2.33 0.72 Surveillance sweep through many ports to determine

which services are supported on a single host

satan 2.88 3.77 Network probing tool (perl and C programs) which

looks for well-known weaknesses

saint – 1.46 SAINT (Security Administrator’s Integrated Network

Tool). Although it is not conceived as an attack tool, it

provides security information that is useful to an

attacker

mscan – 4.57 Uses DNS zone transfers and brute force scanning of IP

addresses to locate and test machines for

vulnerabilities

R2L guess_passwd 0.04 5.65 Guess passwords for a valid user using simple variants

of the account name over a telnet connection

ftp-write 0.01 0.01 Remote FTP user creates .rhost file in world writable

anonymous FTP directory and obtains local login

imap 0.01 0.00 Remote buffer overflow using imap port leads to root

shell

multihop 0.01 0.08 Multi-day scenario in which a user first breaks into one

machine

phf 0.00 0.01 Exploitable CGI script which allows a client to execute

commands on a machine with a misconfigured web

server

spy 0.00 – Multi-day scenario in which a user breaks into a

machine to find important data trying to avoid

detection

warezclient 0.71 – Users downloading illegal software which was

previously posted via anonymous FTP by the

warezmaster

warezmaster 0.02 4.33 Anonymous FTP upload of Warez (usually illegal

copies of copywrited software) onto FTP server

xlock – 0.04 A remote attacker gains local access by fooling a legal

user who has left their X console ans password

unprotected

snmpgetattack – 0.82 SNMP sweeps in order to find information about a

specific system or compromising the remote device

snmpguess – 1.52 Action of “guessing” SNMP strings to obtain an access

the attacker would not normally have

named – 0.08 Attack that exploits a buffer overflow in BIND version

4.9 releases prior to 4.9.7 and BIND 8 releases prior to

8.1.2

sendmail – 0.06 Attack that exploits a buffer overflow in sendmail v8.8.3

and allows a remote attacker to execute commands

with superuser privileges
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Table 6 continued

Type Attack Train (%) Test (%) Description

R2L worm – 0.01 Standalone malware program that replicates itself to

spread to other computers, relying on security failures

on the target computer to access it

xsnoop – 0.02 An attacker watches the keystrokes processed by an

unprotected X server to gain information that can

allow local access to the victim system

U2R buffer_overflow 0.02 0.09 Buffer overflow using eject program on Solaris, the

ffbconfig or the fdformat UNIX system command

loadmodule 0.01 0.01 Non-stealthy loadmodule attack which resets IFS for a

normal user and creates a root shell

perl 0.00 0.01 Perl attack which sets the user id to root in a perl script

and creates a root shell

rootkit 0.01 0.06 Multi-day scenario where a user installs one or more

components of a rootkit

httptunnel – 0.61 The attacker gains local access to a machine and then

configures an http client to periodically query a web

server setup at some remote host

ps – 0.07 Takes advantage of a race condition in the version of

’ps’ distributed with Solaris 2.5 and allows an attacker

to execute arbitrary code with root privilege

xterm – 0.06 Exploits a buffer overflow in the Xaw library distributed

with some operating systems and allows an attacker to

execute instructions with root privilege

sqlattack – 0.01 Code injection technique in which malicious SQL

statements are inserted in an entry field for execution

In italics attacks only present in the test dataset. Attack descriptions have been mainly obtained from: http://

www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/docs/attackDB.html (25 Sept. 2013)

Table 7 Description of features (information taken from GureKddcup database description, http://www.sc.

ehu.es/acwaldap/gureKddcup/README.pdf, 10 Nov. 2013)

# Name Type Description

f1 duration Integer Duration of the connection

f2 protocol_type Nominal Protocol type of the connection: TCP, UDP, ICMP

f3 service Nominal http, ftp, smtp, telnet. . . and others

f4 flag Nominal Connection status: SF, S0, S1, S2, S3, OTH, REJ,

RSTO, RSTOS0, SH, RSTRH, SHR

f5 src_bytes Integer Bytes sent in one connection

f6 dst_bytes Integer Bytes received in one connection

f7 land Binary If source and destination IP addresses and port numbers

are equal, this variable is 1, else 0

f8 wrong_fragment Integer Sum of bad checksum packets in a connection

f9 urgent Integer Sum of urgent packets in a connection (urgent bit

activated)

f10 hot Integer Sum of hot actions in a connection such as: entering a

system directory, creating programs and executing

programs

f11 num_failed_logins Integer Number of incorrect logins in a connection
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Table 7 continued

# Name Type Description

f12 logged_in Binary If the login is correct then 1, else 0

f13 num_compromised Integer Sum of not found error appearances in a connection

f14 root_shell Binary If the root gets the shell then 1, else 0

f15 su_attempted Binary If the “su” command has been used then 1, else 0

f16 num_root Integer Sum of operations performed as root in a connection

f17 num_file_creations Integer Sum of file creations in a connection

f18 num_shells Integer Number of logins of normal users

f19 num_access_files Integer Sum of operations in control files in a connection

f20 num_outbound_cmds Integer Sum of outbound commands in a ftp session

f21 is_hot_login Binary If the user is accessing as root or adm

f22 is_guest_login Binary If the user is accessing as guest, anonymous or visitor

f23 count Integer Sum of connections to the same destination IP address

f24 srv_count Integer Sum of connections to the same destination port number

f25 serror_rate Real The percentage of connections that have activated the

flag (f4) s0, s1, s2 or s3, among the connections

aggregated in count (f23)

f26 srv_serror_rate Real The percentage of connections that have activated the

flag (f4) s0, s1, s2 or s3, among the connections

aggregated in srv_count (f24)

f27 rerror_rate Real The percentage of connections that have activated the

flag (f4) REJ, among the connections aggregated in

count (f23)

f28 srv_error_rate Real The percentage of connections that have activated the

flag (f4) REJ, among the connections aggregated in

count (f23)

f29 same_srv_rate Real The percentage of connections that were to the same

service, among the connections aggregated in count

(f23)

f30 diff_srv_rate Real The percentage of connections that were to different

services, among the connections aggregated in count

(f23)

f31 srv_diff_host_rate Real The percentage of connections that were to different

destination machines among the connections

aggregated in srv_count (f24)

f32 dst_host_count Integer Sum of connections to the same destination IP address

f33 dst_host_srv_count Integer Sum of connections to the same destination port number

f34 dst_host_same_srv _rate Real The percentage of connections that were to the same

service, among the connections aggregated in

dst_host_count (f32)

f35 dst_host_diff_srv_rate Real The percentage of connections that were to different

services, among the connections aggregated in

dst_host_count (f32)

f36 dst_host_same_src _port_rate Real The percentage of connections that were to the same

source port, among the connections aggregated in

dst_host_srv_count (f33)
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Table 7 continued

# Name Type Description

f37 dst_host_srv_diff _host_rate Real The percentage of connections that were to different

destination machines, among the connections

aggregated in dst_host_srv_count (f33)

f38 dst_host_serror_rate Real The percentage of connections that have activated the

flag (f4) s0, s1, s2 or s3, among the connections

aggregated in dst_host_count (f32)

f39 dst_host_srv_serror _rate Real The percent of connections that have activated the flag

(f4) s0, s1, s2 or s3, among the connections

aggregated in dst_host_srv_count (f33)

f40 dst_host_rerror_rate Real The percentage of connections that have activated the

flag (f4) REJ, among the connections aggregated in

dst_host_count (f32)

f41 dst_host_srv_error _rate Real The percentage of connections that have activated the

flag (f4) REJ, among the connections aggregated in

dst_host_srv_count (f33)
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