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�is work is committed to establishing the assumptions essential for at least one and unique solution of a switched coupled system
of impulsive fractional di	erential equations having derivative of Hadamard type. Using Krasnoselskii’s 
xed point theorem, the
existence, as well as uniqueness results, is obtained. Along with this, di	erent kinds of Hyers–Ulam stability are discussed. For
supporting the theory, example is provided.

1. Introduction

Fractional calculus is the 
eld of mathematical analysis that
deals with the investigation and applications of integrals
and derivatives of arbitrary order. Fractional di	erential
equations (FDEs) have played a signi
cant role in many
engineering and scienti
c disciplines, e.g., as the mathe-
matical modeling of systems and processes in the 
elds of
physics, chemistry, aerodynamics, electrodynamics of com-
plex medium, polymer rheology, capacitor theory, electrical
circuits, electron analytical chemistry, biology, control theory,
and 
tting of experimental data [1–3]. FDEs also serve as
an excellent tool for the description of hereditary properties
of various materials and processes [4]. �e theory of FDEs,
involving di	erent kinds of boundary conditions, has been
a 
eld of interest in pure and applied sciences. Nonlocal
conditions are used to describe certain features of applied
mathematics and physics such as blood �ow problems,
chemical engineering, thermoelasticity, underground water
�ow, and population dynamics [5–16].

In the classical text [17], it has been mentioned that
Hadamard in 1892 [18] suggested a concept of fractional
integro-di	erentiation in terms of the fractional power of
the type (�(�/��))� in contrast to its Riemann–Liouville

counterpart of the form (�/��)�.�e kind of derivative intro-
duced by Hadamard contains the logarithmic function of the
arbitrary exponent in the kernel of the integral appearing in
its de
nition. Hadamard construction is invariant in relation
to dilation and is well suited to the problems containing half-
axes. Coupled systems of FDEs have also been investigated
by many authors. Such systems appear naturally in many
real-world situations. Some recent results on the topic can be
found in a series of papers [19–40].

Another aspect of FDEs which has very recently got
attention of the researchers is concerning the Ulam-type
stability analysis of the aforesaid equations. �e mentioned
stability was 
rst pointed out by Ulam [41] in 1940, which
was further explained by Hyers [42], over Banach space.
Later on, many researchers have done valuable work on the
same task and interesting results were formed for linear
and nonlinear integral and di	erential equations; for details
see [43, 44]. �is stability analysis is very useful in many
applications, such as numerical analysis and optimization,
where 
nding the exact solution is quite di�cult. For detailed
study of Ulam-type stability with di	erent approaches, we
recommend papers [44–52].

Existence and uniqueness of Cauchy problems for
fractional di	erential equations involving the Hadamard

Hindawi
Mathematical Problems in Engineering
Volume 2019, Article ID 5093572, 20 pages
https://doi.org/10.1155/2019/5093572

http://orcid.org/0000-0002-2556-2806
http://orcid.org/0000-0001-6846-9516
http://orcid.org/0000-0001-6537-4167
http://orcid.org/0000-0002-2122-3815
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5093572


2 Mathematical Problems in Engineering

derivatives have been discussed by Kilbas et al. [53]. Using
the contraction principle, existence and uniqueness of the
solution of sequential fractional di	erential equations with
Hadamard derivative have been explored by Klimek [54].
Recently, Wang et al. [55] discussed the existence, blowing-up
solutions, and Ulam–Hyers stability of fractional di	erential
equations with Hadamard derivative by using some classical
methods. Further, Ahmad andNtouyas [20] andMa et al. [56]
studied two-dimensional fractional di	erential systems with
Hadamard derivative. Wang et al. [57] studied the fractional
impulsive Cauchy problem of the form

�D
�
1+� (�) − � (�, � (�)) = 0,

� ∈ (0, 1) , � ∈ (1, 	 ] − {�1, �2, . . . , ��} ,
Δ� (��) = �I

1−�
+1 � (�+� ) − �I

1−�
+1 � (�−� ) = ��,
�� ∈ R, � = 1, 2, . . . , �,

�I
1−�
+1 � (1+) = �0, �0 ∈ R,

(1)

where �D
�
1+ denotes le�-sided Hadamard fractional deriva-

tive of order �with the lower limit 1 and �I
1−�
+1 denotes le�-

sided Hadamard fractional integral of order 1 − �. In [58],
Wang et al. studied the existence and Hyers–Ulam stability of
switched coupled problem:

�
D

�� (�) − � (�) � (�) = Θ (�, � (�) , � (�)) ,
� ∈ J, � ̸= �	,

�
D


� (�) − � (�) � (�) = Ψ (�, � (�) , � (�)) ,
� ∈ J, � ̸= �	,

Δ� (�)�����=�� = �	 (�	) ,
Δ� (�)�����=�� = �	 (�	) ,

� (�)�����=0 + � (�) = �0,
� (�)�����=0 + � (�) = �0,

(2)

where �Ddenotes theCaputo derivative of order�, � ∈ (0, 1].
Motivated by the work in [58], we consider the follow-

ing switched coupled impulsive FDEs involving Hadamard
derivatives:

�D
�� (�) − � (�, � (�) , � (�)) = 0,

� ∈ J, � ̸= ��, � = 1, 2, . . . , �,
�D

�� (�) − � (�, � (�) , � (�)) = 0,
� ∈ J, � ̸= �
, � = 1, 2, . . . , �,

Δ� (��) = �� (� (��)) ,
Δ�� (��) = �̃� (� (��)) ,

� = 1, 2, . . . , �,

Δ� (�
) = �
 (� (�
)) ,
Δ�� (�
) = �̃
 (� (�
)) ,

� = 1, 2, . . . , �,
" ln 2� (2) + ] ln 2�� (2) = � (�) ,

"� (#) + ]�� (#) = � (�) ,
" ln 2� (2) + ] ln 2�� (2) = � (�) ,

"� (#) + ]�� (#) = � (�) ,
(3)

where 1 < �, $ ≤ 2, �, � : J × R
2 &→ R, and �, � :

C(J,R) &→ R are continuous functions de
ned as

� (�) = �̂∑
�=1

ℏ�� (3�) ,
� (�) = �̂∑

�=1
℘�� (5�) ,

� (�) = �̂∑

=1

ℏ
� (3
) ,

� (�) = �̂∑

=1

℘
� (5
) ,

(4)

3�, 5�, 3
, 5
 ∈ (0, 1) for � = 1, 2, . . . , 7̂, � = 1, 2, . . . , 8̂ and
Δ� (��) = � (�+� ) − � (�−� ) ,
Δ�� (��) = �� (�+� ) − �� (�−� ) ,
Δ� (�
) = � (�+
 ) − � (�−
 ) ,
Δ�� (�
) = �� (�+
 ) − �� (�−
 ) .

(5)

�e notations �(�+� ), �(�+
 ) are right limits and �(�−� ), �(�−
 )
are le� limits; ��, �̃�, �
, �̃
 : R &→ R are continuous

functions; �D
�, �D

� are theHadamard derivative operators
of order � and $, respectively. For some other recent results
on Hadamard fractional di	erential equations, we refer the
reader to [59–65].

For system (3), we discuss necessary and su�cient
conditions for the existence and uniqueness of a pos-
itive solution by using the Krasnoselskii’s 
xed point
and Banach contraction theorems. Further, we investigate
various kinds of Hyers–Ulam, generalized Hyers–Ulam,
Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias
stabilities.

�is paper is organized as follows. Section 2 contains
basic de
nitions, auxiliary lemmas, and theorems regarding
problem (3). Existence, uniqueness, and at least one solution
of the problem (3) are presented in Section 3. Section 4
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contains Hyers–Ulam types stability results and Section 5
contains an example, which shows the applicability of our
main results.

2. Preliminaries

In this fragment, we are introducing some fundamental
descriptions and lemmas, which are used throughout the
paper.

Let the norms be ‖�‖ = max{|�(�)|, � ∈ J}, ‖�‖ =
max{|�(�)|, � ∈ J} in PC(J,R+), which is Banach space
under these norms, and hence their product is also Banach
space with norm ‖(�, �)‖ = ‖�‖ + ‖�‖.

LetE1 andE2 denote spaces of the piecewise continuous
functions de
ned as

E1 = PC2−�,ln (J,R+) = {� : J &→ R+, � (�+� ) ,
� (�−� ) and �� (�+� ) , �� (�−� ) exist for � = 1, 2, . . . , �} ,

E2 = PC2−�,ln (J,R+) = {� : J &→ R+, � (�+
 ) ,
� (�−
 ) and �� (�+
 ) , �� (�−
 ) exist for � = 1, 2, . . . , �} ,

(6)

with norms????�????E1 = sup {������ (�) (ln �)2−������ , � ∈ J} ,
????�????E2 = sup {������ (�) (ln �)2−������ , � ∈ J} , (7)

respectively.�eir productE = E1×E2 is also a Banach space
with norm ‖(�, �)‖E = ‖�‖E1 + ‖�‖E2 .

We recall the following de
nitions from [57].

De
nition 1. �eHadamard fractional derivative of order � ∈[7 − 1, 7), 7 ∈ Z
+ of function �(�) is de
ned by

(�D��) (�)
= 1Γ (7 − �) (� ���)

� ∫�

1
(ln �E)

�−�+1 � (E) �EE ,
1 < � ≤ #,

(8)

where Γ(⋅) is the Gamma function.

De
nition 2. �e Hadamard fractional integral of order � ∈
R

+ of function �(�) is de
ned by

(�J��) (�) = 1Γ (�) ∫
�

1
(ln �E)

�−1 � (E) �EE ,
1 < � ≤ #,

(9)

where Γ(⋅) is the well-known Gamma function.

Lemma 3 (see [66]). Let � > 0 and � be any functions; then
the homogenous di�erential equation along with Hadamard
fractional order �D

��(�) = 0 has solution
� (�) = 81 (ln �)�−1 + 82 (ln �)�−2 + 83 (ln �)�−3 + ⋅ ⋅ ⋅

+ 8� (ln �)�−� , (10)

and the following formula holds:

�J
�
�D

�� (�) = � (�) + 81 (ln �)�−1 + 82 (ln �)�−2
+ 83 (ln �)�−3 + ⋅ ⋅ ⋅ + 8� (ln �)�−� , (11)

where 8
 ∈ R, � = 1, 2, . . . , 7, and 7 − 1 < � < 7.
Lemma 4 (see [53]). Let 0 < � < 1 and � : J × R &→
R. A function � ∈ C1−�,��[7, 8] is a solution of the fractional
di�erential equation

�D
�� (�) = � (�, � (�)) , � ∈ (1, #] ,

�J
1−�� (1+) = �0, �0 ∈ R, (12)

if and only if � satis
es the following fractional integral
equation:

� (�) = �0Γ (�) (ln �)�−1
+ 1Γ (�) ∫

�

1
(ln �E)

�−1 � (E, � (E)) �EE . (13)

�eorem 5 (Altman [67]). Let S ̸= 0 be a convex and closed
subset of Banach space E. Consider two operators F , G such
that

(i) F(�, �) + G(�, �) ∈ S, where (�, �) ∈ S.

(ii) F is contractive operator.

(iii) G is completely continuous operator.

�en the operator system F(�, �) + G(�, �) = (�, �) ∈ E has a
solution (�, �) ∈ S.

De
nition 6 (see [45]). �e switched coupled impulsive FDE
(3) is said to be Hyers–Ulam stable if there exist J�,� =
max{J�, J�} > 0 such that, for K = max{K�, K�} > 0 and
for every solution (�, �) ∈ E of the inequality�����D�� (�) − � (�, � (�) , � (�))���� ≤ K�, � ∈ J,����Δ� (��) − �� (� (��))���� ≤ K�, � = 1, 2, . . . , �,

�����Δ�̂� (��) − �̃� (� (��))����� ≤ K�, � = 1, 2, . . . , �,
������D�� (�) − � (�, � (�) , � (�))����� ≤ K�, � ∈ J,

�����Δ� (�
) − �
 (� (�
))����� ≤ K�, � = 1, 2, . . . , �,
�����Δ�̂� (�
) − �̃
 (� (�
))����� ≤ K�, � = 1, 2, . . . , �,

(14)

there exists a unique solution (�̂, �̂) ∈ E with????(�, �) − (�̂, �̂)????E ≤ J�,�K, � ∈ J. (15)

De
nition 7 (see [45]). �e switched coupled impulsive FDE
(3) is said to be generalized Hyers–Ulam stable if there
exist Φ ∈ C(R+,R+) with Φ(0) = 0 such that, for any
approximate solution (�, �) ∈ Eof inequality (14), there exists
a unique solution (�̂, �̂) ∈ E of (3) satisfying????(�, �) − (�̂, �̂)????E ≤ Φ (K) , � ∈ J. (16)
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Denote Ψ�,� = max{Ψ�, Ψ�} ∈ C(J,R) and JΨ�,Ψ� =
max{JΨ� , JΨ�} > 0.
De
nition 8 (see [45]). �e switched coupled impulsive FDE
(3) is said to be Hyers–Ulam–Rassias stable with respect toΨ�,� if there exists a constant JΨ� ,Ψ� such that, for some K > 0
and for any approximate solution (�, �) ∈ E of the inequality

�����D�� (�) − � (�, � (�) , � (�))���� ≤ Ψ� (�) K�, � ∈ J,
������D�� (�) − � (�, � (�) , � (�))����� ≤ Ψ� (�) K�, � ∈ J, (17)

there exists a unique solution (�̂, �̂) ∈ E with

????(�, �) − (�̂, �̂)????E ≤ JΨ� ,Ψ�Ψ�,�K, � ∈ J. (18)

De
nition 9 (see [45]). �e switched coupled impulsive FDE
(3) is said to be generalized Hyers–Ulam–Rassias stable with
respect to Ψ�,� if there exists a constant JΨ�,Ψ� such that, for

any approximate solution (�, �) ∈ E of inequality (17), there
exists a unique solution (�̂, �̂) ∈ E of (3) satisfying

????(�, �) − (�̂, �̂)????E ≤ JΨ� ,Ψ�Ψ�,� (�) , � ∈ J. (19)

Remark 10. We say that (�, �) ∈ E is a solution of the system
of inequalities (14) if there exist functions Υ�, Υ� ∈ C(J,R)
depending upon �, �, respectively, such that(I) |Υ�(�)| ≤ K�, |Υ�(�)| ≤ K�, � ∈ J;

(II)

�D
�� (�) = � (�, � (�) , � (�)) + Υ� (�) ,

Δ� (��) = �� (� (��)) + Υ�� ,
Δ�� (��) = �̃� (� (��)) + Υ�� ,

�D
�� (�) = � (�, � (�) , � (�)) + Υ� (�) .

Δ� (�
) = �
 (� (�
)) + Υ�� ,
Δ�� (�
) = �̃
 (� (�
)) + Υ�� .

(20)

3. Existence Results

In this fragment, we present our main results.

�eorem 11. �e solution (�, �) ∈ E of coupled system

�D
�� (�) = � (�) ,

� ∈ J, � ̸= ��, � = 1, 2, . . . , �,
�D

�� (�) = � (�) ,
� ∈ J, � ̸= �
, � = 1, 2, . . . , �,

Δ� (��) = �� (� (��)) ,
Δ�� (��) = �̃� (� (��)) ,

� = 1, 2, . . . , �,

Δ� (�
) = �
 (� (�
)) ,
Δ�� (�
) = �̃
 (� (�
)) ,

� = 1, 2, . . . , �,
" ln 2� (2) + ] ln 2�� (2) = � (�) ,

"� (#) + ]�� (#) = � (�) ,
" ln 2� (2) + ] ln 2�� (2) = � (�) ,

"� (#) + ]�� (#) = � (�) ,
(21)

is given by the integral equations

� (�)
= (ln �)�−2 � (�) �Ω̃ (�)

�Ω + (ln �)�−2 � (�) �A1 (�)
+ 	∑
�=1

(ln �)�−2 �A
�
2 (�)Γ (�) ∫��

��−1
(ln ��E )

�−1 � (E) �EE
+ 	∑
�=1

(ln �)�−2 �A
�
2 (�) �� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�) �̃� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�)Γ (� − 1) ∫��

��−1
(ln ��E )

�−2 � (E) �EE
− " (ln �)�−2 �Ω̃ (�)

�ΩΓ (�) ∫�

��
(ln#E )

�−1 � (E) �EE
− ] (ln �)�−2 �Ω̃ (�)

�ΩΓ (� − 1) ∫�

��
(ln#E )

�−2 � (E) �EE
+ 1Γ (�) ∫

�

��
(ln �E)

�−1 � (E) �EE ,
R = 1, 2, . . . , �,

� (�)
= (ln �)�−2 � (�) �Ω̃ (�)

�Ω + (ln �)�−2 � (�) �A1 (�)
+ 	∑

=1

(ln �)�−2 �A


2 (�)Γ ($) ∫��

��−1
(ln �
E )

�−1 � (E) �EE
+ 	∑

=1

(ln �)�−2 �A


2 (�) �
 (� (�
))

+ 	∑

=1

(ln �)�−2 �A


3 (�) �̃
 (� (�
))
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+ 	∑

=1

(ln �)�−2 �A


3 (�)Γ ($ − 1) ∫��

��−1
(ln �
E )

�−2 � (E) �EE
− " (ln �)�−2 �Ω̃ (�)

�ΩΓ ($) ∫�

��
(ln#E )

�−1 � (E) �EE
− ] (ln �)�−2 �Ω̃ (�)

�ΩΓ ($ − 1) ∫�

��
(ln#E )

�−2 � (E) �EE

+ 1Γ ($) ∫�

��
(ln �E)

�−1 � (E) �EE , R = 1, 2, . . . , �,
(22)

where

�Ω = (ln#)�−3 [ln#� + ] (� − 2)# − (1 − �Ω̃ (#)) (ln#� + ] (� − 1)# )] ̸= 0,
�Ω̃ (�) = 1 − log2� ln 2� + ] (� − 2) /2

ln 2� + ] (� − 1) /2 ,
�A1 (�) = (ln 2)2−� ( �Ω − �Ω̃ (�) (ln#)�−2 (" + log2#](�−1)/ln 2))

�Ω (ln 2� + ] (� − 1) /2) ,

�A
�
2 (�) = (ln 2)2−� ( �Ω log�� (��−1� /��−2) − (ln#)�−2 �Ω̃ (�) (log�� (��−1� /#�−2) + ] (� − 1) (� − 2) (log�	 − log��	) /#))

�Ω ,

�A
�
3 (�) = �� (ln ��)2−� ( �Ω ln (�/��) − �Ω̃ (�) (ln#)�−2 (ln (#/��)� + log� (#�−1/��−2� )]/�))

�Ω .

(23)

Proof. Consider

�D
�� (�) = � (�) , � ∈ J, � ̸= ��. (24)

For � ∈ [2, �1], applying J� on (24), we get

� (�) = U1 (ln �)�−1 + U2 (ln �)�−2
+ 1Γ (�) ∫

�

2
(ln �E)

�−1 � (E) �EE . (25)

�is implies

�� (�) = U1 (� − 1)� (ln �)�−2 + U2 (� − 2)� (ln �)�−3
+ 1Γ (� − 1) ∫

�

2
(ln �E)

�−2 � (E) �EE . (26)

Applying the initial condition, we obtain U1 = (�(�)(ln 2)2−�−U2(ln2� + ]((� − 2)/2)))/ln2ln2�+]((�−1)/2). �erefore (25)
becomes

� (�)
= � (�) (ln 2)2−� (ln �)�−1

ln 2ln2�+]((�−1)/2)
+ U2 ((ln �)�−2 − (ln �)�−1 ln 2� + ] ((� − 2) /2)

ln 2ln2�+]((�−1)/2) )
+ 1Γ (�) ∫

�

2
(ln �E)

�−1 � (E) �EE .

(27)

Now for � ∈ (�1, �2], applying J� on (24), we have

� (�) = 81 (ln �)�−1 + 82 (ln �)�−2
+ 1Γ (�) ∫

�

�1
(ln �E)

�−1 � (E) �EE . (28)

�is implies

�� (�) = 81 (� − 1)� (ln �)�−2 + 82 (� − 2)� (ln �)�−3
+ 1Γ (� − 1) ∫

�

�1
(ln �E)

�−2 � (E) �EE . (29)

Using initial impulses

� (�−1 ) = � (�) (ln 2)2−� (ln �1)�−1
ln 2ln2�+]((�−1)/2) + U2 ((ln �1)�−2

− (ln �1)�−1 ln 2� + ] ((� − 2) /2)
ln 2ln2�+]((�−1)/2) ) + 1Γ (�)

⋅ ∫�1

2
(ln �1E )

�−1 � (E) �EE

(30)

and �(�+1 ) = 81(ln �1)�−1 + 82(ln �1)�−2.
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Using impulsive conditions, we get

81 = � (�) (ln 2)2−�
ln 2ln2�+]((�−1)/2) − U2 ln 2� + ] ((� − 2) /2)

ln 2ln2�+]((�−1)/2)
− (� − 2) (ln �1)1−� �1 (� (�1))
+ �1 (ln �1)2−� �̃1 (� (�1))
− (� − 2) (ln �1)1−�Γ (�) ∫�1

2
(ln �1E )�−1 � (E) �EE

+ �1 (ln �1)2−�Γ (� − 1) ∫�1

2
(ln �1E )�−2 � (E) �EE ,

82 = U2 + (� − 1) (ln �1)2−� �1 (� (�1))
− �1 (ln �1)3−� �̃1 (� (�1))
+ (ln �1)2−�Γ (� − 1) ∫�1

2
(ln �1E )�−1 � (E) �EE

− �1 (ln �1)3−�Γ (� − 1) ∫�1

2
(ln �1E )�−2 � (E) �EE .

(31)

Substituting the values of 81, 82 in (28), we have

� (�) = � (�) (log2�)�−2
ln 2� + ] ((� − 1) /2) + U2 (ln �)�−2
⋅ (1 − log2� ln 2� + ] ((� − 2) /2)

ln 2� + ] ((� − 1) /2))
+ (log�1�)�−2 log�1 �

�−1
1��−2 �1 (� (�1))

+ �1 (log�1 �)�−2 ln ��1 �̃1 (� (�1))
+ (log�1�)�−2 log�1 (��−11 /��−2)

Γ (�)
⋅ ∫�1

2
(ln �1E )�−1 � (E) �EE

+ �1 (log�1 �)�−2 ln (�/�1)Γ (� − 1)
⋅ ∫�1

2
(ln �1E )�−2 � (E) �EE + 1Γ (�)

⋅ ∫�

�1
(ln �E)

�−1 � (E)) �EE .
(32)

Similarly for � ∈ (�	, #), we get

� (�) = � (�) (log2�)�−2
ln 2� + ] ((� − 1) /2) + U2 (ln �)�−2
⋅ (1 − log2� ln 2� + ] ((� − 2) /2)

ln 2� + ] ((� − 1) /2))
+ 	∑
�=1

(log���)�−2 log�� �
�−1
���−2 �� (� (��))

+ 	∑
�=1

�� (log���)�−2 ln ��� �̃� (� (��))

+ 	∑
�=1

(log���)�−2 log�� (��−1� /��−2)
Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1 � (E) �EE
+ 	∑
�=1

�� (log���)�−2 ln (�/��)Γ (� − 1)
⋅ ∫��

��−1
(ln ��E )

�−2 � (E) �EE + 1Γ (�)
⋅ ∫�

��
(ln �E)

�−1 � (E)) �EE .

(33)

�is implies

�� (�) = � (�) (� − 1) (log2�)�−1
ln 2ln2�+]((�−1)/2) + 	∑

�=1

(� − 1) (� − 2) (log�	 − log��	) (log���)�−2� �� (� (��)) + U2
⋅ (� − 2 − log2��−1 ((ln 2� + ] ((� − 2) /2)) / (ln 2� + ] ((� − 1) /2)))) (ln �)�−3

�
+ 	∑
�=1

�� (log� (��−1/��−2� )) (log���)�−2� �̃� (� (��)) + 	∑
�=1

(� − 1) (� − 2) (log�	 − log��	) (log���)�−2�Γ (�)
⋅ ∫��

��−1
(ln ��E )

�−1 � (E) �EE + 	∑
�=1

�� (log� (��−1/��−2� )) (log���)�−2�Γ (� − 1) ∫��

��−1
(ln ��E )

�−2 � (E) �EE + 1Γ (� − 1)
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⋅ ∫�

��
(ln �E)

�−2 � (E)) �EE .
(34)

Utilizing "�(#) + ]��(#) = �(�), we obtain

U2 = � (�)
�Ω − � (�) (log2#)�−1 (log�2� + log2	](�−1))

�Ω(ln 2� + ] (� − 1) /2) − 	∑
�=1

�̃� (� (��)) �� (log��#)�−2 (ln (#/��)� + log� (#�−1/��−2� )]/�)
�Ω

− 	∑
�=1

�� (� (��)) (log��#)
�−2 (log�� (��−1� /#�−2)� + ] (� − 1) (� − 2) (log�	 − log��	) /#)

�Ω
− 	∑
�=1

(log��#)�−2 (log�� (��−1� /#�−2)� + ] (� − 1) (� − 2) (log�	 − log��	) /#)
�ΩΓ (�) ∫��

��−1
(ln ��E )

�−1 � (E) �EE
− 	∑
�=1

�� (log��#)�−2 (ln (#/��)� + log� (#�−1/��−2� )]/�)
�ΩΓ (� − 1) ∫��

��−1
(ln ��E )

�−2 � (E) �EE − "
�ΩΓ (�) ∫

�

��
(ln#E )

�−1 � (E)) �EE
− ]

�ΩΓ (� − 1) ∫
�

��
(ln#E )

�−2 � (E)) �EE , R = 1, 2, . . . , �.

(35)

Substituting the value of U2 in (33), we achieve �(�) of (22). In
the same way, we can obtain �(�) of (22).
Corollary 12. In view of �eorem 11, our coupled system (3)
has the following solution:

� (�) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω

+ (ln �)�−2 �A1 (�) � (�)
+ 	∑
�=1

(ln �)�−2 �A
�
2 (�) �� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�) �̃� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
2 (�)Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑
�=1

(ln �)�−2 �A
�
3 (�)Γ (� − 1)

⋅ ∫��

��−1
(ln ��E )

�−2 � (E, � (E) , � (E)) �EE

− ] (ln �)�−2 �Ω̃ (�)
�ΩΓ (� − 1)

× ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �EE
− " (ln �)�−2 �Ω̃ (�)

�ΩΓ (�)
⋅ ∫�

��
(ln#E )

�−1 � (E, � (E) , � (E)) �EE + 1Γ (�)
⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE ,
R = 1, 2, . . . , �,

� (�) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω + (ln �)�−2 �A1 (�) � (�)

+ 	∑

=1

(ln �)�−2 �A


2 (�) �
 (� (�
))

+ 	∑

=1

(ln �)�−2 �A


3 (�) �̃
 (� (�
))

+ 	∑

=1

(ln �)�−2 �A


2 (�)Γ ($)
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⋅ ∫��

��−1
(ln �
E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑

=1

(ln �)�−2 �A


3 (�)Γ ($ − 1)

⋅ ∫��

��−1
(ln �
E )

�−2 � (E, � (E) , � (E)) �EE
− ] (ln �)�−2 �Ω̃ (�)

�ΩΓ ($ − 1)
× ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �EE
− " (ln �)�−2 �Ω̃ (�)

�ΩΓ ($)
⋅ ∫�

��
(ln#E )

�−1 � (E, � (E) , � (E)) �EE + 1Γ ($)
⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE ,
R = 1, 2, . . . , �.

(36)

To convert the considered problem into a 
xed point
problem, we de
ne the operators F : E &→ E by F = (F1, F2)
and G : E &→ E by G = (G1,G2) such that

F = F1 (� (�)) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω

+ (ln �)�−2 �A1 (�) � (�)
+ 	∑
�=1

(ln �)�−2 �A
�
2 (�) �� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�) �̃� (� (��)) ,

R = 1, 2, . . . , �,

(37a)

F = F2 (� (�)) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω

+ (ln �)�−2 �A1 (�) � (�)
+ 	∑

=1

(ln �)�−2 �A


2 (�) �
 (� (�
))

+ 	∑

=1

(ln �)�−2A

3 (�) �̃
 (� (�
)) , R = 1, 2, . . . , �,

(37b)

G = G1 (� (�) , � (�)) = 	∑
�=1

(ln �)�−2 �A
�
2 (�)Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑
�=1

(ln �)�−2 �A
�
3 (�)Γ (� − 1)

× ∫��

��−1
(ln ��E )

�−2 � (E, � (E) , � (E)) �EE
− " �Ω̃ (�) (ln �)�−2

�ΩΓ (�) ∫�

��
(ln#E )

�−1

× � (E, � (E) , � (E)) �EE − ] �Ω̃ (�) (ln �)�−2
�ΩΓ (� − 1)

⋅ ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �sE + 1Γ (�)
⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE ,
R = 1, 2, . . . , �,

(38a)

G = G2 (� (�) , � (�)) = 	∑

=1

(ln �)�−2 �A


2 (�)Γ ($)

⋅ ∫��

��−1
(ln �
E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑

=1

(ln �)�−2 �A


3 (�)Γ ($ − 1)

× ∫��

��−1
(ln �
E )

�−2 � (E, � (E) , � (E)) �EE
− " �Ω̃ (�) (ln �)�−2

�ΩΓ ($) ∫�

��
(ln#E )

�−1

× � (E, � (E) , � (E)) �EE − ] �Ω̃ (�) (ln �)�−2
�ΩΓ ($ − 1)

⋅ ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �EE + 1Γ ($)
⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE ,
R = 1, 2, . . . , �,

(38b)

respectively.
�e following assumptions will be helpful for our results.
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(H1) �, � : J × R × R &→ R
+ are continuous; for all(�, �), (�̃, �̃) ∈ E, and � ∈ J, there exist L�,L� > 0

such that

����� (�, � (�) , � (�)) − � (�, �̃ (�) , �̃ (�))����
≤ L�

����(� − �̃, � − �̃)���� ,����� (�, � (�) , � (�)) − � (�, �̃ (�) , �̃ (�))����
≤ L�

����(� − �̃, � − �̃)���� .
(39)

(H2) ��, �̃�, �
, �̃
 : R &→ R are continuous and there exist

L�,L�̃,L�
�,L�

�̃ > 0 such that for any (�, �), (�̃, �̃) ∈
E

������ (� (��)) − �� (�̃ (��))���� ≤ L�
����� − �̃���� ,������̃� (� (��)) − �̃� (�̃ (��))����� ≤ L�̃
����� − �̃���� ,

R = 1, 2, . . . , �,
������
 (� (�
)) − �
 (�̃ (�
))����� ≤ L

�
�
����� − �̃���� ,������̃
 (� (�
)) − �̃
 (�̃ (�
))����� ≤ L

�
�̃
����� − �̃���� ,

R = 1, 2, . . . , �.

(40)

(H3) �, � : R &→ R are continuous, and there exist
L�,L�,L�

�,L�
�,M�,M�,M�

�,M�
� > 0, for any(�, �), (�̃, �̃) ∈ E such that

����� (�) − � (�̃)���� ≤ L�
����� − �̃���� ,����� (�) − � (�̃)���� ≤ L�
����� − �̃���� ,����� (�) − � (�̃)���� ≤ L

�
�
����� − �̃���� ,����� (�) − � (�̃)���� ≤ L

�
�
����� − �̃���� ,����� (�)���� ≤ M�,����� (�)���� ≤ M�,����� (�)���� ≤ M

�
�,����� (�)���� ≤ M
�
�.

(41)

(H4) �, � : J × R × R &→ R
+ are continuous; for all(�, �) ∈ E and � ∈ J, there exist M�,M� > 0 such

that

����� (�, � (�) , � (�))���� ≤ M� {��������� + ���������} ,����� (�, � (�) , � (�))���� ≤ M� {��������� + ���������} . (42)

(H5) ��, �̃�, �
, �̃
 : R &→ R are continuous and there exist

N�,M�,N�̃,M�̃,N�
�,M�

�,N�
�̃,M�

�̃ > 0 such that for
any (�, �) ∈ E,

������ (� (��))���� ≤ N�
��������� +M�,������̃� (� (��))����� ≤ N�̃
��������� +M�̃,

R = 1, 2, . . . , �,������
 (� (�
))����� ≤ N
�
�
��������� +M

�
�,������̃
 (� (�
))����� ≤ N

�
�̃
��������� +M

�
�̃,
R = 1, 2, . . . , �.

(43)

�eorem 13. Under the hypothesis (H1) − (H3), and
Λ � + Λ � < 1

L
, (44)

(3) has unique solution.

Proof. De
ne an operator Φ = (Φ1, Φ2) : E &→ E, i.e.,Φ(�, �)(�) = (Φ1(�, �),Φ2(�, �))(�), where
Φ1 (�, �) (�) = � (�) (ln �)�−2 �Ω̃ (�)

�Ω + � (�)
⋅ (ln �)�−2 �A1 (�) + 	∑

�=1
(ln �)�−2 �A

�
2 (�) �� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�) �̃� (� (��))

+ 	∑
�=1

(ln �)�−2 �A
�
2 (�)Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1 � (E, � (E) , � (E)) �EE
− " �Ω̃ (�) (ln �)�−2

�ΩΓ (�)
⋅ ∫�

��
(ln#E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑
�=1

(ln �)�−2 �A
�
3 (�)Γ (� − 1) ∫��

��−1
(ln ��E )

�−2

× � (E, � (E) , � (E)) �EE − ] �Ω̃ (�) (ln �)�−2
�ΩΓ (� − 1)

⋅ ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �EE + 1Γ (�)
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⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE ,
Φ2 (�, �) (�) = � (�) (ln �)�−2 �Ω̃ (�)

�Ω + � (�)
⋅ (ln �)�−2 �A1 (�)
+ 	∑

=1

(ln �)�−2 �A


2 (�) �
 (� (�
))

+ 	∑

=1

(ln �)�−2 �A


3 (�) �̃
 (� (�
))

+ 	∑

=1

(ln �)�−2 �A


2 (�)Γ ($)

⋅ ∫��

��−1
(ln �
E )

�−1 � (E, � (E) , � (E)) �EE

− " �Ω̃ (�) (ln �)�−2
�ΩΓ ($)

⋅ ∫�

��
(ln#E )

�−1 � (E, � (E) , � (E)) �EE
+ 	∑

=1

(ln �)�−2 �A


3 (�)Γ ($ − 1) ∫��

��−1
(ln �
E )

�−2

× � (E, � (E) , � (E)) �EE − ] �Ω̃ (�) (ln �)�−2
�ΩΓ ($ − 1)

⋅ ∫�

��
(ln#E )

�−2 � (E, � (E) , � (E)) �EE + 1Γ ($)
⋅ ∫�

��
(ln �E)

�−1 � (E, � (E) , � (E)) �EE .
(45)

In view of�eorem 13, we have

�����(Φ1 (�, �) − Φ1 (�̃, �̃)) (ln �)2−������ ≤ L[����� �Ω̃ (�)��������� �Ω���� + ���� �A1 (�)���� + 	∑
�=1

����� �A�
2 (�)����� +

	∑
�=1

�����A�
3 (�)�����] ����� − �̃����

+L[
[
∑	
�=1

����� �A�
2 (�)����� (ln (��/��−1))� ���� �Ω���� + (ln �)2−� (ln (�/�	))� ���� �Ω���� − ����"���� (ln (#/�	))� ����� �Ω̃ (�)��������� �Ω���� Γ (� + 1)

+ ∑	
�=1

�����A�
3 (�)����� (ln (��/��−1))�−1 ���� �Ω���� − |]| (ln (#/�	))�−1 ����� �Ω̃ (�)��������� �Ω���� Γ (�) ]

]
����(� − �̃, � − �̃)���� .

(46)

Taking sup, we achieve

????Φ1 (�, �) − Φ1 (�̃, �̃)????E1 ≤ L[
[
????? �Ω̃?????���� �Ω���� + ???? �A1

???? + � ???? �A2
???? + � ???? �A3

????
+ � ???? �A2

???? (ln (��/��−1))� |Ω| + (ln �)2−� (ln (�/��))� ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)
+ � ???? �A3

???? (ln (��/��−1))�−1 ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�) ]
]
????� − �̃????

+L[
[
� ???? �A2

???? (ln (��/��−1))� ���� �Ω���� + (ln �)2−� (ln (�/��))� ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)
+ ???? �A3

???? (ln (��/��−1))�−1 ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�) ]
]
????� − �̃???? ≤ LΛ �

????(�, �) − (�̃, �̃)???? ,

(47)



Mathematical Problems in Engineering 11

where Λ � = max{Λ 1, Λ 2}, such that

Λ 1 = ????? �Ω̃?????���� �Ω���� + ???? �A1
???? + � ???? �A3

???? (ln (��/��−1))�−1 ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�)
+ � ???? �A2

???? (ln (��/��−1))� |Ω| + (ln �)2−� (ln (�/��))� ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1) + � ???? �A2
???? + � ???? �A3

????
Λ 2 = �???? �A2

???? (ln (��/��−1))� ���� �Ω���� + (ln �)2−� (ln (�/��))� ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)
+ ???? �A3

???? (ln (��/��−1))�−1 ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�) .

(48)

Similarly

????Φ2 (�, �) − Φ2 (�̃, �̃)????E2 ≤ LΛ �
????(�, �) − (�̃, �̃)???? , (49)

where Λ � = max{Λ 3, Λ 4},

Λ 3 = ????? �Ω̃?????����� �Ω����� + ????? �A1
????? + � ????? �A3

????? (ln (��/��−1))�−1 ����� �Ω����� − |]| (ln (#/��))�−1 ????? �Ω̃?????����� �Ω����� Γ ($)
+ � ????? �A2

????? (ln (��/��−1))� ����� �Ω����� + (ln �)2−� (ln (�/��))� ����� �Ω����� − ����"���� (ln (#/��))� ????? �Ω̃?????����� �Ω����� Γ ($ + 1) + � ????? �A2
????? + � ????? �A3

?????
Λ 4 = � ????? �A2

????? (ln (��/��−1))� ����� �Ω����� + (ln �)2−� (ln (�/��))� ����� �Ω����� − ����"���� (ln (#/��))� ????? �Ω̃?????����� �Ω����� Γ ($ + 1)
+ ????? �A3

????? (ln (��/��−1))�−1 ����� �Ω����� − |]| (ln (#/��))�−1 ????? �Ω̃?????����� �Ω����� Γ ($) .

(50)

From (47) and (49), we have

????Φ (�, �) − Φ (�̃, �̃)????E
≤ L (Λ � + Λ �) ????(�, �) − (�̃, �̃)???? , (51)

where L = max{L�,L�
�,L�,L�

�,L�,L�
�,L�

�̃,L�̃}, which
implies that the operator Φ is contraction due to (44).
�erefore, (3) has a unique solution.

Here we use the Krasnoselskii’s 
xed point theorem to
show that the operator F + G has at least one 
xed point.
�erefore, we choose a closed ball

E� = {(�, �) ∈ E, ????(�, �)???? ≤ a, ????�???? ≤ a2 7�� ????�????
≤ a2} ⊂ E, (52)

where

a ≥ M (????? �Ω̃????? / ���� �Ω���� + ????? �Ω̃????? / ����� �Ω����� + ???? �A1
???? + ????? �A1

????? + � ???? �A2
???? + � ????? �A2

????? + � ???? �A3
???? + � ????? �A3

?????)1 −N (� ???? �A2
???? + � ????? �A2

????? + � ???? �A3
???? + � ????? �A3

?????) −M (e� + e�) . (53)
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�eorem 14. If the assumptions (H1) − (H5) are true and

�A� = sup1≤�,
≤	 �A
�,

� , then (3) has at least one solution.

Proof. For any (�, �) ∈ E�, we have

????F (�, �) + G (�, �)????E≤ ????F1 (�)????E1 + ????F2 (�)????E2 + ????G1 (�, �)????E1
+ ????G2 (�, �)????E2 .

(54)

From (37a) and (37b), we get

�����F1� (�) (ln �)2−������ ≤
����� (�)���� ����� �Ω̃ (�)��������� �Ω����
+ ����� (�)���� ���� �A1 (�)����
+ 	∑
�=1

����� �A�
2 (�)����� ������ (� (��))����

+ 	∑
�=1

����� �A�
3 (�)����� ������̃� (� (��))����� ,

R = 1, 2, . . . , �,
≤ M�

����� �Ω̃ (�)��������� �Ω���� +M�
���� �A1 (�)����

+ � (M� +N�
���������) ���� �A�

2 (�)����
+ � (M�̃ +N�̃

���������) ���� �A�
3 (�)���� .

(55)

Taking sup�∈J, we get

????F1 (�)????E1 ≤ M�
????? �Ω̃?????���� �Ω���� +M�

???? �A1
????

+ � (M� +N�
????�????) ???? �A2

????
+ � (M�̃ +N�̃

????�????) ???? �A3
???? .

(56)

Similarly, we can obtain

????F2 (�)????E2 ≤ M
�
�
????? �Ω̃?????����� �Ω����� +M

�
�
????? �A1

?????

+ � (M�
� +N

�
�
????�????) ????? �A2

?????
+ � (M�

�̃ +N
�
�̃
????�????) ????? �A3

????? .
(57)

Also, we have

�����G1 (�, �) (�) (ln �)2−������
≤ 	∑

�=1

����� �A�
2 (�)�����Γ (�) ∫��

��−1
(ln ��E )

�−1 ����� (E, � (E) , � (E))���� �EE
+ 	∑
�=1

����� �A�
3 (�)�����Γ (� − 1) ∫��

��−1
(ln ��E )

�−1

× ����� (E, � (E) , � (E))���� �EE
− ����"���� ����� �Ω̃ (�)��������� �Ω���� Γ (�) ∫�

��
(ln#E )

�−1 ����� (E, � (E) , � (E))���� �EE
− |]| ����� �Ω̃ (�)��������� �Ω���� Γ (� − 1)
× ∫�

��
(ln#E )

�−2 ����� (E, � (E) , � (E))���� �EE
+ (ln �)2−�Γ (�) ∫�

��
(ln �E)

�−1 ����� (E, � (E) , � (E))���� �EE
≤ 	∑

�=1

M� (ln (��/��−1))� ����� �A�
2 (�)�����Γ (� + 1) ����(�, �)����

+ 	∑
�=1

M� (ln (��/��−1))� ����� �A�
3 (�)�����Γ (�) ����(�, �)����

− ����"����M� (ln (#/�	))� ����� �Ω̃ (�)��������� �Ω���� Γ (� + 1) ����(�, �)����
− |]|M� (ln (#/�	))�−1 ����� �Ω̃ (�)��������� �Ω���� Γ (�)

����(�, �)����
+ M� (ln �)2−� (ln (�/�	))�Γ (� + 1) ����(�, �)���� ,

R = 1, 2, . . . , �.

(58)

Taking sup�∈J, we obtain

????G1 (�, �)????E1 ≤ M� [
[
(ln �)2−� (ln (�/��))� ���� �Ω���� + � (ln (��/��−1))� ???? �A2

???? ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)
+ � (ln (��/��−1))� ???? �A3

???? ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�) ]
]
????(�, �)???? ≤ M�e�

????(�, �)???? ,
(59)
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where

e� = (ln �)2−� (ln (�/��))� ���� �Ω���� + � (ln (��/��−1))� ???? �A2
???? ���� �Ω���� − ����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)

+ � (ln (��/��−1))� ???? �A3
???? ���� �Ω���� − |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�) .

(60)

Also ????G2 (�, �) (�)????E2 ≤ M�e�
????(�, �)???? , (61)

where

e� = (ln �)2−� (ln (�/��))� ����� �Ω����� + � (ln (��/��−1))� ????? �A2
????? ����� �Ω����� − ����"���� (ln (#/��))� ????? �Ω̃?????����� �Ω����� Γ ($ + 1)

+ � (ln (��/��−1))� ????? �A3
????? ����� �Ω����� − |]| (ln (#/��))�−1 ????? �Ω̃?????����� �Ω����� Γ ($) .

(62)

Substituting all inequalities from (59) to (61) in (54), we get

????F (�, �) + G (�, �)????E ≤ M(????? �Ω̃?????���� �Ω���� + ????? �Ω̃?????����� �Ω�����
+ ???? �A1

???? + ????? �A1
????? + � ???? �A2

???? + � ????? �A2
?????

+ � ???? �A3
???? + � ????? �A3

?????) +N (� ???? �A2
????

+ � ????? �A2
????? + � ???? �A3

???? + � ????? �A3
?????) a +M (e�

+ e�) a ≤ a,

(63)

where M = max{M�,M�
�,M�,M�

�,M�,M�
�,M�̃,M�

�̃,M�,

M�} and N = max{N�,N�
�,N�̃,N�

�̃}. Hence, F(�, �) +
G(�, �) ∈ E�.

Next, for any � ∈ J, (�, �), (�̃, �̃) ∈ E

????F (�, �) − F (�̃, �̃)????E1 ≤ ????F1 (�) − F1 (�̃)????E1
+ ????F2 (�) − F2 (�̃)????E1 ≤ (L�

????? �Ω̃?????���� �Ω���� +L�
???? �A1

????
+ �L�

???? �A2
???? + �L�̃

???? �A3
????) ????� − �̃????

+ (L
�
�
????? �Ω̃?????����� �Ω����� +L

�
�
????? �A1

????? + �L�
�
????? �A2

?????

+ �L�
�̃
????? �A3

?????) ????� − �̃???? ≤ L(????? �Ω̃?????���� �Ω���� + ????? �Ω̃?????����� �Ω�����
+ ???? �A1

???? + ????? �A1
????? + � ???? �A2

???? + � ????? �A2
?????

+ � ???? �A3
???? + � ????? �A3

?????) ????(� − �̃, � − �̃)????
≤ Lj∗ ????(� − �̃, � − �̃)???? ,

(64)

where

j∗ = ????? �Ω̃?????���� �Ω���� + ????? �Ω̃?????����� �Ω����� + ???? �A1
???? + ????? �A1

????? + � ???? �A2
????

+ � ????? �A2
????? + � ???? �A3

???? + � ????? �A3
????? .

(65)

�erefore, F is contraction mapping.
Now, we are proving the continuity and compactness ofG

and, for this reason, construct a sequence #! = (�!, �!) in E�
such that (�!, �!) &→ (�, �) for E &→ ∞ inE�. �us, we have

????G (�!, �!) − G (�, �)????E ≤ ????G1 (�!, �!) − G1 (�, �)????E1
+ ????G2 (�!, �!) − G2 (�, �)????E2
≤ L�(����"���� (ln (#/��))� ????? �Ω̃?????���� �Ω���� Γ (� + 1)
+ |]| (ln (#/��))�−1 ????? �Ω̃?????���� �Ω���� Γ (�)
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− �???? �A2
???? (ln (��/��−1))�Γ (� + 1)

− � ???? �A3
???? (ln (��/��−1))�−1Γ (�)

+ (ln �)2−� (ln (�/��))�Γ (� + 1) ) ????(�! − �, �! − �)????
+L�(

����"���� (ln (#/��))� ????? �Ω̃?????����� �Ω����� Γ ($ + 1)
+ |]| (ln (#/��))�−1 ????? �Ω̃?????����� �Ω����� Γ ($)
− � ????? �A2

????? (ln (��/��−1))�Γ ($ + 1)
− � ????? �A3

????? (ln (��/��−1))�−1Γ ($)
+ (ln �)2−� (ln (�/��))�Γ ($ + 1) ) ????(�! − �, �! − �)???? .

(66)

�is implies ‖G(��, ��) − G(�, �)‖E &→ 0 as � &→ ∞;
therefore G is continuous.

Next, we show that G is uniformly bounded onE�. From
(59) and (61), we have

????G (�, �) (�)????E ≤ ????G1 (�, �) (�)????E1 + ????G2 (�, �) (�)????E2
≤ (M�e∗ +M�e∗∗) a. (67)

�us, G is uniformly bounded on E�.
For equi-continuity, take l1, l2 ∈ J with l1 < l2 and for

any (�, �) ∈ E� ⊂ E, where E� is clearly bounded, we have

�����(G1 (�, �) (l1) − G1 (�, �) (l2)) (ln �)2−������
≤ M� [

[
�����Ω̃ (l1) − Ω̃ (l2)�����

⋅ ( ����"���� (ln (#/��))�|Ω| Γ (� + 1) + |]| (ln (#/��))�−1|Ω| Γ (�) )
− ∑�

	=1
�����A	

2 (l1) −A
	
2 (l2)����� (ln (�	/�	−1))�Γ (� + 1)

− ∑�
	=1

�����A	
3 (l1) −A

	
3 (l2)����� (ln (�	/�	−1))�−1Γ (�) ]

]
⋅ ����(�, �)����

+ 1Γ (�)
���������∫

"1

��
(lnl1E )�−1 � (E, � (E) , � (E)) �EE

− ∫"2

��
(lnl2E )�−1 � (E, � (E) , � (E)) �EE

��������� .
(68)

�is implies that ‖G1(�, �)(l1) − G1(�, �)(l2)‖E1 &→ 0
as l1 &→ l2. In the same way, we have ‖G2(�, �)(l1) −
G2(�, �)(l2)‖E2 &→ 0 as l1 &→ l2. Hence ‖G(�, �)(l1) −
G(�, �)(l2)‖E &→ 0 as l1 &→ l2. �erefore, G is relatively
compact on E�. By Arzelä-Ascoli theorem, G is compact and
hence completely continuous operator, so (3) has at least one
solution.

4. Ulam Stability Analysis

In this portion, we analyze di	erent kinds of stability like
Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam–Ras-
sias, and generalized Hyers–Ulam–Rassias stability of the
proposed system.

�eorem 15. If assumptions (H1) − (H3) and inequality (44)
are satis
ed and

�= 1 − L
2Λ 2Λ 4((ln �)�−2 −LΛ 1) ((ln �)�−2 −LΛ 3) > 0, (69)

then the unique solution of the coupled system (3) is
Hyers–Ulam stable and consequently generalized Hyers–Ulam
stable.

Proof. Let (�, �) ∈ E be an approximate solution of inequality
(14) and let (�̂, �̂) ∈ E be the unique solution of the coupled
system given by

�D
��̂ (�) = � (�, �̂ (�) , �̂ (�)) ,

� ∈ J, � ̸= ��, � = 1, 2, . . . , �,
�D

��̂ (�) = � (�, �̂ (�) , �̂ (�)) ,
� ∈ J, � ̸= �
, � = 1, 2, . . . , �,

Δ�̂ (��) = �� (�̂ (��)) ,
Δ�̂� (��) = �̃� (�̂ (��)) ,

� = 1, 2, . . . , �,
Δ�̂ (�
) = �
 (�̂ (�
)) ,
Δ�̂� (�
) = �̃
 (�̂ (�
)) ,

� = 1, 2, . . . , �,
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" ln 2�̂ (2) + ] ln 2�̂� (2) = � (�̂) ,
"�̂ (#) + ]�̂� (#) = � (�̂) ,

" ln 2�̂ (2) + ] ln 2�̂� (2) = � (�̂) ,
"�̂ (#) + ]�̂� (#) = � (�̂) .

(70)

By Remark 10 we have

�D
�� (�) = � (�, � (�) , � (�)) + Υ� (�) ,

� ∈ J, � ̸= ��, � = 1, 2, . . . , �,
Δ� (��) = �� (� (��)) + Υ�� ,
Δ�� (��) = �̃� (� (��)) + Υ�� ,

� = 1, 2, . . . , �,
�D

�� (�) = � (�, � (�) , � (�)) + Υ� (�) ,
� ∈ J, � ̸= �
, � = 1, 2, . . . , �,

Δ� (�
) = �
 (� (�
)) + Υ�� ,
Δ�� (�
) = �̃
 (� (�
)) + Υ�� ,

� = 1, 2, . . . , �.

(71)

�erefore, the solution of problem (71) is

� (�) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω

+ 	∑
�=1

(ln �)�−2 �A
�
3 (�) (�̃� (� (��)) + Υ��)

+ 	∑
�=1

(ln �)�−2 �A
�
2 (�) (�� (� (��)) + Υ��)

+ (ln �)�−2 �A1 (�) � (�) + 	∑
�=1

(ln �)�−2 �A
�
2 (�)Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE
+ 	∑
�=1

(ln �)�−2 �A
�
3 (�)Γ (� − 1)

⋅ ∫��

��−1
(ln ��E )

�−2 (� (E, � (E) , � (E)) + Υ� (E)) �EE
− ] (ln �)�−2 �Ω̃ (�)

�ΩΓ (� − 1)
⋅ ∫�

��
(ln#E )

�−2 (� (E, � (E) , � (E)) + Υ� (E)) �EE

− " (ln �)�−2 �Ω̃ (�)
�ΩΓ (�)

⋅ ∫�

��
(ln#E )

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE
+ 1Γ (�)
⋅ ∫�

��
(ln �E)

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE ,
R = 1, 2, . . . , �,

� (�) = (ln �)�−2 �Ω̃ (�) � (�)
�Ω

+ 	∑

=1

(ln �)�−2 �A


3 (�) (�̃
 (� (�
)) + Υ��)

+ 	∑

=1

(ln �)�−2 �A


2 (�) (�
 (� (�
)) + Υ��)

+ (ln �)�−2 �A1 (�) � (�) + 	∑

=1

(ln �)�−2 �A


2 (�)Γ ($)

⋅ ∫��

��−1
(ln �
E )

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE
+ 	∑

=1

(ln �)�−2 �A


3 (�)Γ ($ − 1)

⋅ ∫��

��−1
(ln �
E )

�−2 (� (E, � (E) , � (E)) + Υ� (E)) �EE
− ] (ln �)�−2 �Ω̃ (�)

�ΩΓ ($ − 1)
⋅ ∫�

��
(ln#E )

�−2 (� (E, � (E) , � (E)) + Υ� (E)) �EE
− " (ln �)�−2 �Ω̃ (�)

�ΩΓ ($)
⋅ ∫�

��
(ln#E )

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE
+ 1Γ ($)
⋅ ∫�

��
(ln �E)

�−1 (� (E, � (E) , � (E)) + Υ� (E)) �EE ,
R = 1, 2, . . . , �.

(72)
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We consider

�����(� (�) − �̂ (�)) (ln �)�−2����� ≤
����� �Ω̃ (�)����� ����� (�) − � (�̂)�������� �Ω����

+ 	∑
�=1

����� �A�
3 (�)����� �̃� (� (��)) − �̃� (�̂ (��))�����

+ 	∑
�=1

����� �A�
2 (�)����� ������ (� (��)) − �� (�̂ (��))���� + ���� �A1 (�)����

⋅ ����� (�) − � (�̂)���� + 	∑
�=1

����� �A�
2 (�)�����Γ (�)

⋅ ∫��

��−1
(ln ��E )

�−1

⋅ ����� (E, � (E) , � (E)) − � (E, �̂ (E) , �̂ (E))���� �EE
+ 	∑
�=1

����� �A�
3 (�)�����Γ (� − 1) ∫��

��−1
(ln ��E )

�−2

⋅ ����� (E, � (E) , � (E)) − � (E, �̂ (E) , �̂ (E))���� �EE
− |]| ����� �Ω̃ (�)��������� �Ω���� Γ (� − 1) ∫

�

��
(ln#E )

�−2

⋅ ����� (E, � (E) , � (E)) − � (E, �̂ (E) , �̂ (E))����
− ����"���� ����� �Ω̃ (�)��������� �Ω���� Γ (�) ∫�

��
(ln#E )

�−1

⋅ ����� (E, � (E) , � (E)) − � (E, �̂ (E) , �̂ (E))���� + (ln �)2−�Γ (�)
⋅ ∫�

��
(ln �E)

�−1

⋅ ����� (E, � (E) , � (E)) − � (E, �̂ (E) , �̂ (E))���� �EE
+ 	∑
�=1

����� �A�
3 (�)����� �����Υ�� ����� +

	∑
�=1

����� �A�
2 (�)����� �����Υ�� �����

+ 	∑
�=1

����� �A�
2 (�)�����Γ (�) ∫��

��−1
(ln ��E )

�−1 �����Υ� (E)����� �EE
+ 	∑
�=1

����� �A�
3 (�)�����Γ (� − 1) ∫��

��−1
(ln ��E )

�−2 �����Υ� (E)����� �EE
− |]| ����� �Ω̃ (�)��������� �Ω���� Γ (� − 1) ∫

�

��
(ln#E )

�−2 �����Υ� (E)����� �EE

− ����"���� ����� �Ω̃ (�)��������� �Ω���� Γ (�) ∫�

��
(ln#E )

�−1 �����Υ� (E)����� �EE + (ln �)2−�Γ (�)
⋅ ∫�

��
(ln �E)

�−1 �����Υ� (E)����� �EE .
(73)

As in �eorem 13, we get????� − �̂????E1 ≤ LΛ 1 (ln �)2−� ????� − �̂????E1
+LΛ 2 (ln �)2−� ????� − �̂????E1
+ [Λ 2 + � ???? �A2

???? + � ???? �A3
????] K�,

(74)

????� − �̂????E2 ≤ LΛ 3 (ln �)2−� ????� − �̂????E2
+LΛ 4 (ln �)2−� ????� − �̂????E2
+ [Λ 4 + � ????? �A2

????? + � ????? �A3
?????] K�.

(75)

From (74) and (75) we have

????� − �̂????E1 − LΛ 2(ln �)�−2 −LΛ 1

????� − �̂????E1
≤ Λ 2 + � ???? �A2

???? + � ???? �A3
????1 −LΛ 1 (ln �)2−� K�,

????� − �̂????E2 − LΛ 4(ln �)�−2 −LΛ 3

????� − �̂????E2
≤ Λ 4 + � ????? �A2

????? + � ????? �A3
?????1 −LΛ 3 (ln �)2−� K�,

(76)

respectively. Let G� = (Λ 2 + �‖ �A2‖ + �‖ �A3‖)/(1 −
LΛ 1(ln �)2−�) and G� = (Λ 4 + �‖ �A2‖ + �‖ �A3‖)/(1 −
LΛ 3(ln �)2−�). �en the last two inequalities can be written
in matrix form as

[[[
[

1 − LΛ 2(ln �)�−2 −LΛ 1− LΛ 4(ln �)�−2 −LΛ 3
1

]]]
]
[????� − �̂????E1????� − �̂????E2 ]

≤ [G�K�
G�K�] ,

[????� − �̂????E1????� − �̂????E2 ]

≤ [[[[
[

1
�

LΛ 2((ln �)�−2 −LΛ 1) �
LΛ 4((ln �)�−2 −LΛ 3) �

1
�

]]]]
]
[G�K�
G�K�] ,

(77)

where

�= 1 − L
2Λ 2Λ 4((ln �)�−2 −LΛ 1) ((ln �)�−2 −LΛ 3) > 0. (78)
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From system (77) we have

????� − �̂????E1 ≤ G�K�
�

+ LΛ 2G�K�((ln �)�−2 −LΛ 1) � ,
????� − �̂????E2 ≤ G�K�

�
+ LΛ 4G�K�((ln �)�−2 −LΛ 3) � ,

(79)

which implies that

????� − �̂????E1 + ????� − �̂????E2
≤ G�K�

�
+ G�K�

�
+ LΛ 2G�K�((ln �)�−2 −LΛ 1) �

+ LΛ 4G�K�((ln �)�−2 −LΛ 3) � .
(80)

If max{K�, K�} = K and G�/ � +G�/ � +LΛ 2G�/((ln �)�−2 −
LΛ 1) � +LΛ 4G�/((ln �)�−2 −LΛ 3) �= G�,�, then

????(�, �) − (�̂, �̂)????E ≤ G�,�K. (81)

�is shows that system (3) is Hyers–Ulam stable. Also, if

????(�, �) − (�̂, �̂)????E ≤ G�,�Φ(K) (82)

with Φ(0) = 0, then the solution of system (3) is generalized
Hyers–Ulam stable.

For the upcoming result, we suppose the following:

(H6) �ere exist two nondecreasing functions u�, u� ∈
C(J,R+) such that

�I
�u� (�) ≤ L�u� (�) ,

�I
�u� (�) ≤ L�u� (�) ,

uℎ	a	 L�,L� > 0.
(83)

�eorem 16. If assumptions (H1) − (H3) and (H6) and
inequality (44) are satis
ed and

�= 1 − L
2Λ 2Λ 4((ln �)�−2 −LΛ 1) ((ln �)�−2 −LΛ 3) > 0, (84)

then the unique solution of the coupled system (3) is Hy-
ers–Ulam–Rassias stable and consequently generalized Hy-
ers–Ulam–Rassias stable.

Proof. By using De
nitions 9 and 8, we can gain our result to
perform the same steps as in�eorem 15.

5. Example

To testify our results established in the previous section, we
provide an adequate problem.

Example 1. Consider

�w3/2� (�) = �2 + sin (����� (�)����) + cos (����� (�)����)50 ,
� ∈ J, � ̸= 52 ,

�w3/2� (�) = ����� (�)���� + cos (����� (�)����)70 + �2 , � ∈ J, � ̸= 73 ,
ln 2� (2) − ln 2�� (2) = 10∑

�=1
ℏ�� (3�) ,

ln 2� (2) − ln 2�� (2) = 10∑

=1

ℏ
� (5
) ,
2 < 5�, 3� < 3, ℏ� > 0

� (	) − �� (	) = 10∑
�=1

℘�� (3�) ,
� (	) − �� (	) = 10∑


=1
℘
� (5
) ,

2 < 5
, 3
 < 3 ℘
 > 0,
Δ�(52) = �1 (�(52)) = ����� (5/2)����75 + ����� (5/2)���� ,
Δ�� (52) = �̃1 (�(52) = ����� (5/2)����25 + ����� (5/2)���� ,
Δ� (73) = �1 (�(73)) = ����� (7/3)����75 + ����� (7/3)���� ,
Δ�� (73) = �̃1 (�(73) = ����� (7/3)����25 + ����� (7/3)���� .

(85)

In system (85), we see that � = $ = 3/2 and �(�) =∑10
�=1 ℏ�|�(3�)|, �(�) = ∑10

�=1 ℘�|�(3�)|, �(�) = ∑10

=1 ℏ
|�(5
)|,

and �(�) = ∑10

=1 ℘
|�(5
)|, where ∑10

�=1 ℏ� < 1/25 and∑10
�=1 ℘� < 1/75.
For � ∈ J = (2, 	], and (�, �), (�̃, �̃) ∈ E, we gain����� (�, � (�) , � (�)) − � (�, �̃ (�) , �̃ (�))����

≤ 150 ����(�, �) − (�̃, �̃)���� ,
����� (�, � (�) , � (�)) − � (�, �̃ (�) , �̃ (�))����

≤ 170 ����(�, �) − (�̃, �̃)���� .
(86)

From this we getL� = 1/50 andL� = 1/75. Also,
����� (� (�)) − � (�̃ (�))���� ≤ 175 ????(� − �̃)???? ,
������̃ (� (�)) − �̃ (�̃ (�))����� ≤ 125 ????(� − �̃)???? ,
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����� (� (�)) − � (�̃ (�))���� ≤ 125 ????(� − �̃)???? ,
����� (� (�)) − � (�̃ (�))���� ≤ 175 ????(� − �̃)???? .

(87)

From this we get that L� = L
�
� = 1/75, L�̃ = L

�
�̃ = 1/25,

L� = 1/25, L� = 1/75, L�
� = 1/25, L�

� = 1/75, and � =� = 1. Finding Λ 1 = 0.51282, Λ 2 = 0.18059, Λ 3 = 0.12899,
and Λ 4 = 0.46122, it is clear that Λ � = 0.51282 and Λ � =0.46122. By the help of �eorem 13, the following inequality
is true

Λ � + Λ � < 1
L

, (88)

and hence (85) has a unique solution. Also,

� = 1 − L
2Λ 2Λ 4((ln �)�−2 −LΛ 1) ((ln �)�−2 −LΛ 3)

≈ 0.02280 > 0,
(89)

and hence by �eorem 15 the coupled system (85) is
Hyers–Ulam stable and thus generalized Hyers–Ulam stable.
Similarly, we can verify the condition of �eorems 16 and 14.

6. Conclusion

In this manuscript, we used the Arzelä-Ascoli theorem,
Banach contraction principle, and Krasnoselskii’s 
xed point
theorem to achieve the necessary criteria for the existence
and uniqueness of the solution of considered switched cou-
pled impulsive fractional di	erential systems given in (3).
Similarly, under particular assumptions and conditions, we
have established the Hyers–Ulam stability results of di	erent
kinds for the solution of the considered problem in (3). From
the obtained results, we conclude that such a method is very
powerful, e	ectual, and suitable for the solution of nonlinear
fractional di	erential equations.
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