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NOMENCLATURE 

 

C = Aerodynamic coefficients with subscripts. 

ff = Fuel flow rate. 

H.E. = Heading error angle or the initial deviation of the missile 

from the collision triangle. 

IY = Missile mass moment of inertia. 

l = Characteristic length. 

La = Lead angle or the theoretical correct angle for the missile to 

be on a collision triangle. 

m = Missile mass. 

N′ = Effective navigation ratio. Usually taken to be 3-5 in value. 

Nc = Guidance acceleration command perpendicular to the line-

of-sight. 

NT = Target lateral acceleration or maneuverability. 

q = Pitch rate. 

S = Area. 

tf = Time at the end of the missile’s flight. 

T = Missile thrust. 

V = Relative wind speed. 

Vc = Closing velocity or the negative rate of change of the 

distance between missile and target. 

VT = Target relative wind speed. 

w = Missile normal speed. 

ẇ = Missile normal acceleration. 

XeM, XeT = Missile and target down ranges. 

YeM, YeT = Missile and target cross ranges. 

Ymd = Relative separation between the missile and target 

perpendicular to the fixed reference. 

α = Angle of attack. 

β = Target incidence angle. 

δ = Missile elevator deflection. 

γ = Flight path angle. 

λ = Line-of-sight angle. λ̇ = Rate of change of line-of-sight angle. 

θ = Pitch angle. 

ρ = Atmospheric density. 

 

Subscripts: 

 

D0 = Zero lift drag coefficient. 

L = Aerodynamic lift coefficient. 

L0 = Zero lift coefficient. 

Lα = Lift curve slope dCL/dα. 

Lα2 = Lift curve second derivative d2CL/dα2. 

Lδ = Lift curve slope dCL/dδ. 

M = Pitch moment. 

Mq = Moment curve slope dCM/dq. 

Mα = Moment curve slope dCM/dα. 

Mδ = Moment curve slope dCM/dδ. 

 

 

 

1. Introduction 

 

A missile guidance system is a closed feedback loop which has at 
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least one input which is the target acceleration (or target 

maneuverability) and one major output which is the missile - target 

relative separation called the miss - distance. When studying guided 

missile performance, a common goal is to find out major contributors 

to the total miss - distance, as well as to produce error budgets. It also 

may be desirable to examine performance parameters other than the 

miss - distance. Furthermore, the missile performance may need to be 

determined at various times through the homing period rather than 

exclusively at the final time. Due to the existence of nonlinear 

elements in the guidance loop, statistical inputs and disturbances, 

analysts usually resort to computational rather than analytical 

methods to determine the effects from such factors on the overall 

performance of the missile guidance system. Among different 

computational methods, Monte Carlo simulation techniques are the 

most commonly used. The technique is a numerical computation 

method that consists of repeated simulation trials plus ensemble 

averaging [1-2]. A major disadvantage of this technique is the large 

number of trials required to provide confidence in the accuracy of the 

results. Other procedures such as the linear adjoint method [3], the 

covariance analysis describing function technique (CADET) [4] and 

the statistical linearization adjoint method (SLAM) [5] have been 

more efficient and faster in solving certain problems. 

In 1961, Peterson [6] illustrated how the linear adjoint method 

could be applied to perform guided missile analysis. Additionally, 

analytical expressions for miss - distance were derived by Howe [7] 

using the adjoint theory. In the past few decades, utilization of 

shaping filters [8-9] for target maneuvers has appended the use of the 

adjoint method in the missile guidance problem. It is applied to linear 

proportional guidance systems and gives trusted results [10]. 

The basic concept of linear adjoint method is that by reversing a 

system, i.e. its inputs become outputs (and its outputs become inputs), 

and applying a unit impulse as an input to the reversed system, we 

can accurately predict the contribution percentage of each input just 

by observing the output coming from the reversed impulse input. The 

output of the original system due to a white noise input can be found 

by squaring, integrating, and then taking the square root of the 

impulse response of the adjoint system in only one computer run [3]. 

This technique has the advantage of providing information 

concerning the characteristic behavior of the system at any time. 

Although this technique is very fast and very exact, up until now, it is 

only applicable to linear system models [11-12]. 

SLAM is another analysis method that uses statistical 

linearization [13] to deal with nonlinear systems. With this method, 

each nonlinear element is replaced by an equivalent gain that depends 

upon the assumed form of the input signal to the element. Thereafter, 

conventional probability analysis techniques are employed to get the 

statistical properties of the system inputs and disturbances. Finally, 

the linear adjoint method is applied to the statistically linearized 

system. CADET is a different technique for analyzing statistical 

behavior of nonlinear stochastic systems. It entails the use of the 

resulting linearized system model together with the conventional 

covariance techniques [14] to propagate statistics of the system state 

vector, recognizing that the describing function gains are functions of 

these statistics, and computes the root-mean-square miss - distance at 

the intercept time from elements of the system covariance matrix. 

Since the previous two methods for nonlinear systems (SLAM 

and CADET) are based on statistical analysis of the system 

components, they are quite complicated and rely upon statistical data 

that usually is not readily available for flight hardware. Instead of 

studying input contributions, this paper expands the scope of the 

linear adjoint method by adopting it in studying the impacts of missile 

parameter variations on the performance of a nonlinear missile 

guidance system. As an example for such application of the linear 

adjoint method, a nonlinear missile guidance model is constructed 

from typical data and the effects from missile flight time variations on 

its miss-distance are studied. 

 

 

2. Linear adjoint method 

 

The linear adjoint method is used to simulate and analyze linear 

time-varying systems such as homing missile guidance loops. It is 

based on the system impulse response and gives a good inside look to 

the system performance and accurate knowledge of the contribution 

of each system input to this performance. This method can deal with 

probabilistic inputs as well as deterministic ones. As indicated earlier, 

this paper presents a study on using the linear adjoint method for 

evaluating the effect of parameter variations. Although a deterministic 

problem is considered in this paper, the same rules used can be 

applied to probabilistic ones with small changes in the algorithm. The 

rules for the adjoint method are as follows [3]: 

 

(1) Modify system inputs: 

For inputs of deterministic nature, transform each input to its 

impulse representation. For probabilistic inputs, outputs of 

shaping filters, driven by white noises, are squared and 

integrated to give the best representations of these input cases. 

(2) Modify the time-varying coefficients: 

For each time-varying parameter, replace t by tf - t and vice 

versa. For gain tables, the entries are reversed in time, gains for 

tf come first, etc., when used in the adjoint system. 

(3) Modify signal flow direction: 

The direction of signal flow in the system is reversed. The input 

ports are converted into output ports. 

(4) Modify nodes and summing junctions: 

Nodes are changed to summing junctions and summing 

junctions to nodes. 

 

 

3. Nonlinear models of missile and guidance system 

 

In this paper, we choose, as an example of the application of this 

method to nonlinear guidance systems, to study the effect of missile 

flight time variation on the miss - distance. For the purpose of this 
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study, the nonlinear equations of motion of a missile in the pitch plane 

are developed and used along with a traditional proportional 

navigation algorithm under the following assumptions: 

 

(1) The missile’s out of plane motion and air density changes are 

insignificant. 

(2) The missile is a symmetric rigid body. 

(3) The earth is the inertial frame of reference, i.e. the atmosphere is 

fixed w.r.t. the earth and the coordinate system XeYeZe fixed to 

the earth. 

(4) Atmospheric winds are assumed zero. 

(5) The missile drag polar has a parabolic shape. 

 

Based on [15-16], the state space form (Ẋ = f(X, u)) of the 

missile’s equations of motion, in the pitch plane w.r.t. an XYZ 

coordinate system fixed in the missile, is given as 

 

⎣⎢⎢
⎢⎡αVqθ
ṁ̇̇

̇ ̇
⎦⎥⎥
⎥⎤
 = 

⎣⎢⎢
⎢⎢⎢
⎡ 1mV [mg cos(θ − α)− L − T sin(α)] + q1m [T cos(α) − D − mg sin(θ − α) − ṁV]1IY MY +

İYIY q                                                         

q                                                                            −ff                                                                       ⎦⎥⎥
⎥⎥⎥
⎤
 (1) 

 

u(t) = δ (t) (2) 

Where, 

L = 0.5ρSV2(CL0 + CLα + CLα2α2 + CLδδ) (3) 

D = 0.5ρSV2(CD0 +
1πCL2) (4) 

MY = 0.5ρSV2l(CMαα+ CMqq + CMδδ) (5) 

 

Fig. 1 illustrates the relevant missile description. 

 

 

Fig. 1 Missile angle inclinations 

 

From the missile - target engagement geometry, shown in Fig. 2, 

several relations can be drawn 

 

(1) The target motion can be simulated by the following equations: 

 β̇ =
NT(t)

VT(t)
 (6) 

XeT(t) = −∫ VT(t)cos(β)
tt0 dt + XeT(t0) (7) 

YeT(t) = ∫ VT(t)sin(β)dt + YeT(t0)
tt0  (8) 

 

 

Fig. 2 Missile-target engagement geometry 

 

(2) The engagement angles can be calculated through the following 

relations: 

 

γ = θ - α = La + H.E. + λ (9) 

La + H.E. = sin−1 �VTV sin(β + λ)� (10) 

λ = tan−1 �YeT−YeMXeT−XeM � (11) 

 

(3) The navigation algorithm used in the simulation is the true 

proportional guidance law in which the guidance commands are 

calculated as 

 

Nc = N′Vcλ̇ (12) 

 

Acceleration commands perpendicular to the “instantaneous 

missile - target line of sight [3]” are related to the guidance commands 

by 

 

ẇ = -cos(λ)[cos(θ)]-1Nc (13) 

 

These acceleration commands are translated into appropriate 

elevator deflections to increase or reduce the missile’s normal 

acceleration ẇ given by 

 

ẇ = gcos(θ)− 1m �L cos(α) + D sin(α) − mwqtan(α)
+ ṁw� (14) 

 

(4) The closing velocity and the miss-distance are calculated as 

follows: 

 

Vc = − ddt ��(XeT − XeM)2 + (YeT − YeM)2� (15) 

 

miss - distance = Ymd(tf) = 

(16) ���(NT cos(β)− Nc cos(θ − α))dt

t
t0 �dt

tf
t0  

 

(5) The miss-distance can also be calculated as 
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miss-distance = Ymd(tf) = YeT(tf) – YeM(tf) = 
(17) 

YeT(tf)−∫ V sin(θ − α)dt
tft0  

 

The relation between normal acceleration of the missile and 

elevator deflection (Equation 14) is empirically approximated to be 

ẇ ≈ -0.6δ, where |δ| ≤ 0.35 rad, in computer simulations. A block 

diagram for the guidance loop is shown in Fig. 3. The model’s 

aerodynamic data are extracted from a HARM missile model 

distributed with the MISSILE DATCOM® software. For simulation 

validation of the nonlinear guidance loop, a hit case, is presented in 

Fig. 4. The parameter values of this case are given in Appendix A. 

 

 

Fig. 3 Guidance loop simulation block diagram 

 

 

Fig. 4 An example of nonlinear simulation of missile-target hit 

engagement 

 

4. Time-varying linearized model 

 

For the purpose of using the linear adjoint method, the nonlinear 

guidance system model is linearized using small perturbation theory. 

This procedure gives the following time-varying linear missile system 

 

Ẋ(t) = A(t)X(t) + B(t)u(t) (18) 

Aij(t) =
∂fi(X, u)∂Xj �

(X,u)

 (19) 

Bi(t) =
∂fi(X, u)∂u

�
(X,u)

 (20) 

u(t) = δ(t), i, j = 1,..5 (21) 

 

For the target, the motion equations are introduced into the linear 

model by taking their Laplace transformation to get 

 

YeT(s) =
NT

s2 + �NT
VT�2 

(22) 

XeT(s) =
−VTS

s2 + �NT
VT�2 

(23) 

 

For the line-of-sight angle calculation, Zarchan [3] suggests the 

following linear relation: 

 λ =
YeT − YeM
Vc(tf − t)

 (24) 

 

The linearized guidance loop is shown in Fig. 5. 

To study the effect of missile flight time on the miss-distance, 

multiple linear and nonlinear simulations are run and miss-distance is 

calculated at the end of each run. If the parameter variation studied 

had a probabilistic nature, Monte Carlo techniques would have been 

used to determine the number of required simulations according to the 

statistical properties of the variation being analyzed. In this example, 

the target is assumed to start maneuvering at engagement time t = 0 

with the initial missile and target data given in Appendix B. The 

missile flight time is varied from 0.1s to 10 s, in 0.1 s increment, and 

Fig. 6 shows the engagement miss-distance results of 100 simulation 

runs for both nonlinear and linearized missile guidance models. The 

same procedure used can also be applied to other guidance loop 

parameters of interest. As a stopping condition for computer 

simulation, missile to target distance less than 50 feet is considered a 

hit and the end of a simulation run. The nonlinear simulations suggest 

that a minimum flight time of 4.08 seconds is required for the missile 

to hit the target, while the linear simulation requires 4.18 seconds to 

reach the minimum miss - distance. The approximate nature of 

linearized model is responsible for its failure to achieve a perfect 

(zero miss – distance) interception. 
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Fig. 5 Linear guidance loop 

 

 

Fig. 6 Linear and nonlinear simulations of miss - distances vs. missile 

flight time 

 

 

5. Linear adjoint model 

 

To apply the linear adjoint method, the adjoint system is 

constructed according to the guiding rules described earlier in this 

paper. Fig. 7 shows the resulting systems. 

 

 

Fig. 7 Linear adjoint loop 

 

To ultilize the adjoint system, two problems had to be overcome: 

(1) Simulation of the time-varying missile linear system whose 

input is the lateral acceleration ẇ and the output is the angle 

deflection of the elevatorδ. 

(2) Development of the relationship between the rate of change of 

the missile’s cross range Vsin(θ-α) and the lateral acceleration, 

marked as block F in Fig. 7. 

 

For the first problem, which is the major hurdle, the nonlinear 

simulation is run with an impulse input for the target maneuverability, 

assuming a missile flight time of 10 s. The impulse input is chosen 

since, in the adjoint system, this input here will be the output of the 

adjoint simulation. The linearized coefficients are calculated for each 

time step of the nonlinear simulation. Those coefficients are then 

time-reversed and fed to the linear system during the adjoint 

simulation. For the second problem, from the above nonlinear 

simulation results, a first order numerical polynomial fit is used to 

approximate the relation between the lateral acceleration and the rate 

of change of the missile’s cross range as follows 

 

ẇ = 0.016[Vsin(θ - α)] +23.2 (25) 

 

The linear adjoint simulation is then run and the results are shown 

in Fig. 8. 

From Fig. 8, we can draw the following remarks: 

 

(1) The linear and nonlinear simulation results take 100 runs each to 

get the miss - distance for different missile flight times, while it 

takes the linear adjoint method only one computer run. 

(2) The adjoint simulation run is not stopped when the minimum 

value of miss - distance happens and it lasts through the entire 

flight period of 10 s. The point at which the linear adjoint system 

predicts minimum miss - distance (at about 4.7 seconds) gives 

the minimum missile flight time to achieve a hit. 

(3) The linear adjoint simulation accurately approximates the results 

of the linear and nonlinear simulations. 

 

 

Fig. 8 Linear adjoint simulation result compared to the results of linear 

and nonlinear simulations 
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6. Conclusion 

 

In this paper, a linear adjoint method is developed for a nonlinear 

time-varying missile guidance system to identify the contribution of 

system parameter variations to the system’s miss - distance. A new 

technique that involves the calculation of the missile’s linearized 

coefficients from the impulse simulation of the nonlinear system and 

then employs their time-reversed values in the adjoint system gives 

good estimation of the effect of missile flight time on the miss-

distance. Other parameter variations can be studied using the same 

technique. 
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APPENDIX 

 

A. Missile-target engagement parameter values for Fig. 4: 

NT = 300 ft/s2 

VT = 1,000 ft/s 

XeT(0) = 10,000 ft 

YeT(0) = 10,000 ft 

XeM(0) = 0 ft 

YeM(0) = 10,000 ft 

θ(0) = -10° 
α(0) = 10° 
V = 1,200 ft/s 

B. Missile-target engagement parameter values for Fig. 6 and Fig. 8: 

NT = 200 ft/s2 

VT = 1,000 ft/s 

XeT(0) = 10,000 ft 

YeT(0) = 5,000 ft 

XeM(0) = 0 ft 

YeM(0) = 0 ft 

θ(0) = 48° 
V = 1,200 ft/s 
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