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The stochastically perturbed Chen system is studied within the parameter region which permits both

regular and chaotic oscillations. As noise intensity increases and passes some threshold value, noise-

induced hopping between close portions of the stochastic cycle can be observed. Through these

transitions, the stochastic cycle is deformed to be a stochastic attractor that looks like chaotic. In this

paper for investigation of these transitions, a constructive method based on the stochastic sensitivity

function technique with confidence ellipses is suggested and discussed in detail. Analyzing a mutual

arrangement of these ellipses, we estimate the threshold noise intensity corresponding to chaotization

of the stochastic attractor. Capabilities of this geometric method for detailed analysis of the noise-

induced hopping which generates chaos are demonstrated on the stochastic Chen system. VC 2012

American Institute of Physics. [http://dx.doi.org/10.1063/1.4732543]

Noise-induced chaos in stochastically perturbed nonlinear
deterministic systems with regular attractors has been
studied extensively. This phenomenon has received a great
deal of interest among researchers from various fields of
physics, life sciences, and engineering. Nonlinearity, even
in a non-chaotic regime, can imply a non-uniformity of
phase portraits, diverse forms of coexicting regular attrac-
tors with a complicated geometry of basins of attraction.
Under random disturbances, a phase trajectory can cross
separatices and induce stochastic hopping between both
coexisting regular attractors and their different but close
portions. As a consequence of this hopping, the random
trajectories with a high probability fall within zones of
divergency (local instability), and the dynamics of the per-
turbed system as a whole becomes chaotic. The positivity
of the largest Lyapunov exponent can be used as a mea-
sure that this new noise-induced regime is chaotic.

In this paper, for the constructive prediction of the
noise-induced transitions from regular to chaotic oscilla-
tions in a dynamical system, a new stochastic sensitivity
function technique is developed and applied. This tech-
nique enables to find dispersion ellipses of the random
states for the stochastically perturbed dynamical system
around deterministic attractors. The sizes of these ellipses
are enlarged as noise intensity increases. The constructive
method of the dispersion ellipses allows to estimate the
threshold of the noise intensity corresponding to the defor-
mation of a regular stochastic attractor to a chaotic one.
The effectiveness of this approach is demonstrated by the
stochastically perturbed Chen system.

I. INTRODUCTION

Analysis of the interplay between stochasticity and non-

linearity in dynamical systems is a fundamental problem in

both theoretical statistical physics and modern engineering

applications.

In nonlinear systems, noise can induce various phenom-

ena which have no analogies in the deterministic setting.1,2

New stochastic regimes such as noise-induced transitions,3,4

stochastic bifurcations,5–7 stochastic resonance,8,9 noise-

induced order,10,11 noise-induced chaos,12–14 noise-induced

excitability15,16 and intermittency,17–19 noise-induced cri-

ses,20,21 noise-induced oscillations (coherent resonance),22–24

and noise-induced unstable dimension variability25 are cur-

rently the objects of considerable research.

Due to nonlinearity, even in a non-chaotic regime, the

dynamical system can exhibit multiple coexisting regular

attractors. These deterministic attractors can be either simple

(equilibria) or complicated (limit cycles in period-doubling

zone, tori). For small noise, random trajectories are attracted

to deterministic attractors, which are localized not far from

the basin of the attraction. As the noise intensity increases,

random hopping between coexisting attractors and their

basins of attraction is observed with a high probability.26–28

This hopping can generate noise-induced chaos.

But noise-induced chaotization can be observed in the

monostable systems also. Indeed, for nonlinear system with

single attractor in a sufficiently complicated spatial form, the

stochastic hopping between its different but close portions

can be induced.29–31 As a consequence of this hopping, the

dynamics of the perturbed system geometrically become

chaos-like. The change of the phase space arrangement of

the correspondent stochastic attractor is associated with the

change of its dynamical properties. As the noise intensity is

increased from zero and passes through some threshold

value, the largest Lyapunov exponent becomes positive. The

positivity of the Lyapunov exponent justifies that this new

noise-induced regime is chaotic dynamically. A scaling anal-

ysis of the Lyapunov exponents for various dynamical sys-

tems with noise-induced chaotic dynamics is a subject of

extensive analysis recently.19,25,30

Note that the identification of chaos by analyzing Lyapu-

nov exponents is very costly for long-time direct numerical
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simulations of random trajectories. For the prediction of

noise-induced chaotization, moreover, it is desirable to de-

velop an analytical method taking into account the intercon-

nection between the geometrical features of an unperturbed

deterministic attractor and its stochastic sensitivity. An

approach using quasipotential was proposed in Ref. 32 for

scaling analysis of noise-induced chaos. In a recent work,33 a

new constructive method for the analysis of noise-induced

transitions via stochastic sensitivity functions technique was

suggested. The effectiveness of this method was illustrated in

the study of the transitions between two coexisting limit

cycles of the Lorenz system.

In this paper, we extend the stochastic sensitivity func-

tions technique to analyze the probabilistic mechanism of

noise-induced chaotization generated by random hopping

between different but close portions of a single regular

attractor. Specifically, we focus on the case where this attrac-

tor is a stable limit cycle. The cycle with arranged nearby

parts of its trajectory (e.g., multiple cycle) is an appropriate

model for studying the noise-induced hopping mechanism

within the single attractor. The familiar deterministic Chen

system exhibits a region of period-doubling bifurcations

with cycles.34 In the present paper, we apply the stochastic

sensitivity functions technique and a method of dispersion

ellipses to carry out detailed analysis of noise-induced chaot-

ization within that region of the Chen system.

In Sec. II, we present briefly a mathematical background

of the technique used for the approximation of the probabil-

istic distribution and a description of the geometrical features

of the stochastically perturbed limit cycles.

In Sec. III, we consider the stochastically perturbed

Chen system in the parameter region that admits both regular

and chaotic oscillations. We furthermore study the phenom-

enon of random transitions between close portions of the sto-

chastic cycles. Our constructive method for analyzing these

transitions allows to estimate the threshold of noise intensity

corresponding to the deformation of a regular stochastic

attractor to a chaotic one. We show how this threshold value

depends on the multiplicity of stochastically forced cycles.

II. STOCHASTIC SENSITIVITY FUNCTION FOR 3D
CYCLES

Consider a general deterministic system of nonlinear

differential equations,

_x ¼ f ðxÞ: (1)

Suppose that system (1) has a T-periodic solution nðtÞ with
an exponentially stable phase curve c (limit cycle). It means

that for a small neighborhood C of the cycle c there exist

constants K > 0; l > 0 such that for any solution x (t) of the

system (1) with xð0Þ ¼ x0 2 C the following inequality holds

kDðxðtÞÞk � Ke�ltkDðx0Þk:

Here, DðxÞ ¼ x� cðxÞ is a deviation of a point x from a

cycle c, cðxÞ is a point on cycle c that is nearest to x.

Along with the unperturbed deterministic system (1),

consider an Ito stochastic system

_x ¼ f ðxÞ þ erðxÞ _w: (2)

Here, w(t) is an n–dimensional Wiener process and rðxÞ is

an n� n matrix-valued function of perturbation with inten-

sity e > 0.

The random trajectories of the perturbed system (2)

leave the closed curve of the deterministic cycle c and, due

to cycle stability, form some kind of bundles (stochastic

cycles) around it. The stationary density function qðx; eÞ
describing the probabilistic distribution of random states in

this stochastic cycle is governed by the Kolmogorov-Fokker-

Planck (KFP) equation. In this paper, we will use asymp-

totics35 of this stationary density function based on the quasi-

potential vðxÞ ¼ �lime!0 e
2logqðx; eÞ.

We use Gaussian approximation for the probability den-

sity of the bundles of random trajectories, localized near the

cycle36

q � Ke
�

vðxÞ

e2 � K exp �
ðDðxÞ;UþðcðxÞÞDðxÞÞ

2e2

� �

with the covariance matrix e2UðcÞ. Here, “þ” means a pseu-

doinversion. The covariance matrix characterizes the disper-

sion of the points of intersection on the random trajectories,

with a hyperplane orthogonal to the cycle at the point c. The

function UðcÞ is a stochastic sensitivity function (SSF) of the

limit cycle. This function allows to describe the most essen-

tial geometrical features of the probabilistic distribution of

the random trajectories around the deterministic cycle.

In this paper, for the function UðcÞ, we use the following
parametrization: UðnðtÞÞ ¼ WðtÞ; where the solution nðtÞ
connects the points of the cycle c with the points of an inter-

val [0,T).

Due to the stability of the limit cycle c, the matrix func-

tion W (t) is the unique solution of the boundary value prob-

lem for the Lyapunov equation

_W ¼ FðtÞW þWF>ðtÞ þ PðtÞSðtÞPðtÞ; (3)

under conditions

WðtÞrðtÞ � 0; (4)

Wð0Þ ¼ WðTÞ: (5)

Here,

FðtÞ ¼
@f

@x
ðnðtÞÞ; SðtÞ ¼ rðnðtÞÞr>ðnðtÞÞ;

rðtÞ ¼ f ðnðtÞÞ; PðtÞ ¼ PrðtÞ; Pr ¼ I � rr>=r>r;

in which Pr is the projection matrix onto the subspace or-

thogonal to the vector r 6¼ 0: It follows from the condition

(4) that the matrix W(t) is singular (detWðtÞ � 0).

The covariance matrix e2WðtÞ characterizes the disper-

sion of the points of intersection of random trajectories with

hyperplane Pt which is orthogonal to the cycle at the point

nðtÞ. The stochastic sensitivity matrix W(t) is connected here

with the orthogonal plane Pt. Let a plane P be an arbitrary

Poincare section at the same point nðtÞ. The stochastic

033104-2 Bashkirtseva, Chen, and Ryashko Chaos 22, 033104 (2012)
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sensitivity matrix WPðtÞ corresponding to this Poincare

section P can be found as follows:

WPðtÞ ¼ BðtÞWðtÞB>ðtÞ; BðtÞ ¼ I �
rðtÞb>

r>ðtÞb
;

where b is a directing vector that is orthogonal to P.

A. Case of 3D cycles

For 3D-cycles, due to the singularity equation (4), the

matrix W(t) has the following decomposition:

WðtÞ ¼ k1ðtÞv1ðtÞv
>
1 ðtÞ þ k2ðtÞv2ðtÞv

>
2 ðtÞ: (6)

Here, k1ðtÞ � k2ðtÞ � k3ðtÞ � 0 are the eigenvalues with the

corresponding eigenvectors v1ðtÞ; v2ðtÞ; v3ðtÞ of the matrix

WðtÞ. Note that v1ðtÞ; v2ðtÞ can be considered as a basis of

the plane Pt, and a vector v3ðtÞ is orthogonal to Pt.

Our proposed constructive method for computing the

elements k1; k2; v1; v2 of the decomposition (6) is as follows.

Denote by u1ðtÞ; u2ðtÞ some orthonormal basis of the

plane that is orthogonal to the cycle at the point nðtÞ. One can
easily find this basis if T-periodic solution nðtÞ is known (see

Appendix). The eigenvectors v1ðtÞ; v2ðtÞ can be represented

by a rotation of the basis u1ðtÞ; u2ðtÞ with some angle uðtÞ,

v1ðtÞ ¼ u1ðtÞ cosuðtÞ þ u2ðtÞ sinuðtÞ;

v2ðtÞ ¼ �u1ðtÞ sinuðtÞ þ u2ðtÞ cosuðtÞ: (7)

Thus, the decompositions (6) and (7) allow to express an

unknown solution W(t) of the systems (3)–(5) in terms of

three scalar functions k1ðtÞ; k2ðtÞ; uðtÞ: A mathematical ba-

sis for the algorithms of the calculation W(t) through

k1ðtÞ; k2ðtÞ; uðtÞ is given by the following theorems proved

in Ref. 36.

Theorem 1. The matrix V(t) is a solution of the systems

(3)–(4) if and only if the scalar functions k1ðtÞ; k2ðtÞ; uðtÞ of
the decompositions (6)–(7) satisfy

_k1 ¼ k1v
>
1 ½FþF>�v1þ v

>
1 Sv1;

_k2 ¼ k2v
>
2 ½FþF>�v2þ v

>
2 Sv2;

ðk1� k2Þ _u ¼ k2v
>
1 Fv2þ k1v

>
1 F

>
v2þ v

>
1 Sv2�ðk1� k2Þ _u

>
1 u2 :

(8)

The matrixW(t) (the required stochastic sensitivity func-

tion of the cycle) as a solution of systems (3)–(5) can be

obtained via the following limiting procedure.

Theorem 2. Let the T-periodic matrix W(t) be a solution

of systems (3)–(5), and let k1ðtÞ; k2ðtÞ; uðtÞ be an arbitrary

solution of system (8) on the interval ½0;þ1Þ. Define VðtÞ ¼
k1ðtÞ 	 P1ðtÞ þ k2ðtÞ 	 P2ðtÞ; where PiðtÞ ¼ viðtÞv

>
i ðtÞ with the

vector functions viðtÞ obtained from Eq. (7). Then, matrix

V(t) tends to matrix W (t) as t ! þ1,

lim
t!þ1

ðVðtÞ �WðtÞÞ ¼ 0:

So, the matrix W(t) is determined by the scalar functions

k1ðtÞ; k2ðtÞ and vectors v1ðtÞ, v2ðtÞ: In the case of non-

degenerate noise, the functions k1ðtÞ; k2ðtÞ are strictly posi-

tive, and they together determine a dispersion of the random

trajectories along the vectors v1ðtÞ; v2ðtÞ at any point nðtÞ of
the deterministic cycle.

B. Confidence ellipses

The values of k1ðtÞ; k2ðtÞ determine the size, and that of

v1ðtÞ; v2ðtÞ determine the directions of a dispersion ellipse

axis. The equation of this ellipse in a plane Pt is as follows:

ðx� nðtÞÞ>WþðtÞðx� nðtÞÞ ¼ 2k2e2;

where the parameter k determines a fiducial probability P ¼
1� e�k2 : It means that random states distributed in the Poin-

care section Pt belong to the interior of this ellipse with the

probability P. For scalar coordinates li ¼ ðx� nðtÞ; viðtÞÞ,
the equation of this ellipse can be written in a standard form

l21
k1

þ
l22
k2

¼ 2k2e2:

It is noted that the method of confidence ellipses has

been used for analyzing the excitability of a neuron16 and for

spatial analysis of 3D-stochastic cycles.37

III. ANALYSIS OF NOISE-INDUCED CHAOS IN THE
CHEN SYSTEM

Consider the stochastically perturbed Chen systems

_x ¼ að�xþ yÞ þ e _w1;
_y ¼ ðc� aÞxþ cy� xzþ e _w2;
_z ¼ �bzþ xyþ e _w3 :

(9)

Here, wiðtÞ are independent standard Wiener processes with

Gaussian increments, EðwiðtÞ � wiðsÞÞ ¼ 0, EðwiðtÞ � wiðsÞÞ
2

¼ jt� sj; and parameter e is the noise intensity, i¼ 1,2,3.

Fix the parameters a ¼ 45 and c¼ 28 within the chaotic

region. For e ¼ 0, on the interval 1:5 � b � 2:9, the deter-

ministic system (9) demonstrates a well-known infinite chain

of period-doubling bifurcations with a transition from order

(see Fig. 1(a) for b¼ 1.5) to chaos (see Fig. 1(d) for

b¼ 2.9).38

First, we study the system (9) with a fixed b¼ 1.5 and a

varying noise intensity e. Recall that an analysis of the sto-

chastic cycles of the Chen system was already reported ear-

lier in Ref. 39.

In Figs. 1(a)–1(c), the YOZ and XOY projections of the

attractor of the Chen system and time series are plotted for fixed

parameters a, b, c and noise intensity values e ¼ 0; 0:1; 0:2.
The unperturbed Chen system (with e ¼ 0) exhibits a

deterministic limit cycle corresponding to the periodic solu-

tion with a fixed amplitude (see Fig. 1(a)). Here, the x(t)-

coordinate monotonically oscillates between the amplitude

values of68:7.
For small noise, random states of stochastic cycle are

concentrated in a small vicinity of the deterministic cycle.

As the noise intensity increases (see Fig. 1(b) for e ¼ 0:1),
the dispersion of the random trajectories grows. The
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amplitude values of x(t) show an appreciable random varia-

tion, and the small stochastic bursts are observed on the

time-intervals between consecutive amplitude values.

With further increase of the noise intensity (see Fig. 1(c)

for e ¼ 0:2), the random transitions between different por-

tions of the cycle are observed. These transitions are local-

ized in the central part of the attractor, near the point

(0,0,13). Here, the x(t)-coordinate in a vicinity of the value

x¼ 0 sharply interrupts the deterministic monotonicity and

returns back to the just abandoned amplitude value. This

effect intensifies as the noise intensity increases.

Due to the above transitions, the form of the stochastic

attractor essentially changes. From a general geometric point

of view, these stochastic attractors (see Fig. 1(c)) are similar

to the chaotic attractor of the unperturbed Chen system (1)

(see Fig. 1(d)). This qualitative change of the form of the sto-

chastic attractor can be interpreted as a noise-induced transi-

tion from order to chaos.

Next, we examine whether the chaos-like stochastic

attractors (see Fig. 1(c)) can be characterized as true chaotic

attractors.

A convenient measure of chaos is the Lyapunov expo-

nent. In Fig. 2, a plot of the largest Lyapunov exponent KðeÞ
is presented. Here, Kð0Þ ¼ 0, which is theoretically clear.

For small e > 0, the function K has values close to zero.

Beyond some threshold e
, the values of KðeÞ are definitely

positive. Moreover, the function KðeÞ monotonically grows

up to K � 0:6. This value is close to the largest Lyapunov

exponent of the chaotic attractor of the deterministic Chen

system with b¼ 2.9. Thus, the stochastic attractor (see Fig.

1(c)) and the chaotic deterministic attractor (see Fig. 1(d))

are similar, not only from the geometrical point of view but

also from their close dynamical characteristics.

We next consider the probabilistic mechanism of this

noise-induced phenomenon and analyze it with the help of

the stochastic sensitivity functions technique and the confi-

dence ellipses.

Specifically, our attention is focused on the dispersion

of the random trajectories around the deterministic cycle.

Indeed, the growth of this dispersion is a fundamental mech-

anism of the noise-induced phenomenon studied here.

The spatial arrangement of the random trajectories can be

described by the stochastic sensitivity matrix W(t). Its eigen-

values k1ðtÞ > k2ðtÞ can be used as basic scalar characteristics
of the cycle sensitivity. For the stochastic cycle of the Chen

system with b¼ 1.5, plots of the functions k1ðtÞ; k2ðtÞ are

shown in Figs. 3(a) and 3(b). One can notice an essential
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FIG. 1. Attractors and time series of the

Chen system with a¼ 45, c¼ 28 for

b¼ 1.5 with noise intensity: (a) e ¼ 0,

(b) e ¼ 0:1, (c) e ¼ 0:2, and chaos for

(d) b ¼ 2:9; e ¼ 0.
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FIG. 2. Largest Lyapunov exponent KðeÞ of the stochastic Chen system

with b¼ 1.5; e
 is the threshold noise intensity.
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overfall of the values k1ðtÞ; k2ðtÞ on the interval [0, T]. The

values k1ðtÞ are greater than the values of k2ðtÞ by several

orders. It confirms a considerable non-uniformity of the ran-

dom trajectories dispersion.

Confidence ellipses give a visual geometric description

of the spatial arrangement of the probabilistic distribution

for random states in the Poincaré sections of a stochastic

cycle. In Fig. 4, the intersection points of the stochastic tra-

jectories, with a Poincaré plane orthogonal to the determinis-

tic cycle at the point x¼�1.1642, y¼�1.2561, z¼ 8.8269,

are plotted by asterisks. Here, g1; g2 are coordinates of the

points in the basis u1; u2 of this plane. Confidence ellipses

for P¼ 0.8 (solid line) and P¼ 0.95 (dashed line) are also

presented. As one can see, these ellipses adequately reflect

the main features of the dispersion of the random states.

Now, we use these confidence ellipses to analyze the

noise-induced transitions from the regular stochastic cycle to

the chaos-like stochastic cycle. First, we have to choose a

reasonable location of the Poincaré secant plane. We look

for a “transition bridge,” where random trajectories pass

from one part of the cycle to another. As one can see in the

above figures, this transition bridge is localized near the

point (0,0,13). Therefore, to analyze the noise-induced phe-

nomenon, we use the secant plain x¼ 0. Note that the deter-

ministic cycle intersects this plane at two symmetric points,

M1;2ð0;60:4398; 13:5349Þ. This Poincaré secant plane is

localized at the center of the “transition bridge.” Here, noise-

induced transitions are observed for smaller noise intensities

than for others Poincaré sections.

In Fig. 5, points (asterisks) of the intersection of the ran-

dom trajectories with the Poincaré plane x¼ 0 and confidence

ellipses with the fiducial probability P¼ 0.95 are plotted for
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FIG. 3. Stochastic sensitivity functions

for the Chen system with a¼ 45, b¼ 1.5,

and c¼ 28.
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different noise levels. For a sufficiently small noise intensity,

the confidence ellipses are localized near the points M1;2 of

the deterministic cycle. These ellipses are small and definitely

separated one from another (see Fig. 5(a), with e ¼ 0:01). As
the noise intensity increases, the confidence ellipses expand

and begin to come close to each other (see Fig. 5(b)). As the

parameter e further grows, these ellipses approach to each

other and begin to intersect (see Fig. 5(c)). This intersection

provides an indication for the beginning of the noise-induced

transition. Noise intensity that corresponds to the onset of this

intersection can be used as an estimation of the threshold

value e
. For the considered parameter set, we have

e
 ¼ 0:14. Note that the results of the direct numerical simula-

tions (asterisks) agree with our theoretical prediction based on

stochastic sensitivity functions method and ellipses technique.

The intersection of ellipses for e > e
 means that the ran-

dom trajectories pass from one portion of the cycle to another

with a high probability. These transitions essentially change

the dynamics of the Chen system from regular to chaotic.

Indeed, near the value e
 ¼ 0:14, the largest Lyapunov expo-

nent KðeÞ becomes positive (see Figs. 2 and 6) and marks the

onset of chaos. As noise intensity increases, KðeÞ increases

too. For e ¼ 0:2, the largest Lyapunov exponent is K ¼ 0:17.
Now, we consider how the stochastic sensitivity func-

tions technique and method of dispersion ellipses can be

applied to noise-induced chaotization, for the case of param-

eter b > 1:5 within the period-doubling bifurcation zone.

In Fig. 6, the function KðeÞ for three different values of

b is plotted. As can be seen, for b¼ 2 (dashed line) and

b¼ 2.3 (dotted line), the largest Lyapunov exponent

becomes positive for much smaller values of e than in the

case of b¼ 1.5 (solid line). The value of K > 0 is a measure

of chaos for the considered attractors.

Let us fix the chaos threshold value �K ¼ 0:01 (weak

chaos). A condition of KðeÞ > �K is satisfied if e > 0:13 for

b¼ 1.5, e > 0:07 for b¼ 2, and e > 0:02 for b¼ 2.3. So the

noise intensity e that generates “weak chaos” depends on the

value of the parameter b substantially. The underlying mech-

anism of this dependence is due to the variation of b which

implies changes in both the geometry of the initial determin-

istic attractors and its stochastic sensitivity.

Next, consider the most essential issues in analyzing the

noise-induced chaotization for more complicated determinis-

tic attractor with b¼ 2.3. With b¼ 2.3, the deterministic

Chen system (e ¼ 0) has two coexisting non-symmetric

2-cycles (see Fig. 7(a)). The corresponding stochastic attrac-

tors for e ¼ 0:005; e ¼ 0:04; e ¼ 0:08 are plotted in Figs.

7(b)–7(d), respectively. In Figs. 8(a)–8(c), along with disper-

sion ellipses, intersections of these stochastic attractors with

the Poincaré plane x¼ 0 are shown. These ellipses were
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FIG. 6. Largest Lyapunov exponent KðeÞ for the stochastic Chen system

with b¼ 1.5 (solid curve), b¼ 2 (dashed curve), and b¼ 2.3 (dotted curve);

e
 is the threshold noise intensity.
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calculated with the help of the stochastic sensitivity function

technique for the fiducial probability P¼ 0.95.

For small noise with e ¼ 0:005, stochastically perturbed

trajectories are localized near the deterministic attractor. Sets

of random states in the Poincaré section x¼ 0 are well sepa-

rated. Dispersion ellipses do not intersect each other. Here,

we observe two stochastic 2-cycles (see Fig. 8(a)). As the

noise intensity increases (to e ¼ 0:04Þ, the noise-induced

transitions between close portions of the 2-cycle emerge and

sets of random states coalesce to a single set in pairs. Disper-

sion ellipses intersect each other (see Fig. 8(b)). As a result,

each of the stochastic 2-cycles transforms into a stochastic

1-cycle. This phenomenon, the so-called backward stochastic

bifurcation, has been studied earlier in Ref. 31 for the sto-

chastic Roessler model. These backward stochastic bifurca-

tions are associated with changes of the dynamic properties

of the stochastic attractor. For the considered noise values,

we have Kð0:005Þ < �K < Kð0:04Þ ¼ 0:08: It means that the

noise intensity e ¼ 0:04 transforms the regular attractor to a

chaotic one.

As the noise intensity increases further, the dispersion

ellipses continue to expand. These ellipses cross the separa-

tion line y¼ 0 and, for e ¼ 0:08, begin to intersect with each

other (see Fig. 8(c)). This type of intersections is similar to

the case for b¼ 1.5 considered above (see Fig. 5(b)). Here,

for b¼ 2.3, the largest Lyapunov exponent equals K ¼ 0:23.
So, for b¼ 2.3 chaos occurs for considerably smaller noise

intensity values as compared to the case of for b¼ 1.5.

IV. CONCLUSION

Under random disturbances, a phase trajectory can dem-

onstrate a noise-induced hopping between different but close

portions of the stochastic cycle. During this hopping, the ran-

dom trajectories of Chen system with a high probability fall

within zones of divergency (local instability) and the dynam-

ics of the perturbed system as a whole becomes chaotic. In

this paper, our technique of confidence ellipses is used for

the constructive analysis of the noise-induced hopping

through zones of local instability. In fact, both the size and

the spatial arrangement of dispersion ellipses are defined by

the stochastic sensitivity of the cycles and noise intensity. As

noise intensity increases, these ellipses are enlarged and

begin to occupy some zones where trajectories diverge and

the chaotization starts. So, our technique allows us to effec-

tively estimate the threshold noise intensity corresponding

the main features of the noise-induced transitions from regu-

larity to chaos, without using costly direct numerical simula-

tions on the random trajectories, which is inevitable when

applying the method of Lyapunov exponents. Note that the

method of Lyapunov exponents only identifies the existence

of chaos a posteriori, after extensive numerical simulations

on the random trajectories, but our method of dispersion

ellipses allows one to predict the transition to chaos a priori

without performing such extensive simulations.
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APPENDIX: NUMERICAL PROCEDURES AND
ALGORITHMS

Rewrite an initial unforced deterministic system _x ¼
f ðxÞ and its T-periodic solution x ¼ nðtÞ with exponentially

stable phase curve c (limit cycle) for n¼ 3 by coordinates
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FIG. 8. Dispersion ellipses and intersection points

(grey asterisks) of random trajectories with Poincaré

plane x¼ 0 for b¼ 2.3, P¼ 0.95, and (a) e ¼ 0:005,
(b) e ¼ 0:04, (c) e ¼ 0:08.
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_x1 ¼ f1ðx1; x2; x3Þ; _x2 ¼ f2ðx1; x2; x3Þ;

_x3 ¼ f3ðx1; x2; x3Þ; nðtÞ ¼ ðn1ðtÞ; n2ðtÞ; n3ðtÞÞ
>:

To calculate SSF, we use the following algorithm:

(1) Find the limit cycle c with required accuracy. For the

coordinates njðtÞ ðj ¼ 1; 2; 3Þ of the T-periodic solution,

the discretization is as follows:

nj;i � njðtiÞ; ti ¼ ih; i ¼ 0; 1; :::;N; h ¼
T

N
:

We used a numerical Runge-Kutta 4th order scheme

with time step h � 0:0001.
(2) For computation the decompositions (6) and (7) through

the system (8), it is necessary to calculate parameters

FðtiÞ; SðtiÞ; u1ðtiÞ; u2ðtiÞ; _u1ðtiÞ. Matrices F, S are deter-

mined by the formula

FðtiÞ ¼
@f

@x
ðnðtiÞÞ; SðtiÞ ¼ rðnðtiÞÞr

>ðnðtiÞÞ:

To calculate vector functions u1ðtÞ; u2ðtÞ; _u1ðtÞ, the fol-

lowing method is used. A tangent vector rðtÞ ¼ ðf1ðtÞ;

f2ðtÞ; f3ðtÞÞ
>

has coordinates fjðtÞ ¼ fjðnðtÞÞ; j ¼ 1; 2; 3:
The vectors u1ðtÞ; u2ðtÞ of orthonormal basis of a plane Pt

can be found in the following form (variable t is omitted)

u1 ¼ g1 	
�f2
f1
0

0

@

1

A; u2 ¼ g2 	
�f1f3
�f2f3
f 21 þ f 22

0

@

1

A;

where

g1 ¼ ðf 21 þ f 22 Þ
�1

2; g2 ¼
�

f 23 ðf
2
1 þ f 22 Þ þ ðf 21 þ f 22 Þ

2
��1

2

:

As a result, the following formula holds

_u1 ¼ _g1 	

�f2

f1

0

0

B

B

@

1

C

C

A

þ g1 	

�
@f2
@x1

�
@f2
@x2

�
@f2
@x3

@f1
@x1

@f1
@x2

@f1
@x3

0 0 0

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

	

f1

f2

f3

0

B

B

@

1

C

C

A

;

where

_g1 ¼ � ðf 21 þ f 22 Þ
�3

2 	 f1 	
@f1
@x1

f1 þ
@f1
@x2

f2 þ
@f1
@x3

f3

� ��

þf2 	
@f2
@x1

f1 þ
@f2
@x2

f2 þ
@f2
@x3

f3

� ��

:

(3) For the computation of T-periodic solution ðk1ðtÞ; k2ðtÞ;
uðtÞ; v1ðtÞ; v2ðtÞÞ of systems (7) and (8), we use a

stabilization method (see Theorem 2) and Runge-Kutta

4th order scheme. The rate of convergency of stabiliza-

tion method is determined by the degree of stability of

the limit cycle.

(4) Stochastic sensitivity matrix W(t) can be found from Eq.

(6) through k1ðtÞ; k2ðtÞ; v1ðtÞ; v2ðtÞ calculated above.

(5) To calculate a dispersion ellipse, we use the explicit

parametrical formulas:

g1 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2lnð1� PÞ
p ffiffiffiffiffi

k1
p

cos h cosu�
ffiffiffiffiffi

k2
p

sin h sinu
� �

;

g2 ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2lnð1� PÞ
p ffiffiffiffiffi

k1
p

cos h sinuþ
ffiffiffiffiffi

k2
p

sin h cosu
� �

:

Here, g1; g2 are the coordinates of the ellipse in terms of

the basis u1; u2, and h is a parameter of this ellipse, satis-

fying 0 � h � 2p.

For the calculation of the largest Lyapunov exponent, a

standard Benettin method40,41 utilizing the variation equa-

tions was used. Runge-Kutta 4th order scheme with step

0.001 and averaging time 105 provides two true significant
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