
Dose-Response: An International Journal

Volume 3 | Issue 4 Article 7

9-2005

ANALYSIS OF NONLINEAR REGRESSION
MODELS: A CAUTIONARY NOTE
Shyamal D Peddada
National Institutes of Health, Research Triangle Park, NC

Joseph K Haseman
National Institutes of Health, Research Triangle Park, NC

Follow this and additional works at: https://scholarworks.umass.edu/dose_response

This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An
International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Peddada, Shyamal D and Haseman, Joseph K (2005) "ANALYSIS OF NONLINEAR REGRESSION MODELS: A CAUTIONARY
NOTE," Dose-Response: An International Journal: Vol. 3 : Iss. 4 , Article 7.
Available at: https://scholarworks.umass.edu/dose_response/vol3/iss4/7

https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol3?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol3/iss4?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol3/iss4/7?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dose_response/vol3/iss4/7?utm_source=scholarworks.umass.edu%2Fdose_response%2Fvol3%2Fiss4%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


Dose-Response, 3: 342–352, 2005
Formerly Nonlinearity in Biology, Toxicology, and Medicine
Copyright © 2005 University of Massachusetts
ISSN: 1540-1421
DOI: 10.2203/dose-response.003.03.005

342

ANALYSIS OF NONLINEAR REGRESSION MODELS: A CAUTIONARY NOTE

Shyamal D. Peddada and Joseph K. Haseman � Biostatistics Branch, National
Institute of Environmental Health Sciences, National Institutes of Health, Research
Triangle Park, NC

� Regression models are routinely used in many applied sciences for describing the rela-
tionship between a response variable and an independent variable. Statistical inferences
on the regression parameters are often performed using the maximum likelihood esti-
mators (MLE). In the case of nonlinear models the standard errors of MLE are often
obtained by linearizing the nonlinear function around the true parameter and by appeal-
ing to large sample theory. In this article we demonstrate, through computer simulations,
that the resulting asymptotic Wald confidence intervals cannot be trusted to achieve the
desired confidence levels. Sometimes they could underestimate the true nominal level
and are thus liberal. Hence one needs to be cautious in using the usual linearized stan-
dard errors of MLE and the associated confidence intervals. 

Keywords: confidence interval, coverage probability, variance estimation

1. INTRODUCTION

Linear and nonlinear statistical models are widely used in many appli-
cations to describe the relationship between a response variable Y and an
explanatory variable X. A statistical model is said to be linear if the mean
response is a linear function of the unknown parameters, otherwise it is
said to be a nonlinear model. For example, in the context of fertilizer tri-
als the mean yield of corn is sometimes modeled as a function of dosage
X by the quadratic function 

a + bX – 
c
2 X 2

The above model is linear in the unknown parameters a, b and c. In ani-
mal carcinogenicity studies and risk assessment, often researchers model
the mean response to different doses X of a chemical by the following Hill
model (Kim et al., 2002, Portier et al., 1996, Walker et al., 1999):

a + b X d
, (1)

c d + X d

where a represents the baseline response, a + b denotes the maximum
response, c denotes the ED50 (i.e. effective dose corresponding to 50% of
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the maximum response from the baseline response) and d is the slope
parameter. Since some of the parameters enter the above model nonlin-
early this is a nonlinear model. 

One of the purposes of fitting regression models is to draw inferences
on unknown parameters, or their functions, which have some physical
interpretation. For example, in the case of fertilizer trials a researcher is
often interested in estimating the “optimum dose” which maximizes the
corn yield. From the above quadratic function, this parameter is given by
b/c, a nonlinear function of the regression parameters b and c. In the case
of animal carcinogenicity studies, in addition to estimating a, b, c and d,
researchers are often interested in estimating the effective dose corre-
sponding to e % of the maximum response from the baseline response.
This parameter is denoted by EDe. Typical parameters of interest are ED01
and ED10 (Portier et al., 1996, Walker et al., 1999), which are nonlinear
functions of a, b, c and d. 

A key step in the statistical inference on unknown parameters of a
model is to compute the standard errors of various estimates. If the sta-
tistical model is either nonlinear or the parameter of interest in a linear
model is a nonlinear function of the regression parameters, then the
approximate standard errors are usually derived by using the first order
term in a suitable Taylor’s series expansion. Once the approximate stan-
dard errors are obtained the Wald type confidence intervals such as those
given in (3), (4) (see the Appendix) are derived. Such confidence inter-
vals are used very extensively in applications. 

Suppose θ is an unknown parameter of interest and suppose θ̂ is its
MLE with standard error S.E. (θ̂). The coverage probability of a (1 – α) ×
100% confidence interval  for a parameter θ, where zα is the suitable criti-
cal value, is described as follows. Suppose for each random realization of
data one was to construct the above confidence interval, then the coverage
probability of the confidence interval is the proportion of all such intervals
that contain the true parameter θ. A confidence interval is said to be accu-
rate if (1 – α) × 100% of all such intervals contain θ. A confidence interval
formula is said to be liberal if its coverage probability is less than (1 – α)
and is said to be conservative if its coverage probability exceeds (1 – α). 

Under some conditions on the linear model the Wald confidence
intervals (3) and (4) are accurate when the parameter of interest is a lin-
ear function of the regression parameters. However, if the parameter is
either a non-linear function of the regression parameters or if the model
is a nonlinear model, then they are not necessarily accurate, unless the
sample sizes are “very large”. Basically the large sample theory confidence
intervals are derived by “linearizing” the nonlinear function. This is
accomplished by approximating the function by the first order derivative
term in the Taylor series expansion of the nonlinear function. Hence for
(3) and (4) to be accurate it is important that the second and higher
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order terms in the Taylor series expansion are “negligible” in comparison
to the first order term. The effect of the second order term is known as
the “curvature effect.”

The purpose of this article is to demonstrate through computer simu-
lations that, in some instances, the standard error of the MLE based on the
above linearization process can be a severe underestimate of the true stan-
dard error of the MLE. Consequently, (3) and (4) can be liberal and are
not trustworthy. As an alternative, we consider confidence intervals based
on the sandwich estimator of the covariance matrix of MLE introduced in
Zhang (1997) and Zhang et al. (2000a). We notice that, to some extent, the
intervals based on Zhang et al. (2000a) methodology correct this problem. 

A second problem that is often associated with nonlinear regression
analysis is the numerical computation of maximum likelihood estimates.
Usually the computation of MLE is based on an iterative process that
requires carefully chosen initial starting points to avoid convergence to
local optima. Depending upon the nonlinear function this can be a chal-
lenging problem. For a good description regarding this issue one may
refer to Ratkowsky (1990). Usually it is highly recommended to apply the
iterative process by choosing a large number of starting points and
choose the best solution among all such solutions. It is important to note
that a poor approximation to the true MLE may result in a poor estimate
of the standard error, thus compounding the previously mentioned con-
cern regarding the estimation of standard errors. 

All notations and formulas are provided in the Appendix of the paper.

2. ESTIMATION OF STANDARD ERRORS AND CONFIDENCE INTERVALS

2.1 Curvature effects and the coverage probability problem

Several authors have noted that the “usual formulas” underestimate
(or overestimate) the true standard errors of the estimates of parameters
in a nonlinear model. This results in very high (or very low) false positive
rates when performing test of hypothesis and liberal (or too conserva-
tive) confidence intervals. That is, the confidence intervals could be too
narrow or too wide. For example, Simonoff and Tsai (1986) performed
extensive simulation studies using three different nonlinear models to
demonstrate that the true coverage probability of the confidence regions
(3) and (4) can be much below the desired nominal levels. In some cases,
when there are no outliers present, the coverage probability can be as low
as 0.75 for a 95% nominal level and the coverage probability can drop to
about 0.149 when outliers are present. A similar phenomenon was also
observed in Zhang (1997) and Zhang et al. (2000a) for several growth and
hormone models for boys during puberty. A consequence of these liber-
al confidence intervals is a very high false positive rate in the context of
testing hypotheses. Thus the P values based on such standard errors can
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be smaller than the true P values and hence a researcher a may declare
significance even though there is no significant effect. 

Several authors such as Bates and Watts (1988) and Ratkowsky (1990)
have discussed the effect of curvature on the accuracy of (3) and (4). A
very detailed investigation of these effects is provided in these books. The
curvature effects can be decomposed into two components, the intrinsic
effect γN

max that is due to the shape of the response function, and the para-
metric effect γP

max that is due to the functional form of the parameters.
Smaller the values of γ N

max and γ P
max, lower the curvature effects.

Estimators for these two parameters along with a simple F test to detect
the severity of the two curvature effects can be found in Ratkowsky (1990)
and in Seber and Wild (1989). Let 

c * =
1

,
2 √ Fα,p,n–p

where Fα,p,n–p is the (1 – α)th percentile of central F distribution with (p,
n – p) degrees of freedom. If the estimated value of γN

max (γP
max) < c * then it

suggests that the intrinsic (parametric) curvature effect is not significant. 
If the intrinsic curvature is severe then one may want to consider an

alternative nonlinear model to describe the dependence of Y on X. On
the other hand, if the parametric curvature is severe then one may re-
parameterize so that the resulting parametric form is subject to less cur-
vature effect. A potential drawback with this solution is that although the
parametric curvature may be reduced due to re-parameterization, the
experimenter may find the new parameters difficult to interpret. Thus it
is often a challenge to analyze data using nonlinear statistical models.
Either the parameters have good physical interpretation but hard to per-
form inferences on or the parameters resulting from re-parameterization
are difficult to interpret but easy to perform inferences on! 

Example 2.1 (Seber and Wild, 1989): Consider the following two-parameter
Hill equation:

a X
X + b

Based on an experimental data discussed in Seber and Wild (1989)
the authors concluded that the intrinsic curvature in the above function
is not very severe but the parametric effect curvature is very severe. For
this reason they re-parameterized the model as:

X , where c = 1/a and d = b/a.
cX + d

4
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Under this re-parameterization it is reasonable to perform statistical
inferences on c and d using the standard methods.

Simonoff and Tsai (1986) performed very extensive simulations
studying eight different jackknife based methods some of which “adjust”
for the curvature. They found that the jackknife confidence interval cen-
tered at the average of the pseudo-values P1i (see (5) in the Appendix)
with covariance matrix based on the pseudo-values P2i (see (6) in the
Appendix)), which account for the curvature effects, performed best.
Simonoff and Tsai (1986) called this procedure the RLQM procedure.
Zhang (1997) and Zhang et al. (2000a) considered an alternative sand-
wich estimator V̂Z 1

(see (9) in the Appendix) for the covariance matrix of
MLE. Based on simulation studies involving nonlinear models for growth
curve, growth hormone and testosterone for boys during puberty, Zhang
(1997) found that the confidence intervals based on (6) perform better
than those based on RLQM in terms of the coverage probability.

2.2 A simulation study

Since the Hill model (2) is widely used in the context of animal car-
cinogenicity studies and in the risk assessment of various chemicals we
base our simulation studies on this model. In this subsection we demon-
strate that the Wald confidence intervals (4), denoted by CMLE , can some-
time be liberal for some individual parameters. We only provide simula-
tion results for (4) because in view Simnoff and Tsai (1986) and Zhang
(1997) the results are expected to be even worse for (3). We compared
the coverage probabilities of CMLE with the coverage probabilities of the
confidence intervals introduced in Zhang (1997) and Zhang et al.
(2000a), which are denoted as CZ . For simplicity we take the baseline
response to be zero and hence consider the following 3-parameter Hill
model:

Yij = b
xd

ij + εi j ,xd
ij + c d

where i = 1, 2, 3, 4, 5, j = 1, 2, . . . , m, and the random errors εi j are iden-
tically and independently distributed as standard normal variables. To
understand the effect of sample size on the coverage probabilities, we
considered several different patterns of m, the number of animals at each
dose group. In this article we report results corresponding to m = 3 (small
sample size), m = 10 (moderately large sample size), and m = 20 (a large
sample size). As in Walker et al. (1999) the five dose groups considered in
this paper are (0, 3.5, 10.7, 35.7, 125). 

We considered 5 different patterns of parameters for the Hill model
(see Figure 1) with different amounts of curvature effects. In addition to
summarizing the coverage probabilities for the two methods of confidence
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intervals for each of the parameters, in Table 1 we also provide the medi-
an of the estimated curvature effects for each pattern based on 1000 sim-
ulation runs and the value of c * for each m. We estimated the two curva-
ture effects using the FORTRAN code provided in Ratkowsky (1990). All
minimizations were performed using the subroutine AMOEBA provided
in Press et al. (1989) with several initial starting values for performing the
minimization. 

We note from Table 1 that, apart from the case of (b, c, d) = (10, 10,
1), there are no serious intrinsic curvature effects but there can be severe
parametric curvature effects. In the case (b, c, d) = (10, 10, 1) the medi-
an of the estimated value of γN

max = 0.35 which exceeds c * = 0.27. In this
situation we notice that ED01 cannot be estimated with accurate standard
error. The coverage probability of MLE is only 0.86, which is much small-
er than the nominal level of 0.95. The remaining parameters appear to
be estimated reasonably well by the MLE. The method of Zhang et al.
(2000a) seems to improve the coverage probability.

Both, MLE as well as Zhang et al. (2000a), procedures are affected by
the severity of the parametric curvature effects. Of the two methods, the
methodology of Zhang et al. (2000a) performs better. In the worst case
when m = 3 and (b, c, d) = (25, 125, 1) both procedures perform very
poorly for estimating the parameters b, c and ED10, although the proce-
dure of Zhang et al. (2000a) is better. As the sample size per dose group
increases from m = 3 to m = 20 the parametric curvature effects decrease
and hence the coverage probabilities tend to improve. When there is very
little parametric curvature effect the methods tend to attain the nominal

FIGURE 1 Hill model for different patterns of parameters.
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level of 0.95. However, as in the case of (b, c, d) = (25, 125, 1), when the
parametric curvature effect is large the convergence to the nominal level
is very slow. Even with a sample of size 20 per group we do not seem to
attain the nominal level of 0.95. Among the five parameters, the slope
parameter d is often estimated conservatively, the coverage probability
usually exceeding the nominal level of 0.95. On the other hand the rest
of the parameters are often estimated liberally. The worst affected param-
eters are the maximum of the Hill model, i.e. b, the ED50, i.e. c, and ED10.

3. CONCLUSIONS

Statistical analysis of nonlinear regression models are routinely per-
formed in applied sciences using the standard asymptotic methods
which are based on linearization of the nonlinear model around the
unknown parameter. Often data analysts and researchers do not pay

TABLE 1 Comparison of the coverage probabilities of CMLE and CZ .

Coverage probability

Curvature
(b, c, d) (γN

max, γ
P
max) Method b c d ED01 ED10

c * = 0.27 m = 3

(25,125,1) (.14,55.09) CMLE .75(17.73) .71(142.11) .98(.68) .97(1.63) .85(8.10)
CZ .80(22.97) .75(184.94) 1.00(.86) .99(2.09) .92(10.95)

(25,125,1.5) (.17,33.20) CMLE .66(18.77) .87(352.35) 1.00(2.51) .98(15.03) .89(47.88)
CZ .75(25.00) .92(470.19) 1.00(3.36) .98(20.44) .94(63.51)

(10,10,1) (.35,3.95) CMLE .92(2.22) .90(6.28) .96(.60) .86(.24) .93(1.02)
CZ .95(2.93) .94(8.14) .99(.79) .90(.32) .98(1.34)

(100,50,1) (.01,1.14) CMLE .92(8.33) .91(10.00) .93(.08) .94(.11) .93(.45)
CZ .97(10.94) .97(13.18) .97(.11) .97(.13) .98(.59)

(100,50,1.5) (.02,.42) CMLE .92(5.98) .92(5.47) .94(.13) .94(.40) .92(.64)
CZ .98(7.89) .97(7.27) .98(.17) .98(.52) .98(.85)

c * = 0.3 m = 10

(25,125,1) (.08,63.24) CMLE .85(16.76) .82(158.04) .99(.36) .98(.76) .85(8.94)
CZ .86(17.96) .83(169.20) .99(.38) .98(.81) .86(9.63)

(100,50,1) (.006,.65) CMLE .94(4.71) .94(5.69) .95(.05) .95(.06) .95(.25)
CZ .96(5.07) .96(6.12) .96(.05) .97(.06) .97(.27)

c * = 0.30 m = 20

(25,125,1) (.06,48.63) CMLE .89(12.48) .86(120.65) .98(.25) .99(.47) .87(6.89)
CZ .89(12.91) .87(124.81) .99(.26) .99(.49) .88(7.14)

(100,50,1) (.004,.46) CMLE .95(3.35) .94(4.04) .94(.03) .95(.04) .96(.18)
CZ .96(3.47) .95(4.19) .96(.03) .96(.04) .96(.18)

Median widths of the confidence intervals are provided within parentheses. Nominal level = 0.95.
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attention to the some of the subtle assumptions underlying such analy-
sis. As evidenced in the simulation studies reported in this paper and in
Simnoff and Tsai (1986), this may result in underestimation of the stan-
dard errors and extremely high false positive rates and liberal or narrow
confidence intervals. Consequently, one cannot trust the results
obtained from such analyses.

The purpose of this article is to caution researchers and data analysts
against the potential problems with nonlinear models. Although at the
moment there is no satisfactory methodology for estimating standard
errors of MLE, the methodology proposed in Zhang (1997) and in Zhang
et al. (2000a) is perhaps an improvement over the existing procedure. 

The problem is further complicated if there is heteroscedasticity in
the data (i.e. variance of Y is not constant over all observations). In such
situations EPA’s BMD software (USEPA, 2001) uses the method of maxi-
mum likelihood estimation by modeling the variance of Y as a power
function of the mean of Y. Although this is a common practice, it can
potentially introduce bias due to model mis-specification. As an alterna-
tive to this procedure, Zhang (1997) and Zhang et al. (2000a) intro-
duced the sandwich estimator (10) for the covariance matrix of MLE,
which is asymptotically consistent. This estimator is based on a proce-
dure developed in Peddada and Smith (1997) for the covariance matrix
of the MLE in a linear model with heteroscedastic errors. Some opti-
mality and asymptotic properties of this procedure are discussed in
Peddada (1993) and Peddada and Smith (1997). Thus as an alternative
to the procedure used in EPA’s BMD software [15] one may derive the
standard errors of MLE using (10) and obtain the corresponding asymp-
totic confidence intervals.

Given the extensive usage of nonlinear models in practice we believe
there is a need for further methodological work in this field. Perhaps one
may want to explore Bayesian methods that do not rely on linearization
of the nonlinear model.
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APPENDIX

In a nonlinear regression model Y = f(X,θ) + ε, where θ is a p×1 vec-
tor of unknown parameters, Y is an n×1 response vector, X is the matrix
of explanatory variables and ε is a normal random vector with mean 0
and covariance matrix σ2I. Suppose θ̂ is the MLE of θ and θ̂(i) is the MLE
of θ when the i th observation is deleted from the calculation of MLE.

Let V̂ denote the standard asymptotic covariance matrix of θ̂, V̂′i
denote the i th row vector of V̂ and let V̂.. be an n×p×p second derivative
array where vist = ∂2f(X i ,θ)/∂θs∂θt evaluated at θ̂. For a m×n matrix A and
an n×p×p array B = {(brs)}, we define [A][B] = {(Abr s)}.
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The standard MLE based asymptotic (1 – α) × 100% confidence
region for the parameter θ̂ is given by (see Seber and Wild, 1989)

( β̂ – β)′(V̂′ V̂)(β̂ – β)
≤ Fα,p,n–p , (3)

p σ̂2

where σ̂2 is proportional to the maximum likelihood estimator of σ2,
Fα,p,n–p is the (1 – α)th percentile of central F distribution with (p, n – p)
degrees of freedom. The corresponding confidence intervals for individ-
ual components θi are obtained by

θ̂i ± tα/2,n–pσ̂ V̂ii , (4)

where tα/2,n–p is the (1 – α/2)th percentile of central t distribution based
on n – p degrees of freedom and V̂ii is the i th diagonal element of V̂.

A variety of jackknife procedures have been considered in the litera-
ture (Fox et al., 1980, Simnoff and Tsai, 1986). In particular, Simonoff
and Tsai (1986) considered eight different jackknife procedures to con-
struct confidence intervals. Their RLQM procedure, which uses the Box
and Coutie (1956) modification of the covariance matrix of MLE for deal-
ing with curvature effects, is based on the following pseudo-values:

P1i = θ̂ + n( V̂ ′ V̂)–1
V̂i ε̂i , (5)

(1 – ĥ i i)

where ĥii = V̂i ′(V̂′ V̂)–1 V̂i .

P2i = θ̂ +
nTi

–1 V̂i ε̂i . (6)
1 – ĥ *

i i

Here Ti = V̂′V̂ – [ε̂′(i)][V̂(i)..], and ĥ*
ii = V̂i′ Ti

–1V̂i. For each j = 1,2, the jack-
knife point estimator θ̂Jj is given by

n

θ̂Jj = 1n ΣPji (7)
i =1

and a jackknife point estimator of the covariance matrix is given by

n

VJj =
1 Σ(Pji – θ̂Jj)(Pji – θ̂Jj)′. (8)

n(n – p) i=1
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As an alternative to the above methodology, Zhang (1997) and Zhang
et al. (2000a) proposed a class of sandwich estimators that are based on
the estimators introduced in Peddada (1993), Peddada and Patwardhan
(1992), and in Peddada and Smith (1997) for linear models.

For homoscedastic errors, i.e. Var(Yi) = σ2, Zhang (1997) and Zhang
et al. (2000a, 2000b) considered the following sandwich estimator for esti-
mating the covariance matrix of θ̂

n

V̂Z 1
=

nσ̂2

(V̂′V̂)–1Σ 1
V̂iV̂i′(V̂′V̂)–1, (9)n – p i =1 1 – ĥii

n
where σ̂2 =

1
Σε̂ i

2 .
n – p

i =1

Remark 4.1. Suppose Yi = (Yi 1,Yi2, . . . , Yini
)′ with

Yij = f(Xij ,θ) + εij , j = 1,2, . . . , ni , i = 1,2, . . . , k,

where εij are i.i.d. with E(εij) = 0 and Var (εij ) = σ i
2. Then Zhang et al.

(2000a) proposed the following class of variance estimators:

k

V̂Z 2
= (V̂′V̂)–1Σ ε̂i′ε̂i V̂i′ V̂i(V̂′V̂)–1, (10)

i =1 ni – δii

where δii is some function of TrV̂i′( V̂′ V̂)–1 V̂i such that δii → 0 as Σ
k

i
ni. →

∞, V̂i is a ni × p matrix of partial derivatives of f(Xij ,θ) with respect to θ,
and ε̂i = (ε̂i 1, ε̂i 2, . . . , ε̂in i

)′ with ε̂i = Yij – f(Xij , θ̂).
Zhang et al. (2000a) deduced the asymptotic properties of the above

estimators along the lines of Shao (1990, 1992).
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