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ABSTRACT

In this thesis, analysis of observed chaotic data has been investigated. The

purpose of analyzing time series is to make a classification between the signals

observed from dynamical systems. The classifiers are the invariants related to the

dynamics.  The correlation dimension has been used as classifier which has been

obtained after phase space reconstruction. Therefore, necessary methods to find the

phase space parameters which are time delay and the embedding dimension have been

offered. Since observed time series practically are contaminated by noise, the invariants

of dynamical system can not be reached without noise reduction. The noise reduction

has been performed by the new proposed singular value decomposition based rank

estimation method.

Another classification has been realized by analyzing time-frequency

characteristics of the signals. The time-frequency distribution has been investigated by

wavelet transform since it supplies flexible time-frequency window. Classification in

wavelet domain has been performed by wavelet entropy which is expressed by the sum

of relative wavelet energies specified in certain frequency bands. Another wavelet based

classification has been done by using the wavelet ridges where the energy is relatively

maximum in time-frequency domain.

These new proposed analysis methods have been applied to electrical signals

taken from healthy human brains and the results have been compared with other studies.
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ÖZ

Bu tezde, gözlenmiş kaotik işaretlerin analizi incelenmiştir. Zaman serilerinin

analizinin amacı dinamik sistemlerden gözlenen işaretler arasında sınıflandırma

yapmaktır. Bu sınıflandırıcılar dinamik sistemlere ilişkin değişmezlerdir. Faz uzayı

yapılandırmasıyla elde edilen korrelasyon boyutu sınıflandırıcı olarak kullanılmıştır. Bu

nedenle faz uzayı yapılandırmasının parametreleri olan, zaman gecikmesi ve gömme

boyutunun, bulunmasına ilişkin yöntemler sunulmuştur. Pratikte gözlenmiş olan

işaretlere gürültü bulaştığından dinamik sistemin değişmezleri, gürültü filtrelenmeden

bulunamaz. Gürültü filtreleme, yeni önerilen tekil değer ayrıştırması tabanlı rank

kestirim yöntemiyle sağlanmıştır.

Bir diğer sınıflandırma, işaretlerin zaman-frekans analizi ile gerçekleştirilmiştir.

Zaman-frekans dağılımının bulunmasında, dalgacık dönüşümü değişken zaman-frekans

pencereleri sunduğu için tercih edilmiştir. Dalgacık ekseninde sınıflandırma, işaretin

belli frekans aralıkları içindeki göreceli dalgacık enerjilerinin toplamı cinsinden ifade

edilen dalgacık entropisi ile sağlanmıştır. Diğer bir dalgacık tabanlı sınıflandırma,

zaman-frekans ekseninde, enerjinin göreceli olarak maksimum olduğu dalgacık tepeleri

kullanılarak yapılmıştır.

Bu önerilen yeni sınıflandırma yöntemleri sağlıklı insanların beyinlerinden

alınan elektriksel işaretlere uygulanmış ve sonuçlar varolan diğer çalışmalarla

karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

The nonlinear signal processing and analysis of observed data have become an

important scientific area. In the introduction of the thesis, the fundamental definitions

and concepts about observed chaos described in [1] and the nonlinear time series

methods have been given.

A measurable variable of a system, observed continuously in time, may be

regarded as an information signal. Sampling this signal, either on a time or event basis

and recording the measured values sequentially produces a discrete signal, or time

series. For instance, atmospheric pressure may vary continuously throughout the day,

but recording the pressure hourly would yield time series.

The process of analyzing time series using mathematical and numerical data

transformations or even appropriate graphical displays constitutes a scientific method

known as time-series analysis. Conventional signal-processing techniques include

Fourier transforms, autocorrelation functions and autoregressive data modelling, but

these methods generally rely on linear relations and often have been found insufficient

in describing the nonlinear structure in chaotic time series [2].

Chaotic time-series analysis, or nonlinear time-series analysis, refers to a class

of data-analysis techniques employed to provide a richer description of chaotic time

series obtained from nonlinear dynamical systems [2]. Chaos is an aperiodic long time

behaviour in a deterministic system that exhibits sensitive dependence on initial

conditions [2] where aperiodic long time behaviour means that there exist trajectories

which do not settle down to fixed points or periodic orbits as time tends to infinity. The

deterministic system is the system that has no random or noisy inputs or parameters.

Therefore irregular behaviour arises from the system’s nonlinearity [3].

 Chaos is observed in various types of areas such as; meteorology, aerodynamics

and turbulence modelling, chemical reactions (Belousov-Zhabotinskii reaction),

nonlinear electronic circuits (Van Der Pol Oscillator, Chua’s Circuit), ecology, biology

and population evolution, observed time series like electrocardiogram (ECG),

electroencephalogram (EEG), and financial data [4].
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Aim of this thesis is to apply the nonlinear signal processing methods to see

whether classification can be done using the time series. It is expected to obtain this

classification by the invariants of dynamical systems. Most of the natural signals exhibit

a chaotic behaviour; therefore it is possible to find some numerical invariant values

which distinguish the signals having different characteristics. These invariants are

fractal dimensions, Lyapunov exponents and entropy values.

In the introduction, the difference between linear and nonlinear signal

processing, phase space reconstruction and time series analysis methods have been

explained. The results indicate the different characteristics between deterministic and

stochastic time series.

Before starting the analysis of observed signal, comparison between linear and

nonlinear signal processing techniques has been given in Table 1.1 [1].

Table1.1 Comparison of Linear and Nonlinear signal Processing.

Linear Signal Processing Nonlinear Signal Processing

Obtaining Clean Signal

Broadband Noise is separated from

narrowband signal. To use matched filter in

frequency domain is sufficient for separation.

Obtaining Clean Signal

Broadband noise is separated from broadband

deterministic signal by using blind source

separation techniques.

Finding The space

Fourier transform is used to turn differential

equations into algebraic forms.

s(n) is observed;

s(f)=∑s(n)exp[j2πnf] is used.

Finding the Space

Time lagged variables form phase space in dE

dimensions. (dE  is the embedding dimension,

T is the mutual information)

y(n)=[s(n),s(n+T),s(n+2T)....,s(n+( dE -1)T)]

Classification

Sharp spectral peaks, that is, resonance

frequencies of the system are the

classification parameters.

Classification

Classification parameters are invariants of

orbits. These are Lyapunov exponents, fractal

dimensions and entropy values.

In Table 1.1 the critical point is that the invariant quantities, which are classification

parameters, are independent of initial conditions for both linear and nonlinear signal

processing.
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Since chaotic signal and noise are both broadband, the difference can not be

expressed by Fourier spectrum because of a chaotic signal seems similar to noise in the

frequency spectrum. As an example, the Fourier spectrum of Lorenz signal has been

illustrated in logarithmic scale where the Lorenz system is described by the following

equations,

                                                          

bzxyz

yrxxzy

x)σ(yx

−=
−+−=

−=

&

&

&

                                               (1.1)

where σ =16, b = 4 and r = 45.92 [1].

Figure 1.1 Power spectrum of Lorenz signal x(t).

The Fig 1.1 clearly states that to derive an invariant feature from power spectrum for

chaotic signals is not possible. Therefore, it will be useful to give the basics of

constructing phase portrait for characterizing observed chaotic signals.
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1.1 Observed Chaos

Chaos is observed as a feature of x(t) arising from nonlinear time evolution rules

which are described in the form of differential equations

                                                             ))((
)(

t
dt

td
xF

x
=                                                (1.2)

with three or more degrees of freedom where x(t)=[x1(t), x2(t), x3(t), ...., xd(t)] or with

discrete time maps

                                                         ))(()1( nn xFx =+    n∈ Z.                                   (1.3)

The Degree of freedom in the systems which are characterized by ordinary

differential equations is expressed by the number of required first order autonomous

ordinary differential equations. In dimension two, only the fixed points or limit cycles

are possible and chaos can be observed for three or higher dimensions for continuous

time dynamical systems described by Eq. 1.2.

 The transition from scalar observations to multivariate phase space is explained

by embedding theorem which states that if the scalar observations of a vector function

x(n) which is composed by  F(x(n))=x(n+1), is known, the geometric structures of

multivariate dynamics can be unfolded from these observations and expressed by new

vector y(n) in dE-dimensional Euclidian space where y(n) is in the form as,

                                       y(n)=[s(n), s(n+T),s(n+2T),...,s(n+(dE-1)T)]                         (1.4)

where T is the common time lag and s(n) is the scalar measurement which is one of the

components of vector function x(n). As clearly seen in Eq 1.4, the reconstruction of

phase space depends on answers of two questions: What time lag and what dimension

should be use for reconstruction?  If the dimension dE is not selected necessarily large,

there will be intersections of the orbit because of overlapping projections from higher

dimensional space to lower dimensional space.  According to the embedding theorem

[5], if the selected dimension d satisfies the condition dE>2dA where dA is the attractor

dimension of the orbit, then d is sufficient to undo all overlaps of the orbit [1]. In some
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cases, d can be chosen less than the sufficient dimension dE which is necessary

dimension. Parameter d can be determined by several algorithms. As an example for

Lorenz system, fractal dimension dA is 2.06, therefore the sufficient dimension is at

least 5 but there is no intersection in the orbit for dimension 3 and this necessary

dimension is enough to unfold the attractor. The algorithms to determine the embedding

dimension and time delay have been given in chapter 2.

1.2  Linear Time Series Analysis Methods

With experimental data, the fundamental dynamical variables are not known

even the number of them. Another important issue is to decide how frequently to sample

the data. Undersampling will miss important dynamics and will cause aliasing in which

spurious low frequency components are introduced. Therefore, short record is not

preferred. Sampling too frequently taxes the memory limits and slows the calculation

for many of the tests. Besides experimental time series will be contaminated by

measuring and rounding errors when represent an analogue signal digitally [6].

Most conventional time series analysis methods assume that data come from

linear dynamical system with various degrees of freedom and some added noise. The

time domain signal is considered as a superposition of sine waves or exponentials which

grow or decay [6]. The following methods can be used to characterize the time domain

signals.

1.2.1 Stationarity

The scalar time series x(n) ∈ R, exhibit nonstationary behaviour when the mean,

                                                               ∑
=

=
N

1n

x(n)
N

1
µ                                               (1.5)

and the standard deviation (root mean square deviation),

                                                   ∑
=

−
−

=
N

1n

2µ)(x(n)
1N

1σ                                        (1.6)
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change with time. The quantity in the square root in Eq.1.6 is called variance, and hence

the standard deviation measures the “width” of the distribution.  If these quantities are

tested for different segments of time series, for example, for first and second halves of

the time series, the threshold for comparing the difference will be standard errors, which

are expressed as Nσ/ . If the difference of means between two segments is larger than

the standard error, it is nonstationarity [6]. Since the standard deviation involves the

second order moment of the distribution because of the square in Eq.1.6, it is sensitive

to points far from the mean and in some cases it may not converge as the number points

increase. Average deviation is more robust which is in the form,

                                            Average deviation ∑
=

−=
N

n

nx
N 1

|)(|
1 µ          .                    (1.7)

 Another parameter is skewness which is the third order cumulant of the sequence and

the measure of the symmetry of the data about the mean. An estimate of it is given as,

                                                ∑
=

⎥⎦
⎤

⎢⎣
⎡ −

=
N

n

nx

N
skewness

1

3
)(1

σ
µ

                                     (1.8)

and an estimate of the fourth order cumulant, kurtosis, is

                                                ∑
=

−⎥⎦
⎤

⎢⎣
⎡ −

=
N

n

nx

N
kurtosis

1

4

3
)(1

σ
µ

   .                             (1.9)

Kurtosis measures the peakedness of the distribution relative to a normal (Gaussian)

distribution. A distribution with positive kurtosis is called leptokurtic or fat tailed, and a

distribution with negative kurtosis is called platykurtic [6].
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1.2.2. Probability Density

Another analysis methods is to plot the probability density function of a time

series x(t). A sample estimate of the probability density function P(X) which is called as

the histogram of the data, can be obtained by partitioning the interval from minimum to

the maximum of x(t)  into some specified numbers which may be N  where N is the

data number in the time series [6]. For time series to be strictly stationary, P(X) must

remain constant in time for all x(t) within the statistical uncertainties. Figure 1.2

illustrates the histogram of a realization of Gaussian noise and Lorenz system,

respectively.

Figure 1.2 Histograms of single realizations of Gaussian noise and Lorenz signals.

1.2.3 Detrending The Data

To reduce the nonstationary of the time series, the data is detrended [6]. If the

nonstationarity is in the mean, some smooth function which is a simple least-squares fit

such as f(n)=A+Bn is subtracted from the data. The first and second half of the data

after detrending will have zero mean.  The values A and B can be found as,

                                                                      B
N

A
2

1+
−= µ     ,                                         (1.10)
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                                              ))(()12(
)1(

6

1
2

µ−−−
−

= ∑
=

nxNn
NN

B
N

n

       .                    (1.11)

Another common method, where all the values of time series are positive, is to compute

new time series y(n) by taking the log first differences,

                          
)(

)()1(

)(

)1(
ln))(ln())1(ln()(

nx

nxnx

nx

nx
nxnxny

−+
≅

+
=−+=   .            (1.12)

1.2.4. Autocorrelation Coefficient

The correlation coefficient measures how strong a data point is correlated with

another point which is k time steps away. The formula is in the form,

                                          

∑
∑

−

=

−

=

−

−+−
≅

kN

n

kN

n

nx

knxnx
kG

1

2

1

))((

))()()((
)(

µ

µµ
      .                            (1.13)

It is the ratio of the autocovariance to the variance of the data. Generally, it falls from

the value of 1 at k=0 to zero at large k. The value of k which drops the correlation

function to 1/e ≈ %37 is accepted as correlation time τc [6]. When x(n) is nearly

periodic, the correlation function will be fast decaying where τc will be the time for

envelope to decay to 1/e. The correlation function is symmetric about k=0, and the

width is considered as 2τc. It is a measure of how much memory is hold by the system.

The reciprocal of the width which is 0.5/τc, is an estimate of average rate at which

predictability is lost. This is also an important quantity because its value is often similar

to the largest Lyapunov exponent. In Figure 1.3 below, the autocorrelation function of

Lorenz system and its envelope is illustrated. The system has been sampled at 128Hz

and the estimated correlation time has been measured as 0.3516sec. The estimated

largest Lyapunov exponent λ1 has been calculated as 1.42 whereas the exact value is

1.54.
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Figure 1.3 Autocorrelation coefficients of Lorenz signal and its envelope.

1.2.5 Hurst Exponent

Hurst exponent enables to set up the level of chaos and fractal dimension of time

series. It determines the rate of chaos. If the probability distribution of the system is not

normal, a nonparametric analysis is needed. Hurst exponent is such a method in the case

of time series. Fractal time series can be distinguished from random time series. If the

value of H = 0.5, the time series is normally distributed, if Hi < Hi+1, where I is the time

step, the time series is antipersistent or mean reverting time series [7]. When Hi > Hi+1,

then the time series is persistent or trend reinforcing time series. Hurst exponent can

measure how “jagged” a time series is. If the H value is lower, the time series is more

jagged. If the H value is higher, the trend is more apparent, and the time series is less

jagged. The fractal dimension is calculated as a value D = 2 – H and 0<H<1. Hurst

algorithm for obtaining this exponent from a time series with length N is as follows:
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=
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Figure 1.4 a)The trace of Lorenz signal b)The trace white noise c)Hurst exponents of

Lorenz signal  d)Hurst exponent of white noise.

In Figure 1.4, the Hurst exponent has been calculated as 0.53 for white noise and

0.80 for Lorenz signal. It corresponds to fractal dimensions as 1.47 and 1.20

respectively. The traces of Lorenz signal and noise which have been computed by Eq.

a

b

c

d



11

1.15, have been shown in Fig 1.4.a and b. The Hurst exponents have been shown in Fig.

1.4.c and d, respectively.

1.3  Outline of the Thesis

In the following chapter of the thesis, the procedure of obtaining invariants of

the dynamical systems and the time delay embedding has been given where these

invariants are fractal dimensions and Lyapunov exponents. The Lyapunov exponents

reflect the asymptotic behaviour of the system and evaluation in one dimension given in

[8]. To obtain the full spectrum of Lyapunov exponents has been given in [1,9,10,11-

15]. The largest Lyapunov exponent is more important since the system can be said

chaotic if it is positive. Another invariant given in chapter two is fractal dimension

which is more frequently used in classification of experimental time series. The fractal

dimension can be expressed in different forms as correlation dimension, box counting

dimension and Lyapunov dimension. The definitions of these dimensions are given in

[1,6,8-10,16]. Furthermore, different fractal dimension definitions have been described

in [17] by such as Higuchi, Petrosian and Katz algorithms where the fractal dimension

takes values between one and two and express the complexity of the signal between

these bounds. In order to choose properly the invariants of the system, time delay

embedding [5] has to be applied and the necessary parameters, which are time delay and

embedding dimension, have to be determined. Methods for determining time delay and

the comparisons with different techniques have been given in [1,10,18]. Embedding

dimension is a significant parameter since it gives the dimensionality of the given

system where an appropriate selection of embedding dimension provides to be

determined the number of Lyapunov exponents, correlation dimension and complexity

measure. There are several methods to compute the embedding dimension which are

given in [1,10] and in [19], some improvements have been added for more adequate

selection of embedding dimension.

In practice the experimental time series are corrupted by noise and this causes

false estimation of embedding dimension or invariants of dynamical systems. Therefore,

before starting to process an observed signal, noise reduction should be performed.

Since there is no foreknowledge about the dynamics of the system, blind source

separation techniques are applied to reduce the noise where these methods are principal

component analysis and singular value decomposition defined in [20,21]. The important
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part of these methods is to make a subspace estimation of full rank noisy data matrix

where some techniques for subspace estimation have been given in [22-26]. The

proposed subspace estimation method is given in chapter three together with the

definition and application of blind source separation methods. In [27], ARMA

(Autoregressive Moving Average) have been used as a different method.

In the thesis, observed signals have been taken from different locations of brain

while eyes were closed and opened condition. In order to comment on the state changes

at the specified regions after physical switching, the structure and physiology of human

brain have been informed in [28], so that the accuracy of results can be discussed. In

chapter four, in addition to brief information about structure of human brain, electrical

activity (EEG) of brain has been given in [29-31] and moreover information about

standard 10-20 EEG measurement system has been given in [32,33].

In chapter five, wavelet analysis of nonstationary signals is given. Short time

Fourier transform (STFT) is the first approach to time frequency localization but due to

constant resolution, the wavelet transform has been needed where the necessity for

wavelet transform is explained in [34]. Different time-frequency energy distributions

have been explained in [35,36]. Information about wavelet decomposition has been

given in chapter five. In this chapter there are three basic applications which have been

applied to brain signals where the first one is to discriminate the brain signals into

frequency bands using wavelet decomposition so that the correlation dimension of alpha

band filtered signal would be computed. The wavelet decomposition has been used in

[37,38,39,40] to separate brain signals into natural frequency bands. The second

application is to find wavelet entropy which is obtained from relative wavelet energies

which has been used as classification parameter. The third application is to detect the

wavelet ridges where the wavelet ridges are obtained from wavelet transforms evaluated

at ridge points. Evaluation of wavelet ridges with different methods has been explained

in [41-43,44]. In the application the ridge distribution of EEG signals for eyes opened

and closed conditions have been shown.

In chapter six, correlation dimensions have been used as classification

parameters. The application results for spontaneous EEG signals have been given and

these results have been compared with other studies given in [45-47]. When state

transitions occur in the brain without an input, it is expected to see variations at the

invariants of the system. These state changes may occur due to pathological conditions,

transitions to different states in sleep. In [47], Freeman has modelled the olfactory



13

system and correlation dimension of olfactory system for different states such as

inhalation and exhalation have been computed. In the application of thesis, correlation

dimensions have been computed for eyes opened and eyes closed conditions. This

classification parameter gives idea about when and how complexity changes in the brain

occur. The computed correlation dimension indicates the signal’s degree of chaoticness.

Furthermore, measurements of macro-activity of the brain have been expressed as the

most adequate method which illustrates the dynamic properties of the integrative brain

function where the integrative brain function, defined in [48], states that measurements

from brain reflects the total response of neuron populations. According to the

superbinding principle given in [48], EEG contains the superposition of the natural

frequency bands of the brain where these natural frequency bands are delta, theta, alpha,

beta and gamma.
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CHAPTER 2

 THE INVARIANTS OF DYNAMICAL SYSTEMS AND TIME

DELAY EMBEDDING

2.1 Invariants of Dynamical System

In order to identify the systems, the invariant quantities which are not sensitive

to initial conditions or small perturbations of an orbit, while individual orbits of the

system are exponentially sensitive to such perturbations, are to explored. The invariants

of the linear system are the resonant frequencies. For non-linear dynamical systems the

invariants such as Lyapunov exponents, fractal dimensions (box counting, Lyapunov,

correlation) and entropy values can also be used for classification of an orbit. These

classifiers are. The Fractal dimensions are characteristics of the geometry of the

attractor and Lyapunov exponents show how orbits on the attractor move apart under

the evolution of the dynamics.

2.1.1 Lyapunov Exponent in One Dimension

Consider the two initial points 0x  and ε0 +x  mapped by the function f: I→ I,

where   I ⊂ R. For n iterations of this map the Lyapunov exponent λ(x0) satisfies the

equation

)x(f)εx(fe ε 0
n

0
n)x( n 0 −+=λ

.                                  (2.1)

If ε is divided and taken the limit as ε→0,

0

)(
e 

)( n 0

x
dx

xdf n
x =λ

                                       (2.2)

when n → ∞, the definition of Lyapunov exponent is as [8],
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   .                                 (2.3)

From Eq. 2.3, it is clear that λ(x0) is the average exponential stretching of initially

nearby points
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where prime denotes the derivative and finally, Eq. 2.3 can be written in the form [8]
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Example 2.1: The tent map given by the formula;

  

1x
2

1
 if        x1

2

1
x0 if            ,x

µ 2)x(µ

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤<−

≤<
=∆

For µ=1, |∆′(x)| = 2 for all x ∈ [0,1] and thus λ(x)=ln2. This is consistent with the result

of the formula,

λnn
0

n
0

n e ε2 εx)x(f)εx(f ==∆=−+ . Here it is clear that λ=ln2. For arbitrary µ, it is

found  as λ=ln2µ.

2.1.2 Fractal Dimension

Fractal dimension is the most widely studied invariant quantity for dynamical

systems. Periodic systems have an integer dimension, whereas fractional dimension is

the indicator of chaos [45].
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There is no unique definition but the basic idea behind the fractal dimension is

the number of pair-wise correlation in a ball with radius r about points on attracting set

scales as r raised to some power [8]. The dimension derived from a general formula of

correlation function which is given in Eq. 2.7,

)1(

1 1

|))(y)(y|(
11

),(

−

= =
∑ ∑ ⎥

⎦

⎤
⎢
⎣

⎡
−−Θ=

q
N

k

N

n

knr
NN

rqC                     (2.7)

where N is the number of data and the expression in bracket is the ratio of the number

of data which are inside the ball with radius r and center y(k) and  Θ is the Heaviside

function

                                                                
⎩
⎨
⎧

≤
>

=Θ
0  x0

0  x1
)x(                                           (2.8)

By using Eq. 2.7, the dimension Dq can be defined by a limit,

            
)rlog()1q(

)r,q(Clog
limD

0r
q −
=

→
                                      (2.9)

The dimension is accepted as invariant measure for a small neighborhood range because

if the r is too small the radius will be insufficient to cover the point on the trajectory and

if r is very large, a few d dimensional spheres will suffice to cover the whole trajectory.

Therefore the range of r should be properly chosen such that the dimension Dq is almost

constant which the estimated correlation is dimension shown in Fig 2.1.b.

2.1.2.1 Correlation Dimension

For q=2, the correlation function C(2,r) is found and given in the form [9]:

                                           ||))j()i(||(
)1(

2
),2(

1 1
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NN
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The correlation dimension is more efficient at quantifying the fractal nature of an

attractor because it emphasizes regions of state space that contain the most data. For an

attractor with uniform measure, it is expected that D0=D2, otherwise D0<D2  [6]. In Fig.

2.1.a and Fig. 2.1.b the correlation functions and the local slopes of correlation function

which is correlation dimension, for Lorenz system have been illustrated respectively.

2.1.2.2 Box Counting Dimension

D0 is called capacity or box counting dimension which is defined as the

minimum number of spheres with radius r needed to cover all the points in the data set.

Then the expression for D0 can be defined as

    
)r/1log(

)r(Nlog
limD

0r
0

→
=                                                   (2.11)

where N(r) is the correlation function for q=0, which yields the relation between N(r)

and D0 as N(r) 0D
r
−≈ [1].

2.1.2.3 Lyapunov Dimension

The Lyapunov exponents which have been explained in section 2.3 are used as

invariants of the dynamical system. The Lyapunov dimension is defined as

||
KD

1K

L

+

=∑
+=

λ
λK

1α α
                                                    (2.12)

where K is the number of nonnegative Lyapunov exponent i.e, ∑ =

K

1α αλ ≥0 and

∑ +

=

1K

1α αλ <0 [1]. The advantage of finding Lyapunov dimension DL is that it is

computationally much easier to obtain compared to the correlation dimension and box

counting dimension only if the Lyapunov exponents are already known. Secondly, the

Lyapunov dimension does not account for seldom visited regions as well as other

definitions of fractal dimension [8]. But for the experimental time series, in order to find



18

Lyapunov dimension, all of the exponents should be calculated and it is no more

practical than other methods.

-1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-7

-6

-5

-4

-3

-2

-1

0

1
Correlation Function

Log10(r)

L
o
g
1
0
(C

(r
))

m=1
m=2

Figure 2.1.a Correlation function for Lorenz system  m=1,...10

10
-1

10
0

10
1

10
2

0

1

2

3

4

5

6

7

8

9

10
Local Slopes of Correlation Function

Neighborhod

E
s
ti
m

a
te

d
 D

im
e
n
s
io

n

m=1
m=2 m=3

m=10

m=9

Figure 2.1.b The Correlation Dimension D2



19

2.2 Time Delay Embedding Parameters

The necessity of reconstructing phase space has been explained in chapter 1.

Two methods are given in [6] and [9] for determining embedding dimension which are

time delay coordinates and derivative coordinates respectively. Derivative coordinates

contain higher order derivatives of the observed time series. But since the calculations

including derivative are sensitive to noise, it is not very useful for experimental data

[16]. Therefore in this thesis time-delay coordinates has been used for embedding. The

goal of this reconstruction is to transform the scalar measurements into a suitable vector

form to find the invariants of the dynamical system. In order to obtain the phase space

model, two parameters which are time lag T and embedding dimension dE have to be

determined.

2.2.1 Determining the Time Delay

The first part of the time delay embedding is to select the optimal time intervals

T between subsequent samples. Because, if T is chosen too small the samples s(n) and

s(n+T) which compose the reconstructed data vector y(n) ∈ R
d
, will not be sufficiently

independent of each other. In other words, insufficient time will have evolved for the

system to have explored of its phase space. If T is chosen very large, the measurements

s(n) and s(n+T) will behave as if random numbers were taken from stochastic time

series.. Due to these reasons appropriate methods have to be chosen for the optimum

time delay T. Although in [18], finding average mutual information is defined as

cumbersome, it is reliable and fairly preferable method and explained together with

linear autocorrelation function method below.

2.2.1.1 Linear Autocorrelation Function

The first approach might be to choose the time delay value from s(n) using linear

autocorrelation function,



20

                                      

[ ]

[ ]
2

1

1

)(
1

))()()((
1

)(

∑

∑

=

=

−

−−+
=

N

n

av

N

n

avav

sns
N

snssTns
N

TC                         (2.13)

where

                                                               ∑
=

=
N

n

av

1

)(
1

ns
N

s                                           (2.14)

then the time delay T can be chosen as the smallest time delay where C(T)=0  [10].  In

Fig 2.2, first passing through zero is observed at T=540 samples where the sampling

rate is 512Hz, i.e, T=1.05 sec, which is quite high for time delay embedding and as will

be seen in the sequel, to choose first minimum as the time delay of linear

autocorrelation function will completely misleading since linear choice of T is derived

from the nonlinear process between s(n) and s(n+T). Hence, average mutual information

is more preferable method.

Figure 2.2 Linear autocorrelation function of Lorenz system
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2.2.1.2 Average Mutual Information

Shannon’s idea of mutual information [49] between two measurements gives the

correlation among data points. The connection between two measurements s(n) and

s(n+T) express how much these two points are correlated with each other and the

criterion in this method is to find the mutual dependence between these two

measurements. This relation is expressed as average mutual information which is

                        ⎥
⎦

⎤
⎢
⎣

⎡
+
+

+= ∑
+ ))(())((

))(),((
log))(),(()(

)(),(

2
TnsPnsP

TnsnsP
TnsnsPTI

Tnsns

                  (2.15)

I(T)≥0. In Eq. 2.15, the expression P(s(n),s(n+T)) is the probability of the measurements

s(n) and s(n+T) in whole time series. When T becomes large, the chaotic behavior of the

signal (λmax>0) makes the measurements s(n) and s(n+T) to be independent practically

and I(T) tends to zero. The first minimum of the I(T) is accepted as the time delay T. In

Fig. 2.3, the average mutual information of Lorenz system has been plotted. The system

has been sampled at 256 Hz and contains 25600 data points. It is clearly seen that T

reaches the first minimum at T=28 samples (54msec).

Figure 2.3 Average mutual information for Lorenz system
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2.2.2 Determining Embedding Dimension

The dimension, which unfolds the attractor so that there is no remaining overlap

in the orbit, is called embedding dimension dE which is an integer. According to the

embedding theorem [5], if the dimension of the attractor is dA then the attractor will be

certainly unfolded at the dimension dE>2dA. This condition is not necessary for

unfolding but sufficient to ensure that there would be no intersections in the orbit. In the

sequel, the methods to determine the embedding dimension have been explained.

2.2.2.1 Eigenvalue Analysis

In this method, the measurement y(n) ∈ R
d
 given in Eq. 1.4, is used to obtain the

covariance matrix C ∈ R
d x d

. The covariance matrix is obtained as below:
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After eigendecomposition of C, dE eigenvalues of d is related with the

embedding dimension of the system. If the selected dimension d is higher than dE of the

system, then there is dE-1 nonzero eigenvalues and the redundant eigenvalues are zero.

But if there is contamination by noise then the threshold for dE may be selected in

heuristic sense, therefore subspace estimation methods are needed which are the

principal component analysis and singular value decomposition and have been

explained in chapter 3.  The result of this method applied to Lorenz system has been

shown in Fig. 2.4.a.

2.2.2.2 Saturation of Correlation Dimension.

Another method is based on finding correlation dimension until large enough

values of d. The principle idea of this method is to plot embedding dimension versus

correlation dimension D2. While increasing d, the correlation dimension D2 approaches
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to a constant value where this saturated value is a measure for estimating D2. The next

integer greater than the saturated D2 value can be accepted as dE. The disadvantage is

that, this method can only be applied to noise free data. Any noise contamination will

avoid the saturation of D2 or cause to be found a false D2 consequently false embedding

dimension dE. Application of the method for the Lorenz system has been illustrated in

Fig 2.4.b in which dE=3.

2.2.2.3 False Nearest Neighborhood Algorithm (FNN)

The third method for determining dE obtained by observing intersections of the orbit

which is due to projections of high dimensional system to lower dimension. These false

crossings cause false neighbors in the orbit. This algorithm plots the percentage of FNN

versus each dimension and indicates the necessary dimension to unfold the attractor.

The algorithm can be expressed in compact form as following:

i) Start with d=1. For the data point y(n) given in Eq. 1.4, find nearest neighbor

y
NN

(n)=[s
NN

(n), s
NN

(n+T), s
NN

(n+2T),...,s
NN

(n+(d-1)T)]. Repeat this step for

all data points,

ii) find Euclidian distance [ ]
2

1

2 )1(())1(()( ∑
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−+−−+=
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m

NN
d TmksTmkskR ,

iii) nearest neighbors are known but whether which of them are true or false

neighbor is not known.  To determine it increase d to d+1.

iv) calculate  [ ]
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vi) if this ratio is greater 15 or so y
NN

(n) is FNN, otherwise it is true nearest

neighbor [1].  The dimension is called embedding dimension which drops

the percentage of false neighbor to zero.

In [10] and [19], a second criterion is given for false neighbor determination.

According to this criterion the nearest neighbor may not be necessarily close. If the

nearest neighbor to the given point is false but not close, then the Euclidian distance

while passing through d+1 is nearly 2RA where RA is the mean size of the attractor

and expressed as,
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Therefore the criterion can be chosen as   2
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A

d
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The advantage of this technique is that it is relatively robust to noise and data

corruption. In Fig 2.4.c, the application of the method Lorenz system has been

given.

2.2.2.4 True Vector Fields Method

According to this geometrical approach, when a small dimension is used for

phase space reconstruction, vector field in any location will not be unique because

of the projection from higher dimension. Degree of freedom is determined by

)(n∆ and )(nNN∆  of being parallel where )()1()( nnn yy∆ −+=  and,

)()1()( nnn
NNNNNN

yy∆ −+= . The percentage variation of parallel vectors versus

for each dimension is a measure for degrees of freedom. The steps of algorithm are

as follows:

i) find 
||)(||

)(

n

n

∆
∆

 for the given point in phase space,

ii) find 
||)(||

)(

n

n
NN

NN

∆
∆

 ,

iii) if the angle between two vectors is too small they can be accepted as parallel.

iv) repeat step i, ii and iii for each point in phase space and derive a percentage.

Accept the dimension d as necessary dimension which drops this percentage to

zero.
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This method is similar to the false nearest neighborhood technique. Both of them

are geometric and both of them analyze intersections of the orbits. In Fig 2.4.d the

results of this algorithm for Lorenz system is plotted which indicates lower

performance.

Figure 2.4 The results of embedding dimension methods.

2.3 Lyapunov Exponents from observed time series

The number of Lyapunov exponents is related with the degrees of freedom or

equivalently dimensionality of the dynamical system. The most important Lyapunov

exponent is maximum Lyapunov exponent λmax, which indicates the chaos if λmax>0.

The Lyapunov exponents carry the units of the inverse time and give typical

time scale for the divergence or convergence of nearby trajectories. If the dynamics of a

system are expressed as ordinary differential equations, then it is called flow data and

while calculating the iterative map correspondence of Lyapunov exponents calculated

from flow data, the average time interval τav should be calculated from Poincare section
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of the phase space. The time between two sequential transitions of trajectory in phase

space through the Poincare section gives average time interval τav.  Then it can be

shown that, Lyapunov exponents computed for the iterative map are related to those of

the flow data by λmap=λflowτav [9].

Table 2.1 Characteristic of attractors for a four dimensional flow.

λ1 λ2 λ3 λ4 Attractor Dimension

_ _ _ _ Equilibrium Point 0

0 _ _ _ Limit cycle 1

0 0 _ _ 2-Torus 2

0 0 0 _ 3-Torus 3

+ 0 _ _ Strange (Chaotic) >2

+ + 0 _ Strange (Hyper chaotic) >3

When the further analysis of system invariants is required, full spectrum of

Lyapunov exponents has to be determined. For experimental time series first step is to

put scalar time series into vector form using time delay embedding. Then the stability of

an observed point y(n) of the dynamical system  y(k)→F(y(k)) = y(k+1) to small

perturbations ∆(k), is expressed by looking at the linearised dynamics and by Taylor

series expansion of F(y(k)+ ∆(k)) at y(k) the following is obtained

y(k+1) + ∆(k+1)=F(y(k) + ∆(k)) ≈ DF(y(k)) ⋅ ∆(k) + F(y(k)))           (2.20)

Hence it yields

∆(k+1) = DF(y(k)) ⋅ ∆(k),                               (2.21)

The Jacobian matrix DF is given as

   DF(y)ij=
j

iF

y

y

∂
∂ )(

                                           (2.22)

while moving from time k to k+L, it can be found that,
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       ∆(k+L)=DF(y(k+L-1)) · DF(y(k+L-2)) .... ·DF(y(k) ) · ∆(k) ≡DF
L
(y(k)) · ∆(k) (2.23)

                                               ∏
=

−+=
L

i

yDFy
1

L ))iLk(())k((DF                             (2.24)

where DF
L
(y(k)) is the composition of L Jacobians. If the eigenvalues of DF

L
(y(k))

behave as exp(Lλ) with λ>0, then the orbit y(k) along which the Jacobians are

evaluated, diverges to infinity [1]. When y(k) is a time dependent chaotic orbit then,

         ||∆(k+L)||
2
=∆T

(k) · [DF
L
(y(k))]

 T
 · DF

L
(y(k)) · ∆(k)                  (2.25)

in the equation 2.25, the key quantity is,

[DF
L
(y(k))]

 T
 · DF

L
(y(k))

and the Oseledec matrix is given in the form,

          OSL(x,L)=([DF
L
(y(k))]

 T
 · DF

L
(y(k)))

 1/2L
                   (2.26)

Then Multiplicative Ergodic Theorem states that the limit of OSL matrix exists, i.e.

∞<
∞→

),(lim Lx
L

OSL  and independent of almost all points in the basin of the attraction

of the attractor.

 The logarithm of the eigenvalues of this orthogonal matrix OSL are in non-

increasing order and are called Lyapunov exponents of the dynamical system x→F(x).

If one or more of the λa>0, then chaos is observed. The sum of the Lyapunov exponents

λ1+λ2+...+λd<0 by the dissipative nature of the systems [1].

The determination of these eigenvalues is given by QR decomposition method

when the solution is planned to reached iteratively.  In QR decomposition method of the

Oseledec matrix of the power 2L is considered as a product of factors which can be

represented as A(2L) · A(2L-1),...,A(1) where A(j) is the component matrix. The

component matrix can be written as product of an orthogonal matrix Q(j) where Q(0)=I

and upper right triangular matrix R(j). This can be thought as a polar decomposition of

complex number where the matrix Q is like the phase factor and the matrix R is the

magnitude of the complex number. The expression of a matrix in QR form is given as,

A( j ) ·Q(  j – 1 ) = Q( j ) · R( j )               (2.27)
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then if iteration starts with j=1,

                     A( 1 ) = Q( 1 ) · R( 1 ),

A( 2 ) ·Q( 1 ) = Q( 2 ) · R( 2 ),

          A( 2 )   = Q( 2 ) · R( 1 ) ·Q( 1 )
T,

       A( 2 ) ·A( 1 ) = Q( 2 ) · R( 2 ) ·R( 1 )

             A( 3 ) ·A( 2 ) ·A( 1 )=Q( 2 ) ·R( 3 ) ·R( 2 ) ·R( 1 )

and the general statement,

                          A(2L) ·A(2L-1),...A(1)=Q( 2L ) ·R( 2L ) ·R( 2L-1 )... ·R( 1 )        (2.28)

The Lyapunov exponents are obtained from the product of upper right triangular

matrices whose diagonal elements are the Lyapunov exponents in decreasing order

∑
=∞→

=
L

k

kR
2

1

))(log(
2L

1
  

i
L

i
limλ     .                                   (2.29)

The dimension for choosing time delay embedding gives the number of

Lyapunov exponents. A good choice for number of Lyapunov exponents is given in

[50] as making the d the next integer greater than or equal to the fractal dimension dA.

This choice will always give at least one negative exponent for a chaotic system [50].

The selected dimension may be higher but in that case there will be at least one spurious

Lyapunov exponent. When the order of used polynomial linear map is increased, the

spurious exponent is easily distinguishable from true exponents. A second method is to

add noise to the system. In that case there will be rapidly drop at spurious exponent but

this is not guaranteed that spurious exponent does not exist when there is no rapid drop

[50].
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CHAPTER 3

NOISE REDUCTION FROM OBSERVED TIME SERIES

Noise limits the ability of extracting the quantitative information from time

varying signals. As a characteristic feature, chaotic systems are quite sensitive to the

presence of small amount of noise. The simple numerical experiments show that when

the white noise is added at even %1 level of the time series, then it is impossible to

measure the correlation dimension of the attractor using neighbourhood radius less than

3% of the attractor size [24] defined in Eq. 2.18. Since the chaotic signals have

broadband power spectrum, it is difficult to distinguish the white noise from broadband

deterministic signals. The main problem is to filter the noise from observed time series

under the condition that one has no foreknowledge about the dynamics of the system.

This case of noise reduction is called blind source separation. The principal component

analysis and singular value decomposition are blind source separation techniques whose

basics rely on eigenvalue decomposition and the oriented energy distribution. In this

thesis, the method of singular value decomposition has been used to reduce the noise

contamination.

3.1 Oriented Energy and Oriented Signal to Signal Ratio Concepts

In a wide variety of systems and signal processing applications, vector

sequences are measured and computed [20]. For the analysis of data sequences, scalar

data are put into matrix form by using time delay method [5], which is called phase

space reconstruction.  In this section the purpose is addressed as finding the oriented

energy distribution of the matrix M ∈ R
mxn

 where m is the data length and n is the

number of measurement channels or embedding dimension. As an analyzing method,

singular value decomposition of matrices formed from observed data has been used to

improve the signal parameter estimation and system identification.  This method is

similar to principal component analysis in which the first few components will account

for most of the variation in the original data so that noisy dimension of the data can be

reduced. The oriented signal to signal ratio is related to subspace discrimination and that

can be used for linear modelling problems if the complexity of the model is the rank of
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a certain matrix. Hence, the decision for the complexity reduces to a lower rank of the

certain “noise free” matrix [20].

Definition 3.1: Energy of a vector sequence

Consider a sequence of m vectors {ak}, ak ∈ R
m

, k=1,…,n and associated with A

∈ Rmxn
. Its total energy E[A] is defined via the Frobenius norm of A:

                                                ∑ ∑==
= =

m

1i

n

1j

2

ij
a2

F
||||)E( AA            .                               (3.1)

Definition 3.2: Oriented energy

Let  A be a mxn matrix and denotes its n column vectors as ak, k=1,…,n

(n>>m), or the indexed vector set {ak} of m vectors ak ∈ R
m

 and for any unit vector q ∈

R
m

  the energy Eq, measured in the direction q, is defined as:

                                                    ∑ ⋅=
=

n

1k

2

k

t
q )aq()A(E             .                               (3.2)

The energy Eq measured in a subspace Q  ⊂ R
m

 , is defined as:

                                                   ∑=
=

n

k
kQ

Q
aPAE

1

2

2
||)(||)(          .                              (3.3)

where PQ(ak) denotes the orthogonal projection of ak into subspace Q and  || ⋅ ||2 denotes

the Euclidean norm.

In other words, the oriented energy of a vector sequence {ak}, measured in the

direction q or subspace Q is nothing else than the energy of the signal, orthogonally

projected on the vector q.
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3.2 Blind Source Separation Techniques

3.2.1 Principal Component Analysis (PCA)

The aim of principle component analysis is to reduce the dimensionality of the

observed data. Noise reduction by this method corresponds to obtain the subspace

related to noise free signal which is realized by finding the eigenvalues of scattering

matrix where it is the sum of covariance matrices of each data vector x ∈ R
d
.  The

eigenvector, which corresponds to highest eigenvalue, gives the direction where most of

the energy of the signal is distributed. The algorithm can be given as follow [21],

i)   find mean ∑
=

=
N

1n

n
N

1
xm  where N is data length,

ii)   compute Scatter matrix S∈R
dxd

 ∑
=

−−=
N

n

T
nn

1

))(( mxmxS ,

iii)  find eigenvalues and eigenvectors of matrix S,   Se=λe,

iv) obtain new time series by  yn = e1
T
 ⋅(xn-m) where n=1,…,N and e1 is the

eigenvector corresponding to the largest eigenvalue. Y corresponds to noise filtered

time series.

3.2.2 Singular Value Decomposition (SVD)

The SVD of real matrices is based on the Autonne-Eckart-Young theorem [20],

which states that, for any real A ∈ R
mxn

, there exists a real factorization:

                                                       tVSUA ⋅⋅=                                                        (3.4)

in which the matrices U∈R
mxm

 and V∈R
nxn

 are orthogonal matrices, and the matrix

Σ∈R
mxn

 is real pseudo diagonal with non-negative diagonal elements.

The diagonal entries σi of S are called the singular values and the set of singular values

are called singular spectrum of matrix A. The columns of U and V are called left and

right singular vectors of the matrix A, respectively. The space S
r
U=span{u1,…ur} is

called the r-th left principle subspace. The columns of U and the columns of V are



32

eigenvectors of AA
t
 and  A

t
A respectively [20]. The number of singular values, which

are different from zero, equals to the rank of the matrix A.

Frobenius norm of matrix A of rank r is defined as:

                                                          ∑=
=

r

k
kF σ

1

22|||| A                                                     (3.5)

where each σk is the singular values of A. In other words, the total energy in a vector

sequence with the associated matrix A is equal to the energy in the singular spectrum

[20].

3.3 SVD Based Subspace Estimation Method

The SVD based noise reduction explained in the thesis relies on three basic

steps:

i) the observed data y(n) are put into matrix form M as in Eq 3.6,

ii) the dominant singular values of M ( M= U Σ V
t 
) are estimated,

iii) exact values of dominant singular values are computed,

The scalar observations have been put into the matrix form by the method given

in [24]. When the time series of y(n) is partitioned by a rectangular nonoverlapping

window function w(n), the data matrix is obtained as:

                           

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−+++

−+++
−+++

=

))1((y .. .    )2(y   )(y   )(y

....                            ... .              ....          ....

))1(2(y  ...    )22 (y    )2(y   )2(y

))1(1(y   ...      )21(y    )1(y    )1(y

TkpTpTpp

TkTT

TkTT

M                    (3.6)

where p is the number of reconstruction vectors. The window )(nw  has length

pTkwT +−= )1( . [23].

There are some critical points that justify the success of the SVD  [22]:

i) the information on the underlying model is contained in certain subspaces of the data

matrix which can be determined from SVD.
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ii) the complexity of the model is given by the approximate rank of data matrix which

can be estimated from singular values.

iii) in most applications data are corrupted with additive noise, it is expected that the

SVD has a certain noise filtering effect.

3.3.1 Assumptions for Subspace Estimation

 Let M be a matrix defined in section 3.3, where M ∈ R
pxq

 and p>>q. The basic

assumption is that the observed data are generated by two unknown matrices; exact data

matrix E and additive perturbations N so that

M=E+N                                                       (3.7)

where the matrix N contains the noise, rank (N)=rank(M)=q. The matrix E, which

contains noise free data is rank deficient  ( i.e, rank(E)=r<q ).

Let Vm be an orthogonal matrix (i.e,  Vt
m Vm=Iq= VmVt

m ) where Vm ∈ R
pxq

 and it is

partitioned as

                                                           Vm= [Vm1   Vm2].

 (Vm1 ∈ R
pxr

, Vm2 ∈ R
px(q-r)

) such that R(E
t
)=R(Vm1) and the column space of Ve2

generate an orthogonal basis for the null space of E:

EVm2=0                                                      (3.8)

For the extraction of E from M it is assumed that the rank of E and its SVD are known

and the following assumptions must be satisfied to use SVD as the noise reduction

method  [22],

1) the exact data should be orthogonal to the noise in the sense that E
t
N=0,

2) the matrices Vm1 and Vm2 must be orthogonal to each other and the matrix N
t
N must

be a scalar multiple of identity (N
t
N=σ2

noiseIq),

3)  the smallest singular value of S1 where S1 is the submatrix of S including to noise

free singular values must be larger than the largest singular value of other

submatrix  S2 . The σr / σr+1 ratio act as a signal to signal ratio.
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3.3.2 Estimation of Clean Data Matrix from Noisy Data Matrix

If the three assumptions given in section 3.3.1 are satisfied, then the exact clean

data matrix E can be estimated from M according to the relation between singular

values of E and M.  There is a gap in the singular spectrum where the smallest value

related to signal is larger than the singular value σnoise which is equal to the q-r singular

values which illustrate the noise threshold for M. Because of the orthogonality, the

relation between exact and observed singular values has been defined in Eq. 3.10,

                                             
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
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⎟
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⎛
=
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S   0

0  
)   U(             ,                     (3.9)

                            
r

2

noise

2

m1e1
σ ISS −=    and    

rqnoise
σ

−
= IS

m2
                          (3.10)

where Se1 is the submatrix related with noise free signal and Sm2 is the submatrix with

related to the noise. If σr is the smallest singular value related to Se1, then the SNR is

defined as:

                                                   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

noise

r

σ

σ
SNR log 20               .                             (3.11)

3.3.3 Rank Estimation of Noise Free Matrix

In the thesis, the estimation of the rank of the subspace has been obtained by

using the proposed method given in [51] and the singular entropy definition given in

[52]. The deficient rank has been estimated by using the ratio of the singular entropy

increment values of noisy matrix M. Singular entropy is defined in [52] as,

                                                          nk     ,
1
∆EE

k

i
ik ≤∑=

=
                                       (3.12)
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where Ek is the singular entropy for degree of k and ∆Ei is the increment of singular

entropy at orders i,

                                                       [ ]ii pp logE −=∆ i                                               (3.13)

 where

                                                             

∑
=

=
n

j

j

i

1

µ

µ
ip                                                    (3.14)

where µi is the singular value of M for i=1,…,n.

3.3.4 Threshold Selection Criteria

For noisy data matrix where M∈R
mxn

, m>>n and ∆Ei =δi, i=1,…,r,r+1…,n

                                                                 η (i) 
∆
=  δi / δi+1                                            (3.15)

η(i) is the ratio index and i=1…n-1. According to this method, if the estimated rank is

“r” it is indicated as:

                                                             η(r) = 
i

max (η(i))                                           (3.16)

3.3.5 Estimates of Noise Variance and Exact Singular Values

Since the rank of matrix E and the noise threshold have been estimated then the

noise variance and exact singular values can also be determined. Let µi be the singular

value of M. Then the estimate σ2
est of variance σ2

noise of the elements can be obtained

by,

                                                       
rn

nr
est −

++
= +

22

12
µ...µ

σ .                                        (3.17)
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The estimate of exact singular values of E can be obtained by the elements of Se1,

                                                        22 σµσ estii −=   i=1,...,r    .                              (3.18)

By defining the relation between Ue1 where columns of Ue1 are the left singular vectors

of E as given in [22], and Um1, the canonical angles are obtained by the following

expression,

                                                    CSSUU == −1
1111 mem

t
e                                            (3.19)

where C∈ R
rxr

 diagonal matrix whose elements are the canonical angles. The canonical

angles are used for obtaining estimated clean data matrix Eest. Since range spaces are the

same    R(E
t
) =R(Vm1), the estimated noise free data matrix Eest can be expressed as,

                                                         Eest=Um1(Se1 C)Vm1
t
.                                                              (3.20)

The estimated noise filtered time series yest(n) is smoothed in order to reduce the

remaining small ripples by the given formula,

                                     ∑
−=

+
+

=
m

mj

estest j)(ny
12m

1
(n)ŷ     .                            (3.21)

where m is the number of neighbour points of the point yest(n).

3.4 Application

The time series from Lorenz system has been used for simulations which is

defined by differential equations,

                                                                         

bzxyz

yrxxzy

)xy(x

−=
⋅

−+−=
⋅

−=
⋅

σ

                                           (3.22)
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where σ=16,b=4 and r=45,92 and the system has 6000 data point length, 256 Hz

sampling rate and 15.67dB SNR. Fig 3.1 clearly indicates the singular spectrum in

which the singular values related with cleaned data and noise have been illustrated for

the chosen time window.
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Figure 3.1 Singular spectrum for Lorenz system

In Fig 3.1, first two singular values have been detected as related with signal and

the rest are related with noise. The time domain representation of signal has been

obtained in Fig 3.2. The correlation dimension results have been used as the

performance criterion, and as shown in Fig 3.3 the filtered signal has constant local

slope for small range of neighbourhood which corresponds the estimated dimension

2.24 whereas the original dimension is 2.06. The method approximates the exact value

which can never be obtained since it is possible to construct the space E. The phase

space reconstruction results indicate how much noise has been filtered which are as

illustrated in Fig 3.4.
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Figure 3.2 Time domain illustration of Lorenz signal. a) Original, b) Noisy, c)Noise

Filtered, d)Smoothed signal after filtering.
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Another critical parameter in SVD based noise reduction is to choose the order

of embedding.  The defined SNR [22] of the system has been expressed in Eq. 3.11 and

when it is computed for each embedding dimension and then the SNR value decreases

while order of embedding increases which limits to choose higher order values. Fig. 3.5

indicates the variation of SNR estimation by embedding order.
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Figure 3.5 Estimated SNR variation versus embedding order.

In Fig. 3.6, blue signs indicate clean; red indicates noisy signals from Poincare

section and black signs noise filtered section. For order 12, reconstructed trajectory has

diverged from original trajectory more then order of 5. To choose high embedding

orders cause the reconstructed phase space to diverge from the original space.  The

reconstruction performance can be visualized by Poincare sections shown in Fig. 3.6

and the Poincare sections of reconstructed signal have been shown by orders of 5 and

12, respectively.  According to the embedding theorem, it is known that embedding

dimension should be dE>2dA. This can be considered as the lower limit for choosing the
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embedding order. If these limitations are taken into account, one can suggest of

choosing embedding order as 2dA of the system.
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Figure 3.6 Poincare sections for embedding dimensions of 5 and 12

respectively.
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CHAPTER 4

PHYSIOLOGICAL INFORMATION IN THE BRAIN

Since the observed signals taken from the brain has been used in latter chapters,

it is necessary to give brief information about some part of the brain structure, electrical

activity and the natural frequency bands of the brain with their functionality.

Brain is the most critical organ in human body that is responsible for whole

mental and physical activities during life and it produces electrical oscillations while

performing any task.  The electrical activity of the brain is observed by electrical signals

taken from different spatial locations of the brain which compose the Cerebral Cortex

and are called Cerebral cortex lobes. Hence, Cerebral Cortex and its lobes are point of

view in order to have idea about meaning of the electrical activity changes.

4.1 Structures of Cerebral Cortex and Functions of Cerebral Cortex Lobes

The Cerebral Cortex is responsible by critical functions which are sorted as

determining intelligence, personality, interpretation of sensory impulses, motor

functions, planning and organization and touch sensation. The cerebral cortex is the

outer portion (1.5mm to 5mm) of the cerebrum which is located in the anterior portion

of the forebrain. It is divided into two hemispheres that are connected to each other by a

thick band of fibres called corpus callosum. The hemispheres are divided into lobes

[28]:   

Cerebral Cortex Lobes:

 i) Frontal lobes are responsible of motor functions, planning reasoning, judgment,

impulse control and memory. It is at the anterior portion of the cerebral cortex.

 ii) Insula is associated with visceral functions and integrates autonomic information. It

is located within the cerebral cortex, beneath the frontal, parietal and temporal opercula.

iii) Occipital lobes  controls vision and colour recognition. It is the most caudal portion

of the cerebral cortex.
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iv) Parietal lobes are responsible for cognition, information processing, pain and touch

sensation, spatial orientation, speech and visual perception. It is anterior to the occipital

lobes and posterior to the frontal lobes.

v) Temporal Lobes are related with emotional responses, hearing memory and speech. It

is anterior to occipital lobes and lateral to fissure of sylvius [28].

4.2 The Electroencephalogram (EEG)

As an historical evolution, in 1929, German psychiatrist Hans Berger indicated the

existence of the electrical activities inside the brain by using galvanometer and

electrodes located to the scalp. In 1930, he showed that the electrical activity varies by

closing and opening the eyes and called these electrical waves

“Electroencephalography” [53].  More technical description will be given in the sequel.

When the neurons of the human brain process information, they do so by changing

the flow of electrical currents across their membranes. These changing currents generate

electric and magnetic fields that can be recorded from the surface of the scalp. The

electric fields are measured by attaching small electrodes to the scalp [29].

The potentials between different electrodes are then amplified and recorded as the

"electroencephalogram" (EEG), which means writing out of the electrical activity of the

brain (that which is inside the head) [29]. It is a completely noninvasive procedure that

can be applied repeatedly in patients, normal adults, and children with virtually no risks

or limitations. Local current flows are produced when brain cells (neurons) are

activated. However, only electrical activity generated by large populations of neurons

concurrently active can be recorded on the head surface. The small electrical signals

detected by the scalp electrodes are amplified thousands of times, then displayed on

paper or stored in computer memory [30].

4.2.1 EEG Frequency Bands

The basic EEG rhythms are summarized briefly as follows, with regard to their

typical distribution on the scalp, subject states, tasks, physiological correlates, and the

effects of training [31].
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4.2.1.1 Delta (0.5-4 Hz):

Distribution: generally broad or diffused, may be bilateral, widespread.

Subjective feeling states: deep, dreamless sleep, non-REM sleep, trance, unconscious.

Associated tasks & behaviors: lethargic, not moving, not attentive.

Physiological correlates: not moving, low-level of arousal.

Effects of Training: can induce drowsiness, trance and deeply relaxed states.

4.2.1.2 Theta (4-8 Hz):

Distribution: usually regional, may involve many lobes, can be lateralized or diffuse;

Subjective feeling states: intuitive, creative, recall, fantasy, imagery, creative,

dreamlike, switching thoughts, drowsy.

Associated tasks & behaviors: creative, intuitive; but may also be distracted, unfocused

Physiological correlates: healing, integration of mind/body.

Effects of Training: if enhanced, can induce drifting, trancelike state if suppressed, can

improve concentration, ability to focus attention.

4.2.1.3 Alpha (8-12 Hz):

Distribution: regional, usually involves entire lobe; strong occipital with eyes closed.

Subjective feeling states: relaxed, not agitated, but not drowsy; tranquil, conscious.

Associated tasks & behaviours: meditation, no action.

Physiological correlates: relaxed, healing.

Effects of Training: can produce relaxation.

Sub-band low alpha: 8-10: inner-awareness of self, mind/body integration, balance.

Sub-band high alpha: 10-12: centring, healing, mind/body connection.

4.2.1.4 Beta (above 12 Hz) :

The beta band has a relatively large range, and has been defined as anything

above the alpha band.

i) Low Beta (12-15 Hz), formerly "SMR":

Distribution: localized by side and by lobe (frontal, occipital, etc)

Subjective feeling states: relaxed yet focused, integrated
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Associated tasks & behaviours: low SMR can reflect "ADD", lack of focused attention

Physiological correlates: is inhibited by motion; restraining body may increase SMR

Effects of Training: increasing SMR can produce relaxed focus, improved attentive

abilities, may remediate ADD.

ii) Midrange Beta (15-18 Hz):

Distribution: localized, over various areas. It may be focused on one electrode.

Subjective feeling states: thinking, aware of self & surroundings

Associated tasks & behaviours: mental activity

Physiological correlates: alert, active, but not agitated

Effects of Training: can increase mental ability, focus, alertness, IQ

iii) High Beta (above 18 Hz):

Distribution: localized, may be much focused.

Subjective feeling states: alertness, agitation

Associated tasks & behaviours: mental activity, e.g. math, planning, etc.

Physiological correlates: general activation of mind & body functions.

Effects of Training: can induce alertness, but may also produce agitation, etc.

4.2.1.5 Gamma (40 Hz):

Distribution: Much localized

Subjective feeling states: thinking; integrated thought

Associated tasks & behaviours: high-level information processing, binding

Physiological correlates: associated with information-rich task processing

Effects of Training: not known [31].

4.2.2 Experimental Measurement Information about EEG

In the thesis EEG measurements have been performed from 9 healthy subjects (5

male, 4 female) with an average age of 27,4 (minimum 21, maximum 44).  The EEG

records were taken for eyes closed and eyes opened case with duration of 100 seconds

each other.  International 10-20 system was used for placements and measurements of

the electrodes. The measurement procedure is given below:
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The International 10-20 System: of Electrode Placement is the most widely used

method to describe the location of scalp electrodes. The 10-20 system is based on the

relationship between the location of an electrode and the underlying area of cerebral

cortex. Each site has a letter (to identify the lobe) and a number or another letter to

identify the hemisphere location. 

Figure 4.1 Cerebral cortex lobes and electrode displacement

The letters used in figure2.1 are:  "F" - Frontal lobe, "T" - Temporal lobe , "C" -

Central lobe , "P" - Parietal lobe, "O" - Occipital lobe.  (Note: There is no central lobe in

the cerebral cortex. "C" is just used for identification purposes only.)

Even numbers (2, 4, 6, 8) refer to the right hemisphere and odd numbers (1, 3, 5, 7)

refer to the left hemisphere. "Z" refers to an electrode placed on the mid line. The

smaller the number, the closer the position to the mid line. "Fp" stands for front polar.

"Nasion" is the point between the forehead and nose. "Inion" is the bump at the back of

the skull. The "10" and ""20" (10-20 system) refer to the 10% and 20% inter electrode

distance [32].

Why are percentages used?

The skull may be different from subject to subject. A paediatric or adolescent

may be smaller than an adult, and different adults have slightly different size head (and

brains). The percentage relationship remains the same for the location of the internal

brain lobes [33].
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  Figure 4.2 Spatial distributions of electrodes

When recording a more detailed EEG with more electrodes, extra electrodes are added

utilizing the spaces in-between the existing 10-20 system. This new electrode-naming-

system is more complicated giving rise to the Modified Combinatorial Nomenclature

(MCN). This MCN system uses 1, 3, 5, 7, 9 for the left hemisphere which represents

10%, 20%, 30%, 40%, and 50% of the inion-to-nasion distance respectively. 2, 4, 6, 8,

10 are used to represent the right hemisphere. The introduction of extra letters allows

the naming of extra electrode sites [32].

4.2.3 EEG in Medical Research

EEG signals can be used in various types of research areas due to the frequency

variation based meaning of the state transitions. These are given below [53],

i) neurology: Discovering the brain pathology together with EMG,

echocardiogram and neurological controls.

ii)  neurosurgery: Discovering the abnormal pathological tissues like malignant

tumors.

iii)       anesthesia: To adjust the anesthesia level of the patient under anesthesia.
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iv)      pediatrics: Identify the visual and auditory problems of new born babies by

using averaged evoked potentials.

v)        psychiatry: Discovering the existence of any organic brain disorder in order

to identify the mental abnormality more certainly.

vi)       criminology: Discriminating the EEG patterns which belong to guilty person

from innocent person.
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CHAPTER 5

TIME-FREQUENCY ANALYSIS OF OBSERVED SIGNALS

In many applications of signal processing, one is interested in the frequency

content of a signal locally in time. That is, the frequency evolves over time. Such

signals are called non-stationary. For a non-stationary signal, f(t), the standard Fourier

Transform is not useful for analyzing the signal since the information which is localized

in time such as spikes and high frequency bursts cannot be easily detected from the

Fourier Transform.

5.1 Short Time Fourier Transform

Time localization can be achieved by first windowing the signal so as to cut off

only a well-localized slice of f(t) and then taking its Fourier Transform. This gives rise

to the Short Time Fourier Transform, (STFT) or Windowed Fourier Transform. A

function f ∈ L
2
(R) is used to represent a continuous signal and its Fourier transform f̂

is,

                                                        ∫
∞

∞−

−= dtte j )()ω(ˆ ω ff t                                           (5.1)

where f ∈ L
2
(R) means f has finite energy [54],

∞<∫
∞

∞−

dttf 2|)(|                                               (5.2)

and f ∈ L
1
(R) is,

                    ∫
∞

∞−

∞<dttf |)(|       .                                             (5.3)
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The formula 5.1 gives the spectral information f the signal but it does not give any idea

about local observation of f. To achieve this, a time window is needed.

A function g ∈ L
2
(R) can be window function if it satisfies the following requirement

[54],

                                                        (R)L     g(t) t 2∈⋅ .                                                  (5.4)

5.1.1 Time Frequency Windows and Uncertainty Principle

It is supposed that any window function g ∈ L
2
(R) has a region in the time

frequency plane (t,ω), where the domain centre of the window function is,

                                                       ∫
∞

∞−

= dt|)t(g|tt 2
m                                                 (5.5)

and time domain radius of the window function is,

                                                  ∫
∞

∞−

−=∆ dt|)t(g|)tt( 22
mt

     .                                  (5.6)

The centre frequency of the window function g is defined as,

                                                  ∫
∞

∞−

= ωdωωω 2|)g(|
2

1

πm
                                         (5.7)

and the frequency radius of the window function is,

                                           ∫
∞

∞−

−= dω|g(ω(|)ω(ω
2π
1∆ 22

mω     .                              (5.8)

The time and frequency widths are 2∆t and 2∆ω respectively, since the window function

is real and symmetric. By using these formulas one can determine the window region

as,
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                                 [ tm + b - ∆t ,  tm + b + ∆t] x [ ω + ω - ∆ω ,  ω + ω + ∆ω]  .           (5.9)

The area of the time frequency window is

                                                                      4∆t∆ω              .                                           (5.10)

The area found in Eq. 5.10 constitutes Heisenberg Boxes and the width of the

time frequency window remains unchanged for localizing signals in both high and low

frequencies. According to the Heisenberg Uncertainty principle [55]

                                                                      ∆t∆ω≥
2

1
                                                (5.11)

then the Eq. 5.11 becomes ∆t∆ω=
2

1
 if the window function g is Gaussian [55].

Figure 5.1 Representation of time frequency windows in STFT, b1 < b2 and  ω1 < ω2.
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5.1.2 Short Time Fourier Transform

A real and symmetric window g(t) = g(-t) which satisfies the condition given in

Eq. 5.4, is translated by b and modulated by ω :

                                                     =(t)g ωb,  e
jωt

 g(t-b)      .                                         (5.12)

The window function g is normalized ||g(.)||2 = 1 so that ||g b,ω(.)||2 = 1 for any (b,ω)

∈R
2
. The windowed Fourier transform of f ∈ L

2 
(R) is,

                                              ∫
∞

∞

=
-

jω-)e-(t(t) ω),( dtbgfbfS t        .                            (5.13)

The transform given in 5.13 is called Short Time Fourier Transform since the term

g(t-b) localises the Fourier integral in the neighbourhood of  t = b. Various window

function types are given in table 5.1.

Table 5.1 Window function types for STFT [55].

Name g(t) ∆ω

Rectangle 1 0.89

Hamming 0.54+0.46cos(2πt) 1.36

Gaussian Exp(-18t
2
) 1.55

Hanning cos
2
(πt) 1.44

Blackman 0.42+0.5cos(2πt)+0.08cos(4πt) 1.68

Frequency parameters of windows shown in table 5.1 are restricted [-0.5 0.5]. These

windows are normalized so that g(0) = 1 but || g(.) || ≠ 1.
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5.1.3 Gabor Transform

The Gabor transform is a windowed Fourier transform with any Gaussian

function gα as the window function. The optimal window for time localization is

achieved by using Gaussian function,

                                                             α
α πα

4

2t

e
2

1
)t(g

−
=                                         (5.14)

where α>0 fixed. The optimal window is Gaussian because it gives minimum window

size (i.e highest resolution in both time and frequency) that fits to the Uncertainty

Principle given in 5.1.1.  The Gabor transform of an  f ∈ L
2
(R) is defined by

                                             ∫
∞

∞−

−−= dtebtgtff j
b

tω)()()ω)((Gα     .                         (5.15)

The width of the window is determined by the positive α and is found by,

                                             

2/1

22

2

)(
||(.)||

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=∆ ∫
∞

∞−

dttgt
g

g α
α

α
                               (5.16)

Since gα is even, the width of the function is 2
αg∆ and for each α>0,

                                                            
αg∆ = α .                                                       (5.17)

That is, the width of the function is 2 α . The time frequency region is then obtained as

                                   [ b - α  , b + α  ] x [ω - 
α2

1
 , ω + 

α2

1
]   .                    (5.18)

It is found that ∆t= α  and by the similar way ∆ω=
α2

1
 and the result ∆t∆ω=

2

1
 which

is the smallest value of Eq.5.11.
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5.2 Wavelet Transform

In section 5.1, it was observed that time frequency window of the short time

Fourier transforms is constant for all frequency and time segments. This limits to obtain

various resolutions at different time frequency ranges.  Therefore, more flexible basis

functions are needed which are added dilation parameter in addition to translation

parameter so that window size can change at different frequencies.

5.2.1 Integral Wavelet Transform

Wavelets ψ are the small waves that fast decays to zero that is,

                                                             0(t)dt =∫
∞

∞−

ψ    .                                             (5.19)

This is the reason why they are called wavelets. A wavelet function ψ is called basic

wavelet if it satisfies the admissibility condition,

                                                ∫
∞

∞−

∞<= ω
ω
ω

d
||

|)( |
C

2
^

ψ
ψ      .                                   (5.20)

The integral wavelet transform of a function f is,

                               ∫
∞

∞−

∈
−

= (R)L f
a

1
fa)f(b, 2         dt)

a

bt
()t(W *ψψ                    (5.21)

The function f can be reconstructed from its wavelet transform if the admissibility

condition is satisfied. The reconstruction formula is,

                              ∫ ∫
∞ ∞

∞−

−
=

0
2a

da
db )

a

bt
( )t( W

C

1
)t( ψψ

ψ a

1
fa)f(b,f                       (5.22)
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where a,b ∈ R  are scale and translation parameters respectively.  The time frequency

window in continuous wavelet transform is expressed as

                    [ ] ⎥⎦
⎤

⎢⎣
⎡ ∆+∆−∆−+∆−+  

1
 , 

1
  t , t ^^mm

ψψ
ψψ

aaaa
xaabaab mm

ωω
   .         (5.23)

From Eq.5.23, it is seen that the time width of the window function is 2a∆ψ and the

frequency width is ^

2

ψ
∆

a
. The area of the window is found  4∆ψ ^

ψ
∆ , it is  independent

of the scale parameter a, but the time and frequency width of the window function

changes with scale. The time frequency windows for wavelet transform is shown in Fig.

5.2

Figure 5.2  Time frequency windows in wavelet transform, b1 < b2 and ω1 < ω2.

5.2.2 Wavelet Decompositions

In wavelet analysis, waves can be partitioned into consecutive “octaves” or

namely frequency bands. For computational efficiency, the powers of 2 are used

frequency partitioning, then the mother wavelet is ψ considered as

                                                          ψ(2
j
t-k)    j,k ∈Z.                                              (5.24)

1
ω

2
ω

t

ω

1b 2b

t∆2

t∆2

ω∆2

ω∆2
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If a function ψ ∈ L
2
R has unit length, then ψj,k defined by,

                                              Zk j,     k)-t(2 2(t) j/2j/2
kj, ∈= ψψ                              (5.25)

also has unit length, that is  || ψj,k(.) ||2 = || ψ(.) ||2 = 1. Every function f ∈ L
2 

(R) can be

written as

                                                     ∑
∞

∞=

=
kj

jkkj tctf
,

, )()( ψ                                             (5.26)

and the expression for f given in Eq. 5.26 is called wavelet series.  The wavelet

coefficients are shown as

                                                    )
2

1
,

2

k
)(W(c

jjk,j fψ=   .                                         (5.27)

For any wavelet Ψj,k where j,k ∈ Z, let Wj denotes the closure of the linear span of Ψj,k,

then Wj is defined as [54],

                                                  >∈<=
∆

Zk:closW k,j)R(Lj 2 ψ    .                             (5.28)

Then the L
2
(R) can be decomposed as a direct sum of the spaces Wj,

                                               ∑
•

∈

⋅⋅

−

⋅
+++==

Zj

101j
2 WWWW)R(L KK                     (5.29)

where the term 
⋅
+  denotes the direct sum. According to Eq 5.29, it can be said that

every function f ∈ L
2
(R) has a unique decomposition [54],

                                             KK ++++= − )t(g)t(g)t(g)t( 101f                           (5.30)
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where gj ∈ Wj, ∀ j∈ Z. If Ψ is an orthogonal wavelet, then the subspaces Wj of L
2
(R)

are mutually orthogonal,

                              <gj,gm>=0,   j≠m            where gj ∈ Wj and gm ∈ Wm    .                    (5.31)

In this case, the notation will be Wj⊥Wm  j≠m and consequently the direct sum becomes

orthogonal sum [54],

                                       KK 101j
Zj

2 WWWW)R(L ⊕⊕⊕=⊕= −

∆

∈
    .                     (5.32)

The decomposition in Eq. 5.32 is usually called “orthogonal decomposition”.  Any

wavelet generates a direct sum decomposition given in Eq. 5.29 of L
2
(R). For each j ∈

Z consider the closed subspace,

                                                           12 −

⋅

−

⋅
++= jjj WWV K                                      (5.33)

and these subspaces have the following properties [54]:

i)   KK 101 VVV ⊂⊂⊂ −

ii) )R(LVclos 2
j

ZjL2 =⎟
⎠
⎞

⎜
⎝
⎛ ∪
∈

iii) { }θ=∩
∈

j
Zj
V

iv) Vj+1=Vj+Wj,    j ∈ Z and

v)  f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1,  j∈Z.

The subspace given in Eq. 5.33 is generated by a function, called scaling

function, φ ∈ L
2
(R) and Wj is generated by some wavelet Ψ ∈ L

2
(R). The scaling

function supplies complement of information corresponding to the wavelet transform of

a function f,  Wf(b,a),  for a > a0 when Wf(b,a) is known only for  a < a0.
 
 The relation

between scaling function and the wavelet function is given in terms of their Fourier

transform, which is defined as [55],
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                                       ∫
∞

=
1

2
^

2 |||)(  |
a

ad
)(aψ ωωφ                                      (5.34)

The multiresolution decomposition separates the signal into detail coefficients at

different scales and the remaining part being a coarser representation of the signal called

approximate coefficients which are denoted by Dj and Aj for each level j, respectively.

The detail coefficients “D” correspond to high pass filtered part of the signal and

approximate coefficients “A” correspond to low pass filtered part [38]. The

representation of wavelet decomposition of signal is shown in Fig 5.3 schematically and

wavelet decomposition of EEG signal has been illustrated in Fig. 5.4.

Figure 5.3 Wavelet decomposition and reconstruction scheme of signal f.
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Figure 5.4 Wavelet decomposition of an EEG signal, a) Original signal, b) Delta band,

c) Theta band, d) Alpha band e) Beta band f) Gamma band

5.3 Time Frequency Energy Distributions

The energy distribution of a signal in time-frequency domain is represented by

spectrogram or scalogram obtained by short time Fourier transforms and wavelet

transforms respectively.

5.3.1 Spectrogram

Spectrogram of a signal f(t) localised by window function g(t) is the square

modulus of STFT and it is defined as

                                            

2

j2 dte)bt(g)t(|),b(S| ∫
∞

∞−

−−= ωtω ff     .                       (5.35)
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It measures the energy of f in time frequency neighbourhood of (b,ω). This

energy distribution has constant time frequency window, hence the resolution is limited.

The total energy found by spectrogram can be shown as [35],

                                                      ∫ ∫
∞

∞−

∞

∞−

= ωω dtd),b(SfE
2

T       .                            (5.36)
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Figure 5.5 Spectrogram of linear chirp signal.  a) Time domain, b) Fourier spectrum

c) Spectrogram

In Fig. 5.5, the spectrogram of a linear chirp signal, which is expressed as, 
2jae)( tts =  is

given with a sampling frequency of 1kHz.
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5.3.2 Scalogram

Scalogram is the square modulus of the wavelet transform and defined by,

                                              

2

2
)dt

-t
( 

1
)t()a,b(W ∫

∞

∞−

=
a

b

a
ff ψ                           (5.37)

and the total energy found by scalogram is denoted as [35],

                                                     ∫ ∫
∞

∞−

∞

∞−

=
2

2

T

dd
),(WE

a

ab
ab     .                              (5.38)
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Figure 5.6 Scalogram of linear chirp signal,  a) Time domain signal  b) Fourier

spectrum  c) Scalogram
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Figure 5.7 Wavelet transform of a linear chirp signal.

Scalogram has more sensitive time frequency resolution than spectrogram due to

flexible window function. In Fig 5.6 and 5.7, the scalogram and wavelet transform of

linear chirp signal has been shown where the sampling frequency is 512 Hz.

5.4 Classification with Wavelets

The methods containing wavelet transforms can be used to classify the

nonstationary signals. They are preferred when the classifications are needed for short

time recording applications since nonlinear classifiers such as correlation dimension D2

and maximum Lyapunov exponent λmax require long time evolution of trajectory. The

discriminating parameters obtained from wavelet transforms are wavelet ridges and the

wavelet entropies [37].

5.4.1 Wavelet Entropy

The wavelet entropy is obtained from relative wavelet energies, which provide

information about the relative energy associated with different frequency bands in time

Frequency

Time
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domain signal [37]. The wavelet analysis is performed by taking dilation parameter a=2
-

j
 and the translation parameter b=2

-j
k of mother wavelet with j,k∈Z.

                                                          k)-t(2 2(t) j/2j/2
kj, ψψ =     .                             (5.39)

Then, the energy of the detail signal for each resolution level is given by square

modulus of wavelet coefficients by the following form [37],

                                                     ∑
=

=
K

1k

2

jj )k(CE                                     (5.40)

where K is data length, the resolution level j=-1,...,-N and the wavelet coefficients Cj(k)

contain the information of signal f between the frequencies 2
j-1ωs ≤ |ω| ≤ 2

jωs where

ωs=2πfs and fs is the sampling frequency.  The energy at each sampled time will be

                                                          ∑
−

−=

=
1

2
)()(

Nj

j kCkE           .                              (5.41)

The total energy can be obtained by

                                              ∑ ∑ ∑
−

−= =

−

−=

==
1

Nj

K

1k

1

Nj

j

2

jtot E)k(CE    .                               (5.42)

Then the normalized values which represent the relative wavelet energy [37],

                                                                 
tot

j

j
E

E
p =      .                                            (5.43)

In Eq 5.43, pj can be considered as time-scale density. This parameter enables to detect

a variation in a certain frequency band. The expression wavelet entropy is obtained

from the relative wavelet energy shown in Eq 5.43. Wavelet Entropy “WE” appears as a

measure of the degree of order/disorder of the signal. It can be shown as,
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                                                            ∑
−

−=

−=
1

Nj

jj )pln(pWE                                       (5.44)
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Figure 5.8. Relative wavelet energies (RWE) of delta, theta, alpha, beta and gamma

respectively  a) Channel O1-eyes opened  b) Channel O1-eyes closed  c) Channel O2-

eyes opened  d) Channel O2 eyes closed.
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Figure 5.9 Relative wavelet energies (RWE) of delta, theta, alpha, beta and gamma

respectively  a) Channel P3-eyes opened  b) Channel P3-eyes closed  c) Channel P4-

eyes opened  d) Channel P4 eyes closed.
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In Fig. 5.8 and 5.9, the relative wavelet energies of delta, theta, alpha, beta and

gamma bands has been illustrated for different channels when eyes are opened and

closed respectively. The wavelet entropy result which is given in Fig 5.10 indicates that

when the eyes are closed, then the wavelet entropy decreases. The wavelet entropy is a

measure of the degree of order/disorder of the signal and an ordered signal can be

thought to have narrowband spectrum therefore wavelet decomposition of such a signal

will be dominant in one resolution level whereas a signal generated from random

process has wavelet resolution in all frequency bands and will represent a disordered

behaviour. Then it can be said that signals taken from closed eyes exhibit an ordered

activity and have lower wavelet entropy. The results in Fig. 5.10 illustrate the wavelet

entropy variation for opened and closed eyes condition and confirms this idea.
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Figure 5.10 Wavelet Entropy results for four channel P3,P4,O1 and O2 respectively.

5.4.2 Wavelet Ridges

To find the wavelet ridges of wavelet transformed signal can be used as a second

classification parameter. The skeleton of the wavelet transform of s(t) is the wavelet

transform evaluated on the ridge [41]. The ridges are determined by different methods,

which can distinguish as phase, and modulus based methods.
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5.4.2.1 The Stationary Phase Method

In this method the time derivative of the phase of the wavelet transform is given

as,

                                                          )0(
1 '

)(

,

ψ
φ

ab
ba

ba =
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Φ∂
                                       (5.45)

indicates the ridges in time-frequency domain where
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and )(tφ  is phase component of complex signal Zs(t) defined as,

                                             (t)) exp(j ~ φA(t)(t)sj s(t)(t)Z
∆

s =+=                              (5.47)

 where (t)s~  is the Hilbert transform of real signal s(t) given in [49]. The term )(ψ
a

btφ −

is described as the phase component of asymptotic mother wavelet which is given by

[42],

                                                           
(t)φ

ψ
ψ(t)eAψ(t) =                                              (5.48)

The points given by Eq. 5.45 are called stationary phase points, so this method is called

as stationary phase method.

5.4.2.2 Carmona Method

Carmona method is a modulus based ridge extraction method. Extracting the

ridge from the modulus of the transform is more robust than the phase, because the

extraction from the modulus does not involve differentiation of phase [41]. In Carmona

method, the ridges are obtained by the solution of an optimization problem. The
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minimization of penalty function is equivalent to maximization of the modulus of the

transform [41]. The ridge is searched as a(b)=ϕ(b) which minimizes the following

penalty function,

                        F(ϕ(b)) = [ ]∫∫ ′′+′+− db(b)µ(b)λ    dba)(b,W  222

s ϕϕ                 (5.46)

And in Eq. 5.46, the first term maximizes energy density along the ridge and the second

term contains first and the second derivative of the ridge function ϕ(b) is concerned

with the smoothness of the ridge [42]. This problem can be solved by simulated

annealing algorithm, which is given in [41].

5.4.2.3 Simple Method

In this method, the maximum components of the modulus of the wavelet

transform is searched when the mother wavelet is assumed to have a peak at t=0 [42]

and the most of the energy of the signal will be localized around the ridge. Therefore,

simplest way of determining wavelet ridge is to compute the scalogram where,
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and Ps(a,b,ψ) is the square of the modulus of the wavelet transform coefficients. The

simple method works well when there is no contamination by noise. In noisy situations

there will be spurious local maximum and this will prevent to detect the ridges

successfully. In the thesis, since the aim is to exhibit the different patterns under

different conditions, simple method has been applied due to fast execution. In Fig 5.11

the ridges of linear chirp signal have been plotted. Fig. 5.12 indicates the wavelet

transform of the mean of ten subjects where at time t=100 seconds eyes of the ten

subjects are closed and an abrupt increase of magnitude of wavelet coefficients at about

10 Hz can be clearly seen in the second half of recording.
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Figure 5.11 a) Wavelet transform of linear chirp signal   b) Wavelet ridges

In Fig. 5.13, the measurements have been done while eyes are opened until

t=100 sec and at the second half, measurements have been done while eyes are closed. It

can be observed that  after t=100 sec the ridges are concentrated near to 10Hz, whereas

there is weak signal density near 10 Hz between the interval t=0-100 sec.
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Figure 5.12 Wavelet transform of spontaneous EEG data
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Figure 5.13 a) Scalogram of spontaneous EEG Signal  b) Wavelet ridges
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Figure 5.12 Wavelet transform of spontaneous EEG data
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Figure 5.13 a) Scalogram of spontaneous EEG Signal  b) Wavelet ridges
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CHAPTER 6 

 

CHAOS IN BRAIN 

 

Chaos analysis is a critical point in brain researches. The 

electroencephalography (EEG) defined in section 4.2, is used for chaos analysis of the 

brain.  The main goal is to classify the EEG signals under different states and 

conditions. According to the theory of chaos, it is reasonable to assume that the 

neuronal network underlying an EEG is a complex dynamical system [56] and besides 

in [6], neural networks are said to represent broadband high dimensional chaos. In order 

to make a classification, the invariants of the system have to be found where correlation 

dimension (D2), is an adequate choice as a discriminating parameter.  It is used to 

distinguish random activity from deterministic activity. To be able to find D2 data 

length should be sufficiently long, so that attractor structure can be observed in the 

phase space. Since evoked potentials (EP) and event related potentials (ERP) are based 

on an applied stimulus and the short time range before and after the stimulus is treated, 

data length is not sufficient for chaos analysis. That is why correlation dimensions have 

been calculated for spontaneous EEG data in application part of this thesis.  

 

6.1 Correlation Dimension Parameters 

 

In Chapter 2, the methods for obtaining the necessary parameters which are time 

delay and embedding dimension in order to obtain correlation dimension have been 

given. However, in practical applications, it has been seen that correlation dimension 

can have various values depending on some other parameters such as sampling 

frequency, data length and upper limit of correlation dimension. Therefore, it is 

necessary to take into account these additional parameters so that correlation dimension 

can be used as an invariant measure.  

 

6.1.1 Sampling Frequency 

 

Improper choice of sampling frequency may be the source of an error. Although 

time domain signals are continuous in nature, they are recorded discretely. The standard 
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criterion is the Nyquist rate which says that the lowest sampling frequency must be at 

least two times greater than the bandwidth of the signal. In applications, EEG is also 

digitized into discrete points and information between neighbouring sampling points is 

lost. To avoid this, one may consider using very high sampling frequency but in that 

case computation will take long time for long recordings and memory will be 

insufficient. Hence, the sampling frequency should be decreased but there is need to 

obtain optimum value to overcome information losing problem due to select an 

improper sampling frequency can affect the estimates of the dimensional complexity. In 

order to determine sampling frequency, in [56], an application is given about the 

variation of correlation dimension versus different sampling frequencies and 

resolutions, which are obtained from analogue to digital converters. The results of this 

work are given in Table 6.1.  

 

Table 6.1 Correlation Dimensions versus Sampling Rate and Resolution [56]. 

Sampling Frequency  

(Hz) 

Resolution (bit) 

 

128 

 

256 

 

512 

 

1024 

8 7.003±0.60 6.608±0.42 6.425±0.42 6.314±0.40 

12 7.002±0.49 6.699±0.44 6.502±0.44 6.412±0.40 

16 6.997±0.48 6.680±0.45 6.485±0.42 6.392±0.39 

 

The sampling frequencies are increased by factor two because it is purposed that 

the midpoint between two samples would be included. Then the results are compared 

with highest sampling rate because it is nearest to the waveform. For the frequencies 

256 and 128 Hz, the correlation dimension is relatively higher, that is, one observes a 

false complexity because of insufficient sampling rate. After 512 Hz, there is no 

significant difference among the correlation dimensions, so the optimum value can be 

selected as 512 Hz because it corrupts less location in memory of computer compared 

with higher sampling rates.  

 

6.1.2 Time Delay T  

 

In section 2.2.1, suitable algorithms for determining T have been given. But in 

any case a check for stationarity of this parameter is strongly recommended while EEG 
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signals are under consideration. . Therefore, the saturation of system invariants methods 

should also be applied for each time lag T. The value, after which D2 as a function of T 

becomes constant, is chosen as time delay parameter. 

 

6.1.3 Data Length 

 

In order to get a good evaluation of D2, very long time recordings are needed. 

But, in practice it is not possible when the EEG data do not remain stationary for long 

data length.  Especially, for high dimensional systems, short time series yield wrong 

estimate for correlation dimension underestimate the correlation dimension. As an 

example, for alpha waves, correlation dimension varies from 2.6 to 6.6 [45].  Therefore, 

to be able to accept the data length as sufficient, the substantial increase in time series 

should not change the correlation dimension. That is, there should be no effect of data 

length in the invariants of the system.  

 

6.1.4 Upper Limit of Correlation Dimension

 

When analyzing REM sleep and different stages of waves during the sleep, they 

look like highly random signals and one can find values D2=9.7 and D2=8.9 [45]. When 

dimension reaches to such high values, it is suspicious that these dimensions indicate 

very highly deterministic chaos. The reason of suspicion is that even pure noise signal 

becomes to saturate at high embedding dimensions and gives correlation dimension of 

order nine or ten. To rely on these values, one should be sure that the observed data is 

strongly noise free. Therefore it is recommended that any value of D2>8 is considered as 

unreliable [45].  

When these precautions are taken into account, the correlation dimensions can 

be reliably evaluated by digitizing the EEG signal. 

 

6.2 Applications of EEG 

 

Different workgroups had experimental studies on EEG [45]. These studies were 

about with analysis of EEG taken from patient, sleeping or awake subjects. Most 

commonly correlation dimension has been used as classification parameter. Exhibiting 
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chaotic structure of EEG signals and the dynamical characteristics of brain have been 

the source of these studies. 

  

6.2.1 Classification of Pathological EEG Signals 

 

When the EEG signals are observed at pathological conditions, it has been seen 

that there exist an explosion of oscillations during the period of seizure and this 

different pattern causes the correlation dimension to be found different from healthy 

condition. The studies are generally focused on Epilepsy and Schizophrenic patients. In 

the study of Saermark [45] the correlation dimension has been measured as dropping 

from 11 to 7, after epileptic attack started. At another study performed by Babloyantz 

[45], D2 has been found in interval of 3,7-5,4 for the case of Creutzfeld-Jakob Disease. 

 The EEG gives information about the synchronization among the stages of 

neural stages. Low amplitude EEG reflects relatively desynchronized states, whereas 

high amplitude waves are the indicator of synchrony between neural masses [45]. 

During the normal states of the brain activity, dimension of chaotic attractors decreases 

as the amplitude of the waves increases. But for the pathological conditions one can not 

claim the same situation. Creutzfeld-Jakob disease is characterized by higher amplitude 

and higher dimension than epileptic seizure. To compare the dimensions of healthy and 

patient subjects can be said more feasible to make discrimination [45].  

In the EEG, another parameter which changes the dimension is stationarity. 

When a nonstationary EEG rithym passes through stationary state, periodicity of the 

signal will increase and the stationary characteristic will cause to decrease the 

complexity of signal. Hence, one can say that the dimension of the signal observed in 

stationary time interval is smaller than nonstationary time interval.  

 

6.2.2 Observations on Dynamics of Olfactory System 

 

In [47], a sample model has been constructed and developed to describe the 

neural dynamics responsible for odor recognition and discrimination. The olfactory 

system has been chosen to observe the neural dynamics since it has the simplest 

structure among other systems such as auditory and visual systems. Therefore the basic 

phenomenon has been olfaction and the background activity has been spontaneous 

EEG. Freeman made experiments on rabbits and according to the neurophysiologic 
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results, from measurements of receptor unit activity, the electro olfactogram shows that, 

receptor cells which are sensitive to particular odorants are clustered nonuniformly in 

density in the mucosa and their patterns of olfaction differ for differing odorants.  In 

order to observe the self characteristics of olfaction, the bulb and prepyriform cortex 

which are the parts of olfactory system have been isolated from other neuronal parts of 

brain except circulation and it has been seen that these structures are “silent” except 

when they are electrically or chemically stimulated and after stimuli the state falls 

“silent” again. These stimuli are considered as perturbations and according to these 

results the state of dynamic structure is said to be stable if the system returns to old state 

after perturbation. If the spontaneous activity is steady and nonoscillating, the system is 

said to be at equilibrium.  

But when the bulb and the prepyriform cortex are connected to each other, they 

can not stay at equilibrium even if they are not connected to the rest of the brain.  A 

bifurcation takes place when system undergoes a major state transition in its dynamics, 

for example transition from sleep to waking or from normal to seizure activity 

corresponds to bifurcation. Then it can be said that the control of the system dynamics 

is shifted from point attractor to chaotic attractor.  

The Haussdorf dimension of the background EEG is observed between 4 and 7. 

This indicates that the background activity reflects not noise but chaos and it has 

relatively smaller degrees of freedom than noise. The EEG olfactory system has been 

modelled by nonlinear ordinary differential equations and these equations had been used 

to separately model the olfactory bulb (OB), the anterior olfactory nucleus (AON) and 

prepyriform cortex (PC).  

When a small change in gains between bulb and AON is entered then a 

degenerative state with Haussdorf dimension 2, which reflects electrically induced 

olfactory epileptic seizure and it corresponds to transition from chaotic attractor to point 

attractor. The chaotic attractor of the seizure state is a two torus whereas the background 

activity is hyper chaotic and has a much higher dimension.  

The smallest dimension is observed at the seizure state and the dimension 

increases at inhalation, exhalation and motivation, waking rest, deep anesthesia states 

respectively.  

The role of chaos in odor recognition can be observed during inhalation and exhalation. 

The inhalation for different odor can be assumed as an input to the system and this 
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causes the transition from disordered state to ordered state so that the dimension of the 

signal decreases. Under this condition chaos can be considered in “off” state. 

If the odor is novel and the system does not already have a global activity pattern 

corresponding to the odor, then instead of producing one of its previously learned 

activity patterns, the system falls into a high level chaotic state rather than into the basin 

for the background odor. This enables the system to conserve the previously learned 

activity patterns.  

 

6.2.3 Classifications of EEG Using Olfactory System 

 

Freeman designed a dynamical model of olfactory system which is the simplest 

part of the cerebral cortex, to simulate the chaotic activity. The microscopic 

characteristics of this activity, when it is observed at a level of single neurons, are 

shown by spontaneous pulse trains. The macroscopic characteristics are aperiodic and 

unpredictable oscillations with amplitude histograms near to Gaussian, autocorrelation 

functions approaching to zero rapidly.   

The aim of building a model is to construct nonlinear ordinary differential 

equations under the known constraints of the anatomy and physiology and to find 

aperiodic solutions that simulate the statistics, spectra and visually displayed patterns of 

EEGs [46].   

The potential difference between two points in the brain is the sum of contributions 

from many populations depending on their geometries and their distances from the 

recording sites. The individual neurons can generate chaotic activity with the time 

scales in milliseconds and distances in microns. These remarks state that chaotic 

dynamics can be expected at several hierarchical levels of brain function and it can be 

distinguished by the time and distance scales [46]. EEG can be considered as the 

composition of macroscopic variables. EEG activities are generated by interconnected 

neurons over broad areas of cortex. The Olfactory system is the best known part of the 

cortex.  

While investigating an unknown dynamical system, first critical point is to 

consider the model as an autonomous. So that the system will be closed to external 

inputs and intrinsic construction can be discovered. The second point is to make the 

system stationary. That is, it has constant statistical properties and there are no internal 

changes from one region to another.    
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Some of behavioural states of the brain, such as awake, sleeping, resting and 

aroused are major determinants of cortical properties through neuromodulators. The 

transition between these states is often abrupt but any state may last in seconds to 

minutes and this is enough to assume stationarity [46]. 

The sample model olfactory system has three main parts. These are the olfactory 

bulb (OB) which receives input from axons of sensory receptors and transmits in 

parallel to the anterior olfactory nucleus (AON) and preyriform cortex (PC). The AON 

feeds back to the OB, and the PC feeds back to both AON and OB. The PC is main 

output pathway to the limbic and motor systems. When the three parts are separated 

from each other and receive no external stimulation, they go to rest and stay there. This 

rest state manifests a point attractor. Under certain condition of input, each part can 

enter into a stable oscillation at its characteristic frequency. When it is perturbed by 

electrical or chemical stimuli, each part returns to its oscillations that manifests a limit 

cycle attractor. This biosystem can not maintain a chaotic activity unless three parts are 

interactively connected. If the OB does not receive sensory input, it maintains steady 

state aperiodic activity called basal or spontaneous. After an electrical stimulus is 

applied, it will return to spontaneous pattern.  

This olfactory model that simulates the spontaneous EEG activity suggests that 

there are three main conditions that lead to chaos. First, the characteristic frequencies of 

the three parts are incommensurate. The second, there are delay in the long feedback 

paths and the long delays introduce low frequencies in delta and theta ranges, and it 

makes a feed back of output with out of phase with input. Third, the feedback is 

inhibitory on some paths which causes to occur negative Lyapunov exponents and 

excitatory on other paths which causes to occur one or more positive Lyapunov 

exponents. Hence the system can not go to equilibrium or limit cycle on a torus, it 

maintains robust aperiodic activity. The “twist and fold” flow of activity within the 

system suggests a basic similarity between dynamics of the olfactory system and some 

class of models like Lorenz, Rössler and Chua attractors.  

Epilepsy Notes: There are various types of epilepsy with different degrees of 

complexity but the general characteristics are, 

i) an abrupt and global onset of broad spectrum, high amplitude, aperiodic 

activity, 

ii) loss of responsiveness to stimuli  

iii) abrupt and global termination of the epileptic activity. 
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The loss of behaviour and the lack of responsiveness to stimuli indicate that the cortex 

has entered into an autonomous state during an epileptic seizure [46]. Within a few 

seconds a spike and wave appears repeating at a rate of nearly 3 Hz which indicates that 

the equilibrium is unstable. The point is repellor and not an attractor. These spikes seem 

like periodic but when it is plotted versus PC and OB, then it is seen that trajectory does 

not close itself in a limit cycle or chaotic attractor of epileptic form.  

When the results of study on epilepsy are associated with dimension analysis it 

is observed that the attractor of spontaneous chaotic state is embedded in 6 dimensions. 

The dynamics of the olfactory system appears to be less complex during the seizure 

than the spontaneous state. The measurements were made for 5 sec with 5000 data 

points. The result of correlation dimensions of epileptic EEG for biological model is 

2.52 and 3.76 for simulated model. The D2 result of simulated spontaneous EEG is 5.92, 

biological spontaneous EEG is 5.46. The D2 results taken from inhalation during 5 sec 

records of simulated EEG is 3.77, for experimental EEG the results varies between 4.10 

and 4.88. These findings suggest that the seizure state is less complex than the 

spontaneous state and the burst state (inhalation) is also less complex than spontaneous 

activity [46].  

 

6.2.4 EEG Studies about classifications of Sleep Stages 

  

EEG signals are favourable for pattern classifications on sleep since there are 

different sleep stages which have individually different complexities. The sleep 

experiments require long EEG recordings therefore D2 is also suitable for using as 

classification parameter of different sleep stages. 

 In a study of Babloyantz [45], the sleep stage 2 and stage 4 has been observed 

and the correlation dimensions were found as D2 = 5.03±0.07 and D2 = 5.05±0.1 for 

stage 2 and D2 = 4.08±0.05 and D2 = 4.37±0.1 for stage 4.  According to the results, it 

can be said that complexity of stage 4 is relatively smaller than stage 2 sleep.  

In the study of Başar and Röschke, the dimensionality of “Slow Wave Sleep” 

(SWS) were investigated where the EEG signals have been taken from cats’ 

hippocampus and it was observed that when cat goes to waking state from SWS state, 

frequency spectrum shifts from deltha activity to theta activity and the correlation 

dimension increases from 4 to 5. This transition corresponds to a bifurcation, which 

describes different states of Central Nervous System (CNS) [45].   
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6.3 Experimental Application on Spontaneous EEG Data 

 

In this thesis, EEG signals taken from 9 healthy subjects (5 male and 4 female) 

were analyzed. The records have been taken from eyes opened and eyes closed 

condition and the correlation dimensions of these two states were evaluated. The record 

time was 200 sec (100 sec for eyes opened, 100 sec for eyes closed) so that trajectory 

was sufficient to constitute the phase space. This enables the correlation dimension to 

be evaluated without an underestimation. The measurements have been taken from 

scalps and used standard 10-20 measurement system given in chapter 4.2.2.  In the 

tables 6.2, 6.3,6.4 and 6.5, there are symbols “ga” and “gk” which represent eyes 

opened and eyes closed respectively. 

 

6.3.1 Application Results 

 

The result has been illustrated from eight electrodes F3, F4, C3, C4, P3, P4, O1 and O2 

where the capital F represents frontal lobe, C central lobe, P parietal lobe and Occipital 

lobe. There are four tables representing eyes opened, eyes closed, eyes opened alpha 

band filtered and eyes closed alpha band filtered dimensions of the signals. Inside the 

tables, there are some empty boxes since there are distortions at some signals due to 

exceeding voltage range and cause unexpected D2 values. The results for eyes opened 

and closed are illustrated in table 6.2 and 6.4 respectively.  In Fig 6.1 and 6.2, the phase 

space reconstructions of 5 sec trajectories from eyes opened and closed signals and in 

Fig 6.3 and 6.4 the phase space reconstructions of alpha band filtered eyes opened and 

closed signals have been shown, respectively. It is clear that when the alpha band has 

been filtered, the structure of attractor has become more visible especially for closed 

eyes condition. 
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Table 6.2 Correlation dimensions for eyes opened, sbxx means subject number 

Ga Sb01 Sb02 Sb03 Sb04 Sb05 Sb06 Sb07 Sb09 Sb10 Mean St.dev

F3 6,30 7,01 6,60 6,64 7,52 6,95 6,72 6,12 6,12 6,68 0,44 

F4 5,35 6,89 6,52 7,28 7,60 7,10 7,13 5,66 5,66 6,58 0,82 

C3 6,64 7,21 6,78 7,02 7,11 6,62 7,60 6,52 6,52 6,91 0,35 

C4 6,29 6,70 6,64 6,42 7,14 6,44 6,68 6,58 6,58 6,53 0,35 

P3 6,59 7,10 6,38 6,08 7,55 7,33 6,79 5,71 5,71 6,65 0,60 

P4  6,85 5,60 5,94 6,60 6,60  5,72 5,72 6,17 0,50 

O1 6,62 7,28 5,80 5,98 7,62 6,89 7,59 6,87 6,87 6,73 0,70 

O2 6,39 7,32 6,05 6,02 7,23 6,95 7,11 7,42 7,42 6,75 0,57 

 

These results have been compared with alpha band (8-16 Hz) filtered EEG 

signals’ correlation dimensions which are given in table 6.3 and 6.5 for eyes opened and 

closed, respectively. 

 

Table 6.3 Correlation dimensions for eyes opened alpha band filtered. 

Ga Sb01 Sb02 Sb03 Sb04 Sb05 Sb06 Sb07 Sb09 Sb10 Mean St.dev

F3 5,80 5,46 5,46 5,86 5,71 5,50 5,73 5,51 5,31 5,59 0,19 

F4 5,33 5,40 5,61 5,99 5,60 5,48 5,53 5,48 5,68 5,57 0,19 

C3 6,05 5,82 5,60 5,57 5,37 5,54 5,35 5,60 5,30 5,58 0,24 

C4 5,80 5,31 5,66 5,25 5,57 5,55 5,50 5,85 5,49 5,55 0,20 

P3 5,70 5,60 5,01 5,49 5,71 5,55 6,05 5,95 5,79 5,65 0,30 

P4  5,57 5,66 5,00 5,58 5,75  5,50 5,39 5,49 0,25 

O1 5,44 5,56 5,24 5,36 5,91 6,08 5,76 5,80 5,95 5,68 0,29 

O2 5,40 5,69 5,69 5,25 5,48 6,83 6,12 5,56 5,96 5,66 0,28 
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Table 6.4 Correlation dimensions for eyes closed condition. 

Gk Sb01 Sb02 Sb03 Sb04 Sb05 Sb06 Sb07 Sb09 Sb10 Mean St.dev

F3 7,02 6,35 7,22 7,09 7,75 6,83 7,02 7,37 6,19 6,98 0,48 

F4 6,60 6,50 5,4 6,84 6,65 6,63 7,21 5,15 5,82 6,31 0,69 

C3 7,25 6,45 6,61 7,59 4,58 6,83 7,95 7,44 6,40 6,79 0,99 

C4 6,80 6,30 7,34 7,08 6,36 7,25 7,14 7,72 5,90 6,88 0,58 

P3 6,61 7,18 6,65 7,10 7,42 7,18 7,14 6,86 5,80 6,88 0,48 

P4  6,55 5,26 6,62 6,38 7,10  7,92 5,04 6,41 1,00 

O1 6,82 6,75 6,90 5,93 7,31 6,80 6,95 6,82 5,82 6,68 0,48 

O2 6,53 6,82 6,77 6,82 6,71 6,65 6,79 7,43 5,85 6,71 0,41 

 

 

 

Table 6.5 Correlation dimensions for eyes closed alpha band filtered signals. 

Gk Sb01 Sb02 Sb03 Sb04 Sb05 Sb06 Sb07 Sb09 Sb10 Mean St.dev

F3 5,30 5,59 5,66 5,51 5,59 5,63 5,75 5,72 5,57 5,59 0,13 

F4 5,32 6,01 4,30 5,62 5,70 5,42 5,74 5,16 5,09 5,37 0,50 

C3 5,15 5,71 5,69 5,57 4,52 5,33 5,80 5,46 5,49 5,41 0,39 

C4 5,46 5,98 6,12 5,35 5,49 5,41 5,95 5,65 5,23 5,63 0,32 

P3 5,60 5,58 5,56 5,42 5,67 5,65 5,42 5,48 5,22 5,51 0,14 

P4  5,68 4,35 5,48 5,55 5,60  5,80 5,25 5,39 0,49 

O1 5,68 5,60 5,39 5,52 5,86 5,51 5,44 5,73 5,10 5,54 0,22 

O2 5,61 6,40 5,22 5,25 5,40 5,22 5,48 5,49 5,11 5,46 0,39 
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Figure 6.1 Trajectory of 5 sec. data taken from electrode O1 of mean of 9 subjects for 

eyes opened condition with time lag T = 30 
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Figure 6.2 Trajectory of 5 sec. data taken from electrode O1 of mean of 9 subjects for 

eyes closed condition with time lag T = 30 
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Figure 6.3 The trajectory of 5 second eyes opened alpha band filtered response, T = 30. 

  

-5

0

5 -5

0

5
-5

0

5

Trajectory for Eyes Closed Alpha Band Filtered

 

 Figure 6.4 The trajectory of 5 second eyes closed alpha band filtered response, T = 30. 
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6.3.2 Comparison of the results  

 

In these observations there are two critical situations that are used while 

classifying the dimensions. The first is conditions of opened and closed eyes and the 

second is correlation dimensions of alpha band filtered signals.  To close the eyes 

causes an explosion of oscillations in parietal and occipital lobes of the brain since these 

lobes are sensitive to visual activities. Therefore, investigating D2 for the eyes opened 

and closed conditions is an important comparison study for EEG signals and to 

investigate the dimensions for parietal and occipital lobes are more meaningful. Since 

the frequency spectrum is more concentrated near 10 Hz when the eyes have been 

closed, to investigate the dimension variation for alpha band filtered signals is expected 

to give sharper variation that is why correlation dimensions of specific frequency band 

are evaluated. The mean values have been used as comparison because comparing 

individual dimension results do not give a clue for classification. Indeed, it is seen that 

for electrode O1, an average D2=6,73 while eyes closed case D2=6,68 and similarly for 

electrode O2, D2=6,75 whereas D2=6,71 when eyes are closed. One can say that the 

results are near to each other but when the alpha band results are compared, it is 

observed that for O1, D2=5,68 for eyes opened and D2=5,54 for eyes closed and 

similarly for O2, D2=5,66 for eyes opened and D2=5,46 for eyes closed. It is quite clear 

that there is a sharper difference among the signals eyes opened and eyes closed.  

This result is not surprising because, when eyes closed the stationarity of the 

signal increase, it becomes more periodic and it causes the complexity to decrease and 

these results reflect to the dimensions.  
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CHAPTER 7

CONCLUSION

In this thesis, the necessary methods for analyzing observed chaotic data have

been given. Since the chaotic signals have broadband power spectrum, they can not be

analyzed only by finding resonant frequencies where they are used as invariants of

linear systems. Classification has been realized by computing the correlation

dimensions and wavelet entropies of EEG signals which exhibit high dimensional

chaotic behavior.

The phase space reconstruction is the critical part of the analysis and there exist

several methods to determine embedding dimension and the time delay which are the

parameters of the reconstruction and they affect the results of invariant measures

directly.

Due to any noise contamination causes to estimate divergent invariant measures,

the noise reduction from chaotic signals has a vital importance. Since there is no fore-

knowledge about the signal, the blind source separation techniques have been used. The

common methods are principle component analysis (PCA) and singular value

decomposition (SVD). The noise is eliminated by detecting the size of the subspace

related with noise free signal. SVD based method has been proposed to estimate the

rank of the diagonal singular value submatrix which is related to noise free signal. After

the threshold has been determined, the lower singular values have been truncated and

effect of noise due to orthogonality has been eliminated on the remaining singular

values. Furthermore, as a result of proposed rank estimation method it has been

observed that the proper value of the embedding order of noisy matrix is 2D2+1 which

confirms the condition given in embedding theorem. When these procedures have been

completed, time series is ready to be processed for classification.

Wavelet transform is quite preferable to observe time-frequency distribution of

signals. The energy of a signal distributed in time frequency plane is represented by

scalogram so that the stationarity of signal can be determined. The classification using

wavelet analysis has been performed by wavelet ridges and wavelet entropy where the

wavelet entropy represents the energy density in a certain frequency band and it is based

on relative wavelet energies. Wavelet ridge is the wavelet transform of a signal
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evaluated at the ridge points where the ridge points are determined by phase based or

modulus based methods. The results of simple method which is one of the modulus

based methods have been represented for EEG signals for open and closed eyes

conditions. It is observed that when the eyes are closed the ridge patterns are gathered

near to 10 Hz, (i.e., alpha band) whereas there is more dispersed patterns for opened

eyes case. The variation of pattern distribution is a good classification tool for

experimental signals. Another application, wavelet entropy gives the energy density

distribution for frequency localized signals after the result of wavelet decomposition. It

is observed that the relative wavelet energy of alpha band has a significant increase

when the eyes are closed. The entropy is lower for eyes closed than eyes opened. This

shows that when the eyes are closed, the complexity of signal decreases, alpha band

becomes the dominant part of the total signal whereas the signal is more distributed

among the other frequency bands for eyes opened.

Another classification parameter used in the thesis has been correlation

dimension which is most widely used classification parameter in EEG research.

Dimensionality of brain has been evaluated for all channels and two cases of eyes

closed and opened. The results indicate that when eyes are closed, the correlation

dimension of signals observed from parietal and occipital regions decrease relatively.

When the alpha band is individually observed, clearer attractor structure is seen. But

this complexity decrease is not as much as other state transitions such as transition to

pathological state from healthy state or transition between different sleep states because

the characteristic of spontaneous EEG for opened and closed eyes does not significantly

change like the other conditions. The correlation dimension difference gives a clue

about state transitions (i.e., bifurcations) in the brain and at which conditions

complexity changes. To make chaos analysis for event related potentials( ERP) or

evoked potentials (EP) which are stimulus based observations, is not possible because in

order to determine correlation dimension properly, long time recordings are needed so

that the trajectory will suffice to observe unchanged invariant measure by the time.

Therefore, chaos analysis on EEG signals in the thesis has been made for spontaneous

activity that contains the experiments of opened and closed eye conditions and for

pathological and sleeps EEG signals.

 The remaining applications on analysis of experimental chaotic time series is  to

develop models to increase the prediction time and to study on  specified methods of

discriminating interfered chaotic time series by using support vector machines.
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