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Abstract— This paper illustrates a novel method to an-
alyze artificial neural networks so as to gain insight into
their internal functionality. To this purpose, the elements
of a feedforward-backpropagation neural network, that has
been trained to detect edges in images, are described in
terms of differential operators of various orders and with
various angles of operation.
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I. INTRODUCTION

Since the early development of artificial neural net-
works, but especially in the past 10 years, researchers have
tried to analyze them to provide insight into their behavior.
For certain applications and in certain problem domains
this has been successful. In particular in decision making
systems and other systems that can easily be expressed in
sets of rules, great advances have been made by the devel-
opment of so-called rule extraction methods [1]. Neural
network systems with relatively few inputs can sometimes
be analyzed by means of a sensitivity analysis [2], which
is a nonparametric statistical analysis technique.

However, most neural network systems are so high-
dimensional that an extracted rule base would become
too large to be easily interpreted, or so nonlinear that
a sensitivity analysis would only be valid for a small
part of the input space. For this reason, we propose
domain-specific neural network analysis methods that uti-
lize domain-specific base functions [3] that are easy to in-
terpret by the user and that can even be used to optimize
neural network systems. An analysis in terms of base func-
tions may also make clear how to (re)construct a superior
system using those base functions, thus using the neural
network as a construction advisor.

II. ANALYSIS OF NEURAL NETWORKS

In general, artificial neural networks with unsupervised
training merely reorganize the input space, so analyzing

them after training becomes fairly simple: an investigation
into the reorganized input space reveals how the network
has restructured the input space.

Analyzing neural networks trained under supervision is
far more complicated, for input and output spaces are usu-
ally in different domains (e.g., a character recognition sys-
tem has an image as input, and a character as output),
whereas in the unsupervised case, input and output spaces
are basically the same, although they are organized in dif-
ferent ways.

The idea of describing a trained neural network in terms
of basic domain-specific functions was introduced and pre-
sented in earlier publications [3], [4]. For many problems
in certain domains, such as linguistics and decision theory,
the common, domain-dependent base functions could be
chosen to be if–then rules or decision trees, in which case
the analysis reduces to rule extraction. Table I lists a few
more problem domains where neural networks have been
successfully applied. For each of these domains, possible
base functions are presented. In the following, we show
for one such domain, i.e., digital image processing, how
our analytical method can overcome the impracticality of
more common knowledge extraction methods. In the case
of edge detection – a digital image processing technique
– the user will be familiar with image filters, particularly
2-dimensional differential operators. Hence, a description
in terms of these digital image operators will enhance the
understanding of the neural net’s functionality. Therefore,
we will illustrate the analysis of feed-forward–error-back-
propagation neural networks trained for edge detection.

III. EDGE DETECTION

Edge detection is frequently used in image segmenta-
tion. In that case an image is seen as a combination of seg-
ments in which image data are more or less homogeneous.
Two main alternatives exist to determine these segments:
(1) classification of all pixels that satisfy the criterion of
homogeneousness; (2) detection of all pixels on the bor-
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TABLE I
Some application domains with potential base functions.

application domain potential base functions

signal processing (1-D) basic operational filters

digital image
processing (2-D)

differential operators

general
classification problems

feature map regions
(compare Kohonen’s self-
organizing feature map)

if-then rules (fuzzy or not)
decision theory (i.e., rule extraction as a special

case of the proposed method)

control theory basic control operators

ders between different homogeneous areas.
To the first category belong pixel classification (depend-

ing on the pixel value the pixel is part of a certain segment)
and region growing methods. The second category is edge
detection.

In fact, edge detection is also some sort of pixel classi-
fication: every pixel is either part of an edge or not. All
edges together form the contours of the segments. After
edge detection sometimes edge linking is used, in order to
try to get the contours closed, as in practice not all pixels
will be classified correctly, due to noise, etc.

Many edge detection filters only detect edges in cer-
tain directions, therefore combinations of filters that detect
edges in different directions are often used to obtain edge
detectors that detect all edges.

A. Finding edge pixels

In digital image processing, we can write an image as
a set of pixels fp,q and an edge detection filter which de-
tects edges with direction φ as a (template) matrix with ele-
ments wn,m, see Figure 1. We can then determine whether
a pixel fp,q is an edge pixel or not, by looking at the
pixel’s neighborhood, see Figure 2, where the neighbor-
hood has the same size as the edge detector template, say
(2N+1)×(2M+1). We then calculate the discrete convo-
lution

gp,q =
N∑

n=−N

M∑
m=−M

wn,mfp−n,q−m, (1)

where fp,q can be classified as an edge pixel if gp,q exceeds
a certain threshold and is a local maximum in the direction
perpendicular to φ in the image gp,q.
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Fig. 1
A (2N+1)×(2M+1) template wn,m.
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Fig. 2
A (2P+1)×(2Q+1) image with a (2N+1)×(2M+1)

neighborhood around fp,q .

Some examples of templates for edge detection are:


−1 −2 −1

0 0 0
1 2 1


,


−5 −5 3
−5 0 3

3 3 3


,


−1 1 1
−1 −2 1
−1 1 1


.

Sobel, 0◦ Kirsch, 45◦ compass, 90◦

The dependency on the edge direction φ is not very
strong; edges with a direction φ ± 45◦ will also activate
the edge detector.

B. Differential operators

A special type of image filters are the differential op-
erators. Usage of these operators is based on the detec-
tion of changes in greylevel. The gradient vector of a 2-
dimensional continuous image f(x, y) is defined as

−→∇f(x, y) =
[
∂f(x, y)

∂x

∂f(x, y)
∂x

]T

=

[
fx(x, y)
fy(x, y)

]
. (2)

For discrete images this can be seen as a template [−1 1]
for the gradient in the horizontal direction and as a tem-
plate [ 1−1] for the gradient in the vertical direction. The
gradients in the diagonal directions can be determined with
Roberts’ templates [−1

0
0
1] and [ 0−1

1
0] for gradients in 45◦

and 135◦ directions, respectively. The direction of the
edges detected by a differential operator is perpendicular
to the direction of the gradient.



IV. DESCRIBING A TEMPLATE IN TERMS OF

DIFFERENTIAL OPERATORS

We will now describe how an arbitrary edge detection
filter in matrix form can be seen as a composition of sev-
eral differential operators, where the operators are of vary-
ing orders and operate in varying directions. In order to
transform a template into a set of gradient filters, we first
calculate the Taylor series expansion of the Fourier trans-
formed template, and then we apply the inverse Fourier
transform to get a description of the template which gives
us knowledge about the differential components. The rea-
son for using a Fourier transformation lies in the fact that
a Fourier transformed filter description consists of a series
of sinusoidals, which are easily differentiated to determine
the Taylor components.

A. Fourier transformation

For Fourier transformation, Dirac functions (δ) are as-
signed to the pixels fp,q and template elements wn,m.
Thus, the Fourier transformed (sub)image is

F (u, v)=F



N∑
n=−N

M∑
m=−M

fp−n,q−mδ(x−n∆, y−m∆)




=
N∑

n=−N

M∑
m=−M

fp−n,q−me−2πj∆(nu+mv),

(3)
where δ is the Dirac function, x=p∆x, and y=q∆y, with
∆x=∆y=∆ as the sampling period. Unlike the original
images, the transformed images are continuous functions.
The Fourier transformation G(u, v) of the edge map gp,q

is calculated similar to the Fourier transformed input im-
age F (u, v). If we write the filter function W (u, v) as the
transformation of the template wn,m,

W (u, v)=
N∑

n=−N

M∑
m=−M

wn,me−2πj∆(nu+mv), (4)

then
G(u, v)=W (u, v)F (u, v). (5)

This equation describes the filter operation in the fre-
quency domain. A convolution in the space domain be-
comes a simple multiplication in the frequency domain.

B. Taylor series expansion

The Taylor series expansion of a function h(u, v)
around (0, 0) is

h(u, v)=
∞∑

r=0

1
r!

r∑
i=0

(r
i

)
uivr−i ∂rh

∂ui∂vr−i

∣∣∣∣
(0,0)

. (6)

The Taylor series of W (u, v) is then

W (u, v)=
∑
n

∑
m

wn,m

∞∑
r=0

r∑
i=0

uivr−i

i!(r−i)!
(−2πj∆)rnimr−i,

(7)
with which the transformed edge map G(u, v) can be writ-
ten as
G(u, v)=

∑
n

∑
m

wn,m

·
∞∑

r=0

r∑
i=0

uivr−i

i!(r−i)!
(−2πj∆)rnimr−iF (u, v)

=
∞∑

r=0

r∑
i=0

(−2πju∆)i(−2πjv∆)r−i F (u, v)
i!(r−i)!

·
∑
n

∑
m

wn,mnimr−i.

(8)
Equation (8) describes the output edge map, trans-

formed to the frequency domain. If we now want a similar
description of the edge map in the space domain, i.e., ex-
pansion into gradients of different orders, inverse Fourier
transformation is required. This yields a continuous anal-
ogon of gp,q:

g(x, y)=

∞∑
r=0

r∑
i=0

∂rf(x, y)
∂xi∂yr−i

(−1)r

i!(r−i)!

∑
n

∑
m

wn,mnimr−i. (9)

From Eq. (9) it can be deduced that the image filter de-
scribed by wn,m can be regarded as composed of a series of
differential operators, with the following continuous anal-
ogon:

g(x, y)=
∞∑
i=0

∞∑
j=0

αi,j
∂i+j

∂xi∂yj
f(x, y), (10)

with i+j =r and

αi,j =
1

i!j!

N∑
n=−N

M∑
m=−M

wn,mnimj (11)

being the coefficients for the gradient vectors for the var-
ious values of i (order in x-direction) and j (order in y-
direction).

C. Coordinate transform

For a better insight into the types of differential opera-
tors, it can be determined if a filter is directional, and if so,
what its main direction of operation is. To this purpose,
the x- and y-axes can be rotated over an angle θ to new



Fig. 3
Coordinate transformation from (x, y) to (ξ, η).

coordinate axes, see Figure 3. Now x and y can be written
as functions of ξ and η, depending on θ:

x=xθ(ξ, η)=ξ cos θ − η sin θ
y=yθ(ξ, η)=ξ sin θ + η cos θ

(12)

With this transformation, f(x, y) can also be written as

f(x, y)=fθ (xθ(ξ, η), yθ(ξ, η))=f
′
θ(ξ, η). (13)

N.B. the notation f
′
θ has nothing to do with the gradient of

fθ.

We can now adapt Eqs. (3)-(11) to the coordinate trans-
formation of Eq. (12). The Fourier transformed input
(sub)image is then

F
′
θ(µ, ν)=F

{∑
n

∑
m

fp−n,q−m

·δ[(x−n∆) cos θ + (y−m∆) sin θ,
−(x−n∆) sin θ +(y−m∆) cos θ)]

}

=F
{∑

n

∑
m

fp−n,q−mδ(ξ−n∆ cos θ−m∆ sin θ,

η+n∆ sin θ−m∆ cos θ)

}

=
∑
n

∑
m

fp−n,q−m

· e−2πj∆((n cos θ+m sin θ)µ+(−n sin θ+m cos θ)ν).
(14)

In a similar manner as without the coordinate transform,
the output edge map can be calculated from

G
′
θ(µ, ν)=W

′
θ(µ, ν)F

′
θ(µ, ν), (15)

with

W
′
θ(µ, ν)=

∑
n

∑
m

wn,m

· e−2πj∆((n cos θ+m sin θ)µ+(−n sin θ+m cos θ)ν).

(16)
The Taylor series of the filter function W

′
θ(µ, ν) is now

written as

W
′
θ(µ, ν)=

∑
n

∑
m

wn,m

∞∑
r=0

r∑
i=0

µiνr−i

i!(r−i)!
(−2πj∆)r

·(n cos θ + m sin θ)i(−n sin θ + m cos θ)r−i

(17)
or, using the polynomial equality

(a+b)i =
i∑

k=0

( i
k

)
akbi−k, (18)

we get

W
′
θ(µ, ν)=

∞∑
r=0

r∑
i=0

(2πjµ∆)i(2πjν∆)r−i (−1)r−i

i!(r−i)!

·
∑
n

∑
m

wn,m

i∑
k=0

( i
k

)
(n cos θ)k(m sin θ)i−k

·
r−i∑
l=0

(r−i
l

)
(−n sin θ)l(m cos θ)r−i−l.

(19)
Equation (19) is a Taylor series description of the filter

function in the frequency domain. Now the complete out-
put edge map can be calculated in the frequency domain
and inverse Fourier transformation results in the following
equation in ξ and η:

g
′
θ(ξ, η)=

∞∑
r=0

r∑
i=0

(−1)r ∂rf
′
θ(ξ, η)

∂ξi∂ηr−i

∑
n

∑
m

wn,m

i∑
k=0

r−i∑
l=0

(−1)lnk+lmr−k−l

k!l!(i−k)!(r−i−l)!
(sin θ)i−k+l(cos θ)k+r−i−l

(20)
or

g
′
θ(ξ, η) =

∞∑
i=0

∞∑
j=0

βθ,i,j
∂i+j

∂ξi∂ηj
f

′
θ(ξ, η), (21)

with i+j =r and

βθ,i,j = (−1)i+j
N∑

n=−N

M∑
m=−M

wn,m

i∑
k=0

j∑
l=0

(−1)lnk+lmi+j−k−l

k!l!(i−k)!(j−l)!
(sin θ)i−k+l(cos θ)j+k−l.

(22)



Fig. 4
Input training image (128×128 pixels) and reference edge map.

Equation (22) gives the Taylor series coefficients of the
edge detection filter template, from which we can deduce
of which orders of differential operators the filter consists,
i.e., those i and j that give the larger βθ,i,j , and in which di-
rection(s) these operators work optimally, i.e., the angle(s)
θ for which βθ,i,j is maximal for certain i and j. This can
be represented graphically by drawing the value of βθ,i,j

as a function of θ for various i and j. See Figures 6-9
for some examples. In these graphs, the absolute value of
βθ,i,j as a function of θ is represented by the distance from
the center of the graph in the direction of θ; positive values
of βθ,i,j are shown in blue (thick lines), negative values in
red (thin lines).

V. NEURAL NETWORK EDGE DETECTOR

In order to test our analysis method, we trained several
artificial neural networks for edge detection. The neural
networks were of the feed-forward error-backpropagation
type, with 3 × 3 to 11 × 11 inputs, 4 to 8 units in the
single hidden layer, and a single output. All units used
sigmoid activation functions. Some networks were trained
with a training image containing sharp edges only (see Fig-
ure 4), others were trained with an image that contained
sharp edges as well as blurred ones and additional Gaus-
sian noise. A different image was used as a test set, see
Figure 5 for a test result by a neural network edge detec-
tor.

VI. RESULTS

As Eq. 22 gives the Taylor series coefficients of any im-
age filter template, we can apply it to existing edge detec-
tor templates as well as to a neural network edge detector’s
hidden units, whose weights can be regarded as a template
as well. First, we will show a brief analysis result for the
Kirsch template shown in Section III-A. As can clearly be
seen from Figure 6, this template shows no low-pass (av-

Fig. 5
Test image and result after edge detection by a neural network.
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Fig. 6
Low-pass, gradient, and second-order gradient analysis results

for the Kirsch edge detector template of Section III-A.

eraging) behavior, has a strong first-order gradient opera-
tion in diagonal direction, as could be expected, and weak
second-order gradient behavior.

Non-edge detecting templates can also be analyzed. In
the case of the line-detecting template of Figure 7, it is
clear that it detects horizontal lines, therefor it is not sur-
prising that the second order coefficients are strongest in
vertical direction. The zero-order and first-order coeffi-
cients are all zero.

Figure 8 shows results for the 4 hidden units of a small
neural network edge detector, which was trained with the
sharp edges shown in Figure 4. For the purpose of show-
ing the hidden units’ weight values graphically, they have
been scaled to values between −1 (black) and +1 (white).
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Fig. 7
Low-pass, gradient, and second-order gradient analysis results

for the line detector template shown on the left.
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Fig. 8
Weight templates and low-pass, gradient, and second-order

gradient analysis results for all 4 hidden units of a (3×3) 4 1
neural network edge detector trained with sharp edges.

The weight templates shown in the first column already
give some insight into their behavior, but the Taylor series
coefficient analysis clearly shows that three of the units
detect edges in various directions, and one unit acts as a
second-order gradient filter with minor first-order gradient
behavior. Notice that all four units do not have a significant
low-pass (zero-order gradient) component.

Another neural network with the same architecture was
trained with sharp, blurred, and noisy variants of the im-
ages shown in Figure 4. The weight templates of the hid-
den units are shown in Figure 9 along with the graphical
representations of their Taylor series coefficients. This net-
work’s units have similar gradient components as the pre-
vious one, although the second-order gradient components
are somewhat stronger. The low-pass components are sig-
nificantly present, as compared to the previous network.
This is a result of the different training. Low-pass or av-
eraging behavior makes the network less sensitive to noise
and improves the edge detection ability of the second net-
work.

Although the above only gives some analysis results for
the units in the hidden layer, it should be clear that a de-
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Fig. 9
Weight templates and low-pass, gradient, and second-order

gradient analysis results for all 4 hidden units of a (3×3) 4 1
neural net edge detector trained with sharp/blurry/noisy edges.

scription of the neural network as a whole can be derived
from these results. The weight between a hidden units and
the output unit represents the “importance” of the hidden
unit’s edge detection outcome, which is then combined
with the other hidden units’ outcomes into a single answer
indicating whether the pixel under investigation belongs to
an edge or not.

Some larger neural networks have also been trained and
analyzed, with similar results, although in general, the
larger the network, the more variety in behavior among
the neural units. In a few cases, certain units showed very
strong higher-order behavior, indicating that those units
functioned as noise detectors only. Although such units
usually have weak connections to the output unit (low im-
portance), removing them from the network (pruning) of-
ten results in worse edge detection capabilities for the net-
work as a whole. This is because the noise detecting unit
decreases the confidence of an edge detection outcome if
the local neighborhood around the pixel under investiga-
tion is very noisy. Units detecting sharp edges could easily
misclassify such pixels as edge pixels.



VII. CONCLUSIONS

We have trained neural networks to detect edges in dig-
ital images and analyzed them into gradient filter compo-
nents. From the results displayed and described in the pre-
vious sections it is clear that it is indeed feasible to de-
scribe the trained neural networks in terms of basic func-
tions from the image processing domain.

The description with gradient filter components gives
easy insight into the behavior of the neural network as an
edge detector, and allows simple comparison with other
edge detectors which can in the same way be described in
terms of gradient filter components.

In general, the analysis consists in describing the inter-
nal functionality of the neural network in terms of basic
domain functions, functions that can be considered basic in
the application domain of the neural network. This means
that users who may not be familiar with artificial neural
networks, but who are familiar with basic functions that
are often used in their problem domain, can gain insight in
the way the neural network solves their problem. For such
users, this is often an important factor in deciding to apply
artificial neural networks to a problem that may be difficult
to solve otherwise.
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