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Optimal trajectory design of a probe for soft landing on the Moon from a lunar parking orbit by
minimizing the fuel required is obtained. The problem is formulated as an optimal control problem
with the thrust direction being the control variable. Using the maximum principle of Pontryagin,
the control variable is expressed as a function of co-state variables and the problem is converted
into a two-point boundary value problem. The two-point boundary value problem is solved using
an optimization technique, i.e., controlled random search. The strategies such as

• direct landing from a lunar parking orbit using powered braking
• direct landing from an intermediate orbit using powered braking
• by executing powered braking in two phases: through horizontal braking and vertical landing

are analyzed and an optimal strategy that achieves the goals is suggested. Also, appropriate design
parameters are selected using this analysis.

1. Introduction

With the revival of interest in the scientific explo-
ration of the Moon, several new missions are under
study by various space agencies. To unravel the
topological and morphological mysteries of the
Moon, lander missions (Kawakatsu et al 1998;
Oono et al 1998) are also being considered. In order
to achieve the goals of a lander mission, it is nec-
essary to ensure soft landing of the probe, which
generally requires the vertical touch down velocity
to be around 5m/s to ensure the safety of the
scientific instruments.

Conventionally, landing is initiated from a lunar
parking orbit. Since the Moon does not have any
appreciable atmosphere, the orbital velocity must
be neutralized by appropriate motors/thrusters,
a process known as powered braking. To maxi-
mize the probe mass, it is essential that the velo-
city reduction is fuel-optimal. The direction of the
thrust must be appropriately varied to ensure soft
landing with minimum fuel expenditure. These

fuel optimal soft landing trajectories are obtained
by formulating the problem as an optimal con-
trol problem with the thrust direction angle as
the control variable. Vasile and Flobergghagen
(1998) followed a temporal finite element method
to solve the optimal control problem. In this
paper, the optimal profile of the thrust direction is
obtained by converting it into a two-point bound-
ary value problem using Pontryagin’s maximum
principle (Kirk 1970). The solution of the two-
point boundary value problem is obtained using an
optimization technique known as controlled ran-
dom search (Price 1983; Subba Rao and Ramanan
1992). The approach for the solution is discussed in
detail.

In addition to the touch down velocity require-
ment for soft landing, it is essential that the craft
lands vertically on the surface of the Moon. Dif-
ferent strategies are explored to identify a suit-
able strategy that achieves such mission goals. The
soft landing can be achieved by powered breaking
through many strategies:
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• by initiating the powered braking from the lunar
parking orbit itself and directly landing,

• by initiating powered braking from an interme-
diate orbit and directly landing and

• by splitting the powered braking into two phases,

(i) powered horizontal braking phase that ends
at a low altitude with a small vertical velo-
city and

(ii) a vertical descent phase ensuring the
required touch down velocity.

The merits and demerits of these strategies are
discussed. Some design parameters such as

• initial thrust to mass ratio,
• initial intermediate orbit size from which hori-

zontal braking phase starts and
• altitude and velocity at the end of powered brak-

ing, etc., play a critical role in achieving fuel-
optimal trajectories.

They must be appropriately chosen to achieve
the mission goals. This paper addresses these issues
and suggests an optimal strategy with appropriate
design parameters for a typical soft landing.

2. Solution process

2.1 Problem description

A space probe in an orbit around the Moon is to be
landed on the Moon with near-zero velocity mini-
mizing the fuel expenditure, viz., in minimum time.

2.2 Assumptions

• Target landing location is assumed to be in the
orbital plane.

• Gravity field of the Moon is considered as
spherical.

Figure 1. Lander probe under thrusting.

The spherical gravity field is adequate because
flight time is about 1000 seconds only and the effect
of non-spherical gravity field is negligible. Further,
the non-spherical field, if included, the simplicity
of the solution procedure will be lost.

2.3 Governing equations

The planar motion of the lander probe is repre-
sented by the variables, r, ϕ, u, v where r is the
radial distance from the center of the Moon; ϕ is
the range angle or true anomaly; u is the horizontal
velocity; and v is the vertical velocity. The equa-
tions describing the motion of the probe under the
gravity of the Moon and the acceleration due to
the thrust are

ṙ = v, (1)

φ̇ =
u

r
, (2)

u̇ = −uv

r
+

T

M
cos β, (3)

v̇ =
u2

r
− µ

r2
+

T

M
sin β, (4)

where T is the thrust acting on the spacecraft, M
is the instantaneous mass of the spacecraft and β
is the control angle measured clockwise (figure 1)
from the local horizontal to the thrust direction.

2.4 Optimal control problem

In order to obtain the control variable pro-
file, Lagrange multipliers, also known as co-state
variables are introduced. Let pr, pϕ, pu, pv be
the co-state variables. Following the principles of
Pontryagin, the Hamiltonian is formed as

H = prṙ + pφφ̇ + puu̇ + pvv̇ (5)

and the equations governing the variations in the
co-state variables are given by

ṗr = −∂H

∂r
, ṗφ = −∂H

∂φ
,

ṗu = −∂H

∂u
, ṗv = −∂H

∂v
, (6)

and derived as

ṗr =
pφu

r2
+ pv

[
u2

r2

]
− puuv

r2
, (7)

ṗφ = 0, (8)

ṗu = −pφ

r
− 2pvu

r
+

puv

r
, (9)
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ṗv = −pr +
puu

r
. (10)

The optimal control angle profile is obtained by
minimizing the Hamiltonian at each instant of
time with respect to the control variable. Because
the control variable is unbounded in this case, the
Hamiltonian is minimum when

∂H

∂β
= 0, (11)

and the control variable is given by

β = tan−1

[
pv

pu

]
. (12)

Also, it can easily be verified that (∂2H/∂β2) > 0
and this condition and equation (11) are the neces-
sary and sufficient conditions for the Hamiltonian
to be minimum and the control to be optimum.

2.5 Two-Point Boundary Value (TPBV)
problem

To obtain the optimal profile for the thrust direc-
tion, the equations for the co-state variables are to
be solved, in addition to the governing equations
of motion. Though the initial values of the state
variables at the initial time (ti) are known, the ini-
tial values for the co-state variables are unknown
and they must be chosen appropriately. Also, the
terminal conditions on the state variables are spec-
ified except on the range angle. Since the time is
to be minimized and the range angle is related to
time, it is left as a free variable. The Pontryagin’s
principle requires that the terminal value of a co-
state variable corresponding to a free state variable
is to be zero at the final instant of time (tf ). So,
pφ(tf ) = 0. The other co-state variables are free at
the final instant of time (tf ) since the terminal con-
ditions of corresponding state variables are fixed.
Because of the equation (8), pφ(ti) = 0.

The optimal control problem which is converted
into a two-point boundary value problem is stated
as follows:

The differential equations (1)–(4) and (7)–(10)
are to be solved with the following boundary
conditions,

r(ti) = ri, ϕ(ti) = ϕi, u(ti) = ui, v(ti) = vi,

pr(ti) =?, pϕ(ti) = 0, pv(ti) =?, pu(ti) =?

r(tf ) = rf , ϕ(tf ) = free, u(tf ) = uf , v(tf ) = vf ,
pr(tf ) = free, pϕ(tf ) = 0, pv(tf ) = free, pu(tf ) =
free while the optimal thrust direction is described
by equation (12).

Figure 2. Profile of the altitude for an optimal landing
trajectory.

Since the Hamiltonian is homogeneous in co-
state variables, without loss of generality, one of
the co-state variables can be fixed at a value at the
initial time, which results in scaling of the other
two co-state variables.

2.6 Solution of Two-Point Boundary
Value (TPBV) problem

The solution of the problem is now obtained by
appropriate values for the co-state variables at the
initial time. This is achieved by an optimization
technique such as controlled random search. A ver-
sion of this search technique as presented in is
used. The functioning of this technique is briefly
described in the following section. The terminal
boundary conditions to be achieved are handled
through a function that is set as the objective func-
tion in these techniques. The objective function to
meet the terminal conditions at the final instant of
time is formulated as

F = (u(tf ) − uf )2 + (v(tf ) − vf )2. (13)

The function F must be zero if the terminal
conditions are to be met. Also, for the appropriate
choice of the co-state variables, bounds in which
they are likely to vary are to be given. For each
set of initial co-state values, the differential equa-
tions (1)–(4) and (7)–(10) are numerically inte-
grated with the optimal thrust direction described
by equation (12). The numerical integration is ter-
minated when the instantaneous radial distance (r)
equals the desired radial distance and the function
value is evaluated.
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Figure 3. Optimal thrust direction profile.

Figure 4. Components of velocity during powered braking.

2.7 Controlled Random Search (CRS):
Global optimization technique

The CRS algorithm is an effective tool for global
optimization. It works even when the differentia-
bility requirements cannot be ensured in the fea-
sible domain (V ). For initiating the algorithm, no
initial guess value, except for an estimate of V , is
needed. It works in two phases. In the first phase,
a set of N (suggested value is 10n + 10, n being
the number of variables involved) random feasible

Figure 5. Co-state variables and Hamiltonian for optimal
trajectory.

Figure 6. Optimal landing mass for different thrust levels.

points are generated from V , and F is evaluated at
each of these points and the information is stored
as matrix A of order (N,n + 1). The maximum
and minimum values FM , FL of F and the corre-
sponding points M and L are then identified. In
the second phase, these random points are mani-
pulated iteratively to yield a better candidate for
global solution. To this extent, at each iteration n
arbitrary distinct points are chosen from A. A new
point T = 2G − L, G being the centroid of these
points, is generated and if T is in V , then FT is
evaluated. If FT < FM , then FM and M in A are
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Table 1. Lunar parking orbit sizes and final landing masses. Strategy: Parking orbit → Inter-
mediate orbit → Powered landing phase.

Duration of Angle of longitudinal
Size of the lunar powered Landing axis from local

parking orbit (km) phase (s) mass (kg) horizontal (deg)∗

100 × 100 1036.99 149.766 124.638
100 × 50 1012.06 152.126 129.336
100 × 25 1001.14 153.144 132.041
100 × 20 999.128 153.323 132.607
100 × 15 997.146 153.498 133.185
100 × 10 995.210 153.671 133.773
100 × 5 993.340 153.845 134.372

∗Required angle is 90◦.

Table 2. Altitudes for the end of horizontal braking and the final masses. (Inter-
mediate orbit: 100 × 15 km; Horz. Vel: 0m/s; Vert. Vel: 50m/s).

At the end of horizontal braking

Target Duration of Angle of longitudinal
altitude horz. braking axis from local
(km) (s) Mass (kg) horizontal (deg)

1.0 976.48 156.757 136.972
2.0 975.75 156.864 137.147
3.0 975.01 156.970 137.284
4.0 974.28 157.076 137.461
5.0 973.56 157.181 137.638

Table 3. Optimal vertical velocities.

At the end of vertical
At the end of horizontal braking phase descent phase

Vertical
Altitude velocity Landing

(km) (m/s) Mass (kg) Time (s) mass (kg) Time (s)

3.0 61.05 157.406 970.514 150.271 49.107
4.0 70.55 157.985 966.065 149.764 56.669

replaced by FT and T . Otherwise, T is discarded
and a new T is generated. Treating any replace-
ment as a success and setting the minimum suc-
cess rate as 0.5, the efficiency of the procedure
is enhanced by making use of the secondary trial
point Q = (3G + L)/4. If T or Q is a success, a
third trial is also made with X = 2.5 (T or Q)
−1.5 L and the best (i.e., with the least F value) of
Tor Q or X is used for replacement. The iteration
continues till FL falls below the prefixed threshold
value.

3. Results and discussion

The functioning of the formulation is demonstrated
assuming 300 kg of mass in 100 km circular lunar
parking orbit. The other parameters used are:
440 N for the thruster and 310 s for specific impulse.

The powered braking during which optimal control
is exercised starts from the periapsis of 100 × 15 km
orbit. Terminal vertical velocity of 5m/s and a hor-
izontal velocity of 0m/s are the conditions achieved
at touchdown. The altitude profile of the opti-
mal trajectory is plotted in figure 2. Initially the
altitude of the probe rises to maximize horizontal
braking that minimizes the gravity loss. The profile
of the thrust direction is plotted in figure 3. The
near linear variation of the profile can be noted.
The horizontal and vertical velocities are depicted
in figure 4. The co-states and Hamiltonian are plot-
ted in figure 5. Clearly, the Hamiltonian is invariant
as required by Pontryagin’s maximum principle on
the optimal trajectory.

Because a landing mission requires vertical
landing, apart from near-zero velocities at the time
of touchdown, different strategies are explored to
identify an appropriate one.
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The following strategies are studied for soft
landing on the Moon:

• by initiating the powered braking from the lunar
parking orbit itself and directly landing,

• by initiating powered braking from an interme-
diate orbit and directly landing,

• by splitting the powered braking into two phases:
(i) powered horizontal braking phase that ends
at a low altitude with a small vertical veloc-
ity and a zero horizontal velocity (ii) a vertical
descent phase ensuring the required touchdown
velocity.

The merits and demerits of the strategies are
discussed.

3.1 Strategy: Parking orbit→powered
landing phase

A direct landing with a target vertical veloc-
ity of 5 m/s at touchdown is attempted from a
100 × 100 km orbit. In this case, the powered brak-
ing starts from an altitude of 100 km. The opti-
mal landing masses for different thrust levels are
plotted in figure 2. The thrust level that yields a
maximum optimal landing mass is 700 N. However,
the thrust level of presently available Indian engine
being 440 N, the options available are restricted to
440 N and 880 N (two engines) thrusters. Though
the landing mass is about 7 kg more for 880 N
thrusters, the dry mass requirements of the second
engine being about 10 kg, the useful landing mass
becomes less. So, in this case single 440 N thruster
gives the optimal useful landing mass of 149.766 kg
and the propellant consumption is 150.234 kg.
However, the orientation of the longitudinal axis
(thrust direction) of the probe from the local hori-
zontal at touchdown is 124.638 deg (table 1) imply-
ing that vertical touchdown is not possible with
this strategy.

3.2 Strategy: Parking orbit→intermediate
orbit→powered landing phase

The use of intermediate orbits in increasing the
optimal landing mass is discussed in this section.
Various intermediate orbit sizes are considered
with a 440 N thruster and a touchdown velocity of
5 m/s. Powered braking starts from the periapsis
of the intermediate orbit. Table 1 presents the final
landing masses for these orbit sizes. It is clear that
the strategy of initiating the horizontal braking
from an intermediate orbit is advantageous. This
provides about 4 kg of additional optimal landing
mass compared to the strategy of initiating the
braking from the parking orbit itself. Also, only
a marginal increase is obtained by reducing the

periapsis of the intermediate orbit. So, the interme-
diate orbit size is chosen depending on the actual
mission navigation accuracy and safety require-
ments. For further studies an intermediate orbit
size of 100 × 15 km is considered. The mass at this
orbit is 298.087 kg after 1.92 kg of fuel is spent for
orbit reduction from 100 × 100 km orbit. The ori-
entation of the longitudinal axis (thrust direction)
of the probe from the local horizontal at touchdown
is also given in table 1. They are much different
from the required ones for the vertical landing. For
vertical landing, the longitudinal axis that is per-
pendicular to the plane of the landing gear must
be along the local vertical.

3.3 Strategy: Parking orbit→intermediate
orbit→powered horizontal braking→
landing by powered vertical phase

The above two strategies do not satisfy the require-
ment for vertical landing. So, the powered braking
is executed in two phases:

• powered horizontal braking phase
• vertical landing phase.

Powered horizontal braking phase is initiated from
the periapsis of an intermediate orbit and is ter-
minated at a low altitude above the surface of
the Moon. In this phase, the horizontal component
of the velocity is neutralized and a small target
vertical velocity is achieved. This target vertical
velocity is also neutralized during the powered
vertical phase. Since vertical landing phase requires
a constant attitude of 90◦, appropriate target ver-
tical velocity is chosen using the formulation that
ensures constant orientation. At the end of horizon-
tal powered braking, the probe’s attitude makes an
angle of 50◦ with respect to local vertical. Required
attitude correction is carried out before the start of
the vertical landing. The altitude and the vertical
velocity at the end of horizontal braking must be
appropriately chosen to meet the mission accuracy
and safety requirements.

3.3.1 Target altitude at the end
of horizontal braking

For various target altitudes at which the zero hori-
zontal velocity is achieved and horizontal braking is
terminated, the optimal masses are given in table 2.
Also the thrust direction angle at the end of hori-
zontal braking is given. The target vertical velocity
that is to be achieved at the end of horizontal brak-
ing is taken as 50 m/s for this analysis. The varia-
tion in the optimal masses at the end of horizontal
braking is only marginal and also the attitude cor-
rection requirements remain almost the same for
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all the cases. So, the sensitivity of the target condi-
tions at the end of horizontal braking to the error
sources like bias in accelerometer and gyros, uncer-
tainties in periapsis altitude, etc., should be studied
to fix a target altitude. The target altitude must
be chosen to accommodate the expected errors in
altitude and velocity. A terminal altitude of 3 km
and 4 km is considered for further analysis.

3.3.2 Target velocity at the end of
horizontal braking

The vertical velocity at the end of horizontal pow-
ered braking must be chosen such that the atti-
tude correction requirements do not exist during
vertical descent. Table 3 presents the optimal ver-
tical velocities for the target altitudes 3 and 4 km.
These are obtained by generating optimal trajec-
tories in both the phases in an iterative manner.
An altitude of 2 m and a velocity of 0m/s are set
as the targets to be achieved at the end of the
vertical landing phase. After this, the probe has
a free fall ensuring a touchdown velocity of about
5 m/s. If 3 km is the choice for the end of hori-
zontal braking, a target velocity of 61.05 m/s is
to be achieved to enable a vertical descent with
no attitude manoeuver. That is, any other target
velocity will involve attitude orientation manoeu-
vers during vertical descent. Similarly, a 4 km tar-
get altitude requires a target vertical velocity of
70.55 m/s at the end of horizontal braking. The
landing mass in these cases differs by 0.5 kg. How-
ever, the time required for the thrust direction
angle correction for the start of vertical descent and
the velocity added to the probe during this time is
not accounted in this study. But this can be easily
incorporated by choosing conditions at the end of
horizontal braking appropriately.

This strategy yields an optimal lander mass of
150.271 kg compared to 153.498 kg of the second
strategy. Though the optimal lander mass is 3.2 kg
less, the vertical soft landing requires adaptation
of this strategy.

4. Conclusions

The optimal control problem of soft landing a
probe from a lunar parking orbit is solved. This
formulation is used to analyse various strategies for
vertical soft landing and to fix some of the design
parameters:

• thrust level,
• intermediate orbit size,
• altitude at the end of horizontal braking phase

and
• velocity at the end of horizontal braking that

involves no control effort during the vertical
descent phase.

These design parameters ensure maximum lan-
ding mass. The strategy: parking orbit→interme-
diate orbit→powered horizontal braking→landing
by powered vertical phase, yields the maximum
optimal landing mass satisfying landing require-
ments. For other probe masses a similar analysis
can be carried out with the recommended strategy
and the design parameters can be chosen.
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