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ABSTRACT

Title of Thesis: Analysis of Oscillations in Nonlinear Systems Using
Multiple Input Describing Functions

Frederic L. Swern, Doctor of Engineering Science, 1981
Thesis Directed by: Dr. A. U. Meyer, Professor of Electrical Engineering

Dr. D. Blackmore, Associate Professor of Mathematics

Sufficient conditions for oscillation as well as absence of oscil-
lations are presented for a class of systems containing one lumped
Tinear element and a differentiable nonlinearity. The results are
obtained by estimating the error inherent in using a describing function
analysis. Contraction type arguments aré used to show common topological
properties of the describing function solution and the balance of first

harmonic terms of the system.

After discussing the describing function method, two theorems are
presented regarding existence or nonexistence of oscillations from homo-
topic considerations. A graphical method for examining systems with
power law nonlinearities is given using a parameter plane of frequency
and amplitude. As an example, the method is applied to the Van der Pol
oscillator when the linear element is sufficiently low pass. An analy-
tical method is derived that is particularly easy to apply in the design

of power law oscillators.

It is shown that multiple input describing functions may be used
in some cases for which the describing function method is inconclusive.
The results obtained in estimating the amplitude and frequency of oscil-
lation using dual input describing functions are compared to their single

input counterparts for a number of eXamp1es;



The class of nonlinearities for which the methods may be applied
includes polynomial functions. It is shown that one can also apply
similar techniques to systems containing jump discontinuities when the
nonlinear element can be approximated arbitrarily closely by a continu~
ous function. One can say that such a function is almost continuous.

An ideal relay, a relay with deadzone and a staircase function are
analyzed in this manner. In some systems, improved results are obtained
by representing the nonlinearity as the sum of a bounded almost contin-

uous function and a polynomial.

A11 of the methods developed have been computerized. Numerous

examples are presented to illustrate the application of the methods.
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CHAPTER 1
INTRODUCTION

In the field of automatic control, the study of system behavior
under a variety of initial conditions is often crucial to successful
design. One seeks to build a stable system; in a practical sense,
this may mean that under all conaitions of operation, the system is
free of self-oscillations. Conversely, when one designs an oscillator,

this may mean all conditions lead to a self-oScil]a;ion. ;

When a system is linear, the problem has been completely solved -
by such techniques as nyquist plots and root Tocus. However, non-
linear systems exhibit phenomena that are entirely absent from their
Tinear counterparts. To begin with, these systems can have drastically
different behavior at different points in state space; when the basic
form of the solution changes, this is called bifurcation. Moreover,

one is rarely able to find a solution for such a system in closed form.

One of the most popular methods of dealing with nonlinear systems
is describing function (DF) analysis, an easy to apply method that
gives approximate information. Some degree of intuition must be used

to decide whether or not a system will oscillate.

Mathematicians have developed topological and functional analysis
techniques for examining the qualitative properties of solutions to a
nonlinear differential equation. In certain cases these methods may
be applied to answer the question of whether or not a solution of a
specific form exists, but it may tell 1ittle about the numerical values
associated with it. The techniques to be used include fixed point

theorems and topological degree.

1



The goal of this study is to obtain conditions under which the
oscillatory properties of a system may be rigorously ascertained. In
addition,when a 1imit cycle exists, it is desired to estimate a region
in some suitable parameter space, as small as possible, that contains
the oscillation. As a basis for the analysis, describing functions will

be used.

Some work has already been done toward substantiating the describ-
ing function method analytically [10, 15-19, 45, 51]. In particular,
the work of Mees and Bergen [93] provides conditions for oscillation
in cases when the sTope of the nonlinearity is bounded. Most other
results to date deal with systems containing a bounded nonlinearity,

or a nonlinearity with bounded derivative.

The present work deals with systems containing a differentiable
nonlinearity, but its derivative is not necessarily bounded. A Van der
Pol oscillator is an example of a system of this type. In addition,
certain discontinuities in the derivative of a nonlinearity will be
allowed so that systems that are "almost" discontinuous in a sense to
be described Tater may be examined. Multiple input describing functions

will be used to improve the results.

The application of the new methods may result in expressions that
are difficult to evaluate by hand. It was always intended that a digi-
tal computer would be used to translate the problem into a form useful
for analysis or design. Many of the results can be presented graphi-
cally in some parameter space, so that the user might be better able

to interpret them.



Chapter II gives a review of the current state of the art. 1In
Section A relevant mathematical terminology, including that involving
state space, periodic solutions and describing functions, are.covered
along with other pertinent concepts from classical stability theory.
Section B covers more mathematical background necessary including the
concepts of metric spaces, Banach spaces, fixed points and areas of
functional analysis. A review of recent work done in oscillation

theory is given in Section C.

Chapter III contains a detailed description of the problem. In
Section A the system to be studied is defined. Describing functions
are rigorously defined in Section B. Section C contains two basic
theorems that will be used throughout the work to analyze the existence
or nonexistence of oscillations from homotopic considerations. A1l

three subsections define notation used in the remaining sections.

A graphical method for examining systems for power law nonlineari-
ties is given in Chapter IV, It is shown that, if the linear element
is sufficiently low pass, the technique will yield useful results.

I1lustrative examples are included.

Chapter V gives an analytic method which, while more conservative
than the method of the previous chapter, is very easy to apply. It

appears to be useful in designing oscillators.

The basic results are expanded in Chapter VI. A theorem is pre-
sented in Section A for proving oscillations with multiple input de-

scribing functions. Results obtained with dual input describing



functions are compared to their single input counterparts. Section B
deals with extending the results to nonlinearities that may be repre-

sented by polynomials.

Some systems with jump discontinuities can be approximated by
continuous systems. The analysis of these systems is covered in
Chapter VII. It is shown that an ideal relay, a relay with deadzone,
and a staircase function can all be analyzed using the methods outlined
in Chapter III. Some of the techniques are applied to nonlinearities

which are the sum of a staircase function and a polynomial.

Chapter VIII is the final chapter and contains some conclusions

based upon the work done and recommendations for future study.



CHAPTER I1
REVIEW OF THE STATE OF THE ART

A. Stability Theory

Attention is focused upon a system that is autonomous and time-
invariant. Let the state of the system be defined as a set of numbers
that uniquely represents the condition of the system at a given instant.
Then a Euclidean n-space X which represents the change in state with
time is called a state Space. If the co-ordinates of X are represented

by X1s Xgs wons X then the system may often be represented by the set

n’
of n first order differential equations

dxi

el fs (x1, Xos «oes xn); i=1,2, ....n (2-1)

which is eguivalent to the vector differential equation

x = - f (x). (2-2)

Consider a point x, in state space. The function f(x) is said to
satisfy a Lipschitz condition at x = go if there exists positive

numbers o and B such that
M () - F ()] <o llx - %l (2-3)

provided that ||x - §o|| < B. Llet a solution of (2-2) passing through
X, at t = 0 be denoted by x = & (X,> t). It can be shown [100], [107]
that a sufficient condition for the existence of a unique solution is

that f(x) satisfy a Lipschitz condition about X .



When the solution x = & (50, t) is plotted in n-dimensional space, it
is called a trajectory. If the entire trajectory passing through a
point consists of the point itself, then the point is a singular point
of the differential equation and an equilibrium point of the system.

Singular points are solutions of the equation
f(xg) = 0. (2-4)

The concept of stability of a singular point was rigorously
formulated by the Russian mathematician A. M. Lyapunoy shortly before
the turn of the century [69]. Singular points are either stable, if
all trajectories in a neighborhood of the point stay within a neigh-
borhood of the point,br unstable if some trajectories starting within
any neighborhood of a point Teave this neighborhood. More precisely,
for stability, if & and € are positive numbers, where & depends on €,

then
% = 201 s8> 118 (t, %) - %, 1] <&, ¥t > 0 (<0) (2-5)

If, in addition to being stable, the trajectories within a neighbor-
hood of a singular point converge to that point as t » =, then the
point is asymptoticaily stable. The stability of a singular point
can be ascertained from perturbation analysis (Lyapunov's first
method) . by examining the eigenvalues of the system

_ 9f(x) SX (2-6)

o
oxX

and using standard linear analysis techniques.



While perturbation analysis is sufficient to examine the stability
of a point, it is not sufficient to show giobal stability of a system
or even stability in some large region of operation. In these cases
Lyapunov's second {or direct) method may be applied. The appeal of this
method Ties in the fact that the system trajectory need not be known

explicitly to apply it.

Consider a system whose total energy function is known. If it cdn
be shown that, in some region (possibly global), the energy is always
decreasing with time, then the motion of the system must tend
toward a singie equilibrium state contained in the region. Lyapunov
generalized this concept to substitute -for the energy of the system a
scalar function V(x) that is continuous and has continuous derivatives

and in addition, within some region,
v(0) = 0; V(x) >0, ¥x # 0. (2-7)

Mathematically, such a function is termed positive definite in the
region. The equilibrium state is stable within. the region if, in

addition,
V(0) = 0; V(x) <0, ¥x # 0 (2-8)

or the time derivative of V is negative semi-definite. A function V(§)
that satisfies the continuity conditions and (2-7), (2-8) is called a
Lyapunov function. By translating the state plane so that the equili-
brium state of the system is at the origin, this approach may be used

to examine the stability of an arbitrary system.



The main drawback to the approach is that there is no general
method of determining the existence of Lyapunov functions for arbitrary
systems. However, when such functions can be found, it is the most

general method of stability analysis available [107].

Let the system motion start at some arbitrary point in state space;
then, for a system of engineering interest, there are four possibilities
for the resulting trajectory. It can tend toward a singular point, it
can tend toward infinity, it can tend toward a closed trajectory, or it
can itself be a closed trajectory. The last case represents curves
which, 1ike singular points, are steady state solutions of the system.

If all trajectories in the vicinity of a closed curve trajectory (other
than the closed trajectory) of a system are not themselves closed curves,

then the closed curve is called a 1imit cycle.

If a system admits a periodic solution, then, for any Xq On this

solution and all t,
E(t3 )_(0) = E(t - T, )-(0) (2-9)

(where T > o is the period) and hence the trajectory in state space is
closed. It is possible for such a system to be conservative (i.e., the
total energy of the system remains constant, as in an LC circuit) and
the motion is represented by an infinite number of closed curves in the
phase plane. However, most of the systems to be studied do not have
the conservative property and their periodic solutions can be repre-

sented in the phase plane as limit cycles.

The definition of stabi1it& and instability in the sense of Lyapunov

can be extended from singular points to limit cycles. When the trajectory



starts slightly perturbed from the 1imit cycle, it may stay in some
neighborhood of it, or not. In the former case, one has a stable limit
cycle, and in the latter case an unstable one. MNote also that a Timit
cycle may be semi-stable; stable if approached from one direction in
the state plane and unstable if approached from another. If a periodic
solution is known for a system, then its stability can be checked by

perturbation analysis.

Work on the existence or non-existence of Timit cycles has'yielded
a reasonably general theory only in the case of second order systemé.
Such systems are easier to analyze because of their geometric simplicity
in state space. A theorem of Poincaré and Bendixson states that, in the
state plane of a second order system, if a trajectory remains inside a
_finite region and does not approach a singular point, it must approach

a 1imit cycle or itself be periodic [69].

A theorem by Bendixson gives a sufficient condition for nonexis-
tence of limit cycles in planar (second order) differential equations.

Let the system be described by
X = fp (X, Xp)s Xy = 5 (Xg5 Xp). (2-10)

/
If, for some region, 3f1/8x1 + sz/af2 does not change sign, then no

Timit cycle can exist within that region [174].

Another method due to Poincare for showing oscillations in a planar
differential equation is the use of 'successor functions'. Successor
functions are mappings of the intersection of a trajectory and some

fixed transverse hyperplane into the next intersection of the trajectory
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with the same hyperplane. As an example, let it be assumed that a second
order system has a solution dependent on a parameter, A, and, when X = o,

the solution is a circle in the phase plane.

If the motion starts at some point o2 where r is a distance mea-
sured along a particular arc, then the distance between successive inter-
sections of the arc and the trajectory is denoted as ¥. For the tra-

jectory to be periodic,
!

v (rgs A) =r (1, rg, ) -r (o, 1, A) = o. (2-11)

That is, at the end of one complete cycle the trajectory should return
to its étarting point. By expanding ¢ as a power series in the para-
meters r, A one can find periodicity equations by direct substitﬁtion.
The main difficulty with the method is that solving for coefficients of

the power series is only possible in very simple cases [100].

While the Poincare-Bendixon theorem can only be used to show Timit
cycles in the planar case, the principle of the torus may be used to
topologically demonstrate 1imit cycles in n dimensional state space.
Let there be defined a toroidal region in state space, which contains
no equilibrium state, such that all trajectories pass through the bound-
aries of the torus and remain inside as time increases. It is possible
to take a cross sectional slice of the torus that is perpendicular to
the assumed direction of the closed trajectory, call it S. If it can
be shown that all trajectories passing through S at some time, say to,
move around the torus in such a manner as to intersect S at time ty + T
and further S is homeomorphic to a ball of dimension (n - 1), then (by
Brouwer's fixed_point theorem) there exists a trajectory that closes

upon itself, or a periodic solution [121].
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One of the most popular engineering methods for examining periodic
motion is the describing function method. A solution of the form (2-9)

can be represented by a fourier series

x(t) = Z% 2, cos (Zﬁft + Bk) (2-12)
k= -

where a and ek are constants that depend on the system structure and
Xo In this case x is a scalar that represents only one component of
the state vector. It is assumed that (2-12) may be approximated by

2nt
It

x(t) = a cos ( (2-13)

This is substituted into the differential equation of the system and
the constants a and Tt are computed. It is assumed that the frequency
response of the linear elements of the system is such that the higher
harmonics generated by the nonlinearity are sufficiently attenuated and
may be neglected. Then the 'equivalent gain' of a nonlinear element to
a sinusoidal signal of frequency w = 2w/t is computed as a function of
the amplitude a. This is substituted in the differential equation of

the system and the resulting equations solved.

As an example, if a system contains one nonlinear element repre-
sented by n(x) and one linear element represented by G(s), then the
describing function N(a) for the nonlinearity is

2m
N(a) = %%— é' e"38 n(a cosd) do. (2-14)

The describing function method states that if the equation

[6(jo) N(3) +1148 =0 (2-15)
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has a solution (a, 5) then the system 'probably' has a 1imit cycle close
in frequency and amplitude to (8, 3). Conversely, if no solution exists

other than a = 0, the system 'probably' has no Timit cycle oscillations

[69].

It is possible to consider two or more harmonically related fre-
quencies when using the describing function method. A two harmonic or
dual input describing function uses two complex equations of the form
(2-15) to solve for fourier coefficients both at the fundamental and

higher harmonic frequencies [69].

A system capable of sustaining limit cycle behavior may have dif-
ferent self-excitation properties. If all trajectories (except for the
singular points) lead to a stable 1imit cycle, the system is said to
exhibit soft self-oscillation. However, if only trajectories within a
certain region of state space lead to a stable Timit cycle, then the
system exhibits hard self-oscillation. The minimum value of initial
" conditions (when the initial éonditions may be stated as some displace-

ment of the system) is termed the threshold value [100].

The domain of attraction of a singular point is also of interest
because, if it can be shown to be global, then no limit cycles can
exist. The absolute stability problem was proposed by Lur'e and
Postnikov for studying autonomous systems. They studied a system that
is linear except for a single nonlinear element n(x) which is restricted

by the inequality
xn(x) > 0. (2-16)

Such a system is shown in Figure 2-1, and is sometimes called a 'direct'’

control system to distinguish it from other configurations studied later



13

WILSAS TOYLNOD 123¥Id

" (-)u

L-¢ 3¥n9Id

(s)9

i




14

by Lasalle, Lefschetz and Popov [69]. Lur'e proposed finding constraints
on the linear element, G(s), such that the system would be stable for

any nonlinear element n(x) [107].

A significant contribution of Lur'e and Postnikov is the introduc-

tion of the candidate Lyapunov function
y

V(x) = 1/2 X' px + s[ flz) dz (2-17)
0
where P is a symmetric positive definite matrix and 8 is a scalar.

"The Rumanian mathematician V. M. Popov introduced frequency domain
criteria that could be applied to problems of the Lur'e type. These
criteria provide sufficient conditions for asymptotic stability of con-
trol systems of the form of Figure 2-1. The original work of Popov was

improved upon by Desoer [41] and others so that the following general-

jzed theorem has evolved.

Let the nonlinear element be restricted to 1ie in the sector

[0, k1; that is

0 ¢ Mrl oy, (2-18)

Further if the linear element is output stable (i.e., the impuise res-
ponse of G(s) is both absolute and square integrable and the initial
condition response is square integrable for every set of initial condi~

tions) and if a rea) number g exists and some small 8§ > 0 such that
Re [(1 + juq) G(juw)] +T1<"2 §>0. (2-19)

Then the system is "absolutely control and output asymptotic" (i.e.,

o2}

jﬁxz(t) dt < » and.[ n(t) dt < « for every set of initial conditions)
(4] (]
subject to the following conditions on the real number q:
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1) if n{x) is single valued and time invariant:
if 0<k<o, then -»<qg<w

if k= » then 0<qg<w

2) if n(x) contains passive hysteresis:

0<k<wand -»<q<0

3) if n(x) contains active hysteresis:

0O<k<wand 0 < q

4) if n(x) is a general nonlinearity:

O<k<woand q=0

Passive and active hysteresis may be defined in terms of the path
directions taken (counter clockwise or clockwise) when the nonlinearity

is subjected to a periodic input and its output plotted [122, 123, 69].

Inequality (2-19) may be interpreted in terms of a nyquist plot of
G(s). Then, for stability when q = 0, G(jw) must stay to the right of
a line parallel to the imaginary axis intersecting the real axis at
-1/k. It is harder to work graphically with the nyquist plot when q # 0;

however (2-19) may be rewritten as

Re G(jw) > - % + wg Im Glw). (2-20)

Now the locus of points of the function G*(jw) = Re G(jw) + ju Im G(juw)
may be plotted in the complex plane and (2-20) states that Popov's
theorem is satisfied if this locus is to the right of a line passing
through the point Re G(jw) = - 1/k and making an angle of tan"1 q

with the vertical axis [69].
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From this theorem, other theorems have been derived; for example,
‘a theorem applicable for nonlinearities limited by a < n(x)/x < b. A
simple extension of this theorem applied for "degree of stability" in

the sense of limitation of the response by an exponential Me'at [e9].

B. Mathematical Background

The output of a system often belongs to the set of real numbers, IR .
If y is a vector of dimension two, then elements of y are represented
by ordered pairs (y1 s yz) and belong to the product set Rx IR, or‘]RZ,

And so on with higher dimensional vectors.

A metric space consists of some nonempty set X and a metric d.
The metric represents a generalized notion of distance between two points,
and is a single-valued, non-negative, real function satisfying the follow-

ing three conditions for arbitrary x, y, z € X: -

1) d{x,y) = 0 if and only if x = y

2) d{x,y) = d(y,x) (axiom of symmetry)

+

3) d(x,y) + d(y,z) > d(x,z) (triangle inequality)

Note that for a given set X the metric is not unique; different metrics

may be associated with the same set yielding different metric spaces.

The notion of convergence of an infinite sequence can be defined
in terms of a metric. Consider the sequence {x .} = {xX;, X5, ...} which
converges to the point x, if, for any € > 0, there exists an n(e) such
that n > n(e) implies that d(x, xn) < e. In many cases the limit point
X is not known; however, the relation between any two elements in some
cases be shown to satisfy d(x,, x ) < e for ail n, m > n(e). The latter

relationship is called a Cauchy criterion, but it is not true that all
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sequences satisfying the Cauchy criterion are convergent. A metric space

in which every Cauchy sequence is convergent is called a complete space.

A set of elements A js said to form a 1inear space if the operations
of addition and scalar multiplication are defined and satisfy the follow-

ing conditions.

I) For any x, yeA, there is a uniquely defined z = x + y called
their sum, zeA, such that

1) x+y=y+x

2) x+(y+z)=(x+y)+z

3) There exists an element OeA such that x + 0 = x for all xeA

4) For every xeA, there is an element -xeA such that x + (-x) = 0.

I1) For some arbitrary number o and an element xeA there is defined an

element ax (the product of o and x) such that

1) a(Bx) = (aB)x
2) 1 . x=x

11I) Addition and multiplication are related in the following manner

1) (o + B)x = ax + BX

2) al(x +y) =ax +ay YyeA

Note that a linear space may also be a metric space. A Tinear space
X is said to be a normed linear space if each element xeX there is a
corresponding nonnegative number ||x||, called its norm, satisfying the

following conditions
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1) }Ix|] = 0 if and only if x = 0
2) lex{] = fa| |Ix]]
3) [Ix +yll < fix|| + [lyll (triangle inequality)

A normed linear space that is also complete is called a Banach space.

The spaces IR and € (complex plane) are Banach spaces.

Consider two arbitrary nonempty sets X and Y. If, for each element
xeX there is a unique corresponding element yeY, denoted by f(x), then
f is a mapping of X into Y. F may also be called a function or trans-
formafion or operator. X is called the domain 6% £ and Y is called the
range of f; if the range of f is only a subset of Y then f is said to
map X into Y. A point y is called the image of x under the mapping f
if f(x) = y; in this case one also says x belongs to the inverse image

of y denoted by xef'1(y).

When X and Y are metric spaces, then, if a sequence {xn} converges
to the point x implies that {f(xn)} converges to y = f(x), the mapping
f is continuous. If a mapping f is one-to-one and both f and f'1 are

continuous, then f is called a homeomorphism.

As a matter of notation, when writing functions, the parenthesis
will be omitted when no confusion results. Thus f(x) is written fx.
Two functions may succeed each other as in g(f(x)) which will be written

gfx. This is called a composition.
A function is said to be linear if
flagxy + anXp) = a7 flxy) + oy Flxy) (2-21)

where Oy and o, are scalars. The norm of a linear function f on a

normed linear space can be defined by
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[FlIl = sup L fx]] = sup [1£x]] = sup ]lfxll; (2-22)
x| <1 x| =1 x # 0 |]x]]

Any element that satisfies the equation x = F(x) where xeX is called
a fixed point of the mapping F. A mapping may have more than one fixed
point. If F is defined on a metric space (X, d), then it is said to be

a contraction if there exists a number a < 1 such that
d(Fx, Fy) < ad(x, y) (2-23)

for any two points x, yeX. Every contraction mapping is continuous.

Theorem (contraction mapping theorem). Every contraction
mapping defined in a complete metric space X has one and

only one fixed point [77].°

If Xo is any point in X and x* is the fixed point, then

x* = Tim Fn(xo), where F" = F F F...F (2-24)
n -+ o e
n

and further

dixr, %) 5 S0 %) | (2-25)
1 -0
where Xy = F(xo). If the derivative of the mapping exists, it may be

used to show contraction by the following theorem

Theorem (derivative of contracting mapping). Let F map
a closed convex subset Q of a Banach space into itself

and have a derivative at every point of Q. Then if
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sup ||F'(x)]] = a <1 | (2-26)
XeN

there exists a unique fixed point of F in Q [68].

Now let x = -f(x) be a real valued differentiable function with

o < f'(x) < B for all x. Then, if ¢ is any number # Q1;
x = -[f(x) - cx] ~cx = -(1 + c)'1 [f(x) - cx] = m(x) (2-27)

and the condition for the mapping x = m(x) (which has the same fixed

points as x = f(x)) to be a contraction is
Im'(x)] < |1 - cl'1 max {|B8 - ¢|, Jc - a]} <1, (2-28)

It may be seen that if a > -1 the minimum value of (2-28) occurs at
¢ =1/2 (o + B) in which case

B ~a

P rg+a <l (2-29)

1+ c|'1 max {|B - ¢|, |c - a|} =

Let 1 < p < =, Lp space is defined as the space of all real-valued

measurablie functions f for which

[>o]

f [F(£)[P dt < = (2-30)
(where integration is in the sense of Lebesgue). It is a Banach space

[68] with norm

2 1/p
71, -<f [F(t)]P dt> . (2-31)

-00

A periodic function is one which satisfies x(t) = x{t + 1), Vt,
where T is the period of the function. Such a function may be represented

in L2 space by the fourier series
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o0

x(t) = E: ay cos (kmot + ek) (2-32)
k =1

where Wy = 2w/t is the fundamental frequency. An Lp space of periodic

functions may be defined where integrability takes place over one period

so that
T

J’ [F(£)[P dt <= . . (2-33)

o]

A linear space is called an inner product space if, for any x, yeX
there is a number, called the inner product <x, y>, such that

1) <y, x> = <x, y>* (* denotes complex conjugation)

2) <My F UXp, Y> = A Xps ¥> R U Xy, ¥

3) <x, x>>0and <x, x> =0 if and only if x = 0.

A complete inner product space is called a Hilbert space. Two elements

(x, y) of a Hilbert space are said to be orthogonal if <x, y> = 0.

The set of real-valued periodic functions of period T which are

square integrable form a Hilbert space with inner product
T
<X, Y> = —].I:f x(t) y(t) dt. (2-34)
0

A complete orthogonal set consists of sines and cosines which can be
represented in the usual way in terms of cosines of the form cos kuwt,

k=1, ..., ©. Then one may define a projection operator so that

Pl x(t) = a cos wt ~ (2-35)
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and so on. Finally, the L2 norm may be expressed in terms of the fourier
coefficients using Parseval's identity

T

2 1 2 2
IXI1P =gz [ o) o= ) la ) (2-36)
o k=1

Let S be the closure of an open set in R" = {x = (x1, cees xn):

X;€ R, 1 < i < n}. Define a continuous vector field ¢ on $ as the map

o: S > " . (2-37)

where ¢ = (¢1, cens ¢n) ' (2-38)

and each P is continuous on S. It is assumed that ¢ is differentiable,
as every continuous function can be approximated by a polynomial. A
point x, is a singular point of ¢ if ¢(x)) = 0. Further, x  is isolated

if there are no other singular point in

|x - %1 <€

for some € > 0. A point erR" is said to be a regular value of ¢ if,

for all x such that ¢(x) = y, the Jacobian determinant
¢ 3,
J\ x = det T # 0. (2-39)
=X i/%

Ify is a regular value, there are only finitely many x such that

¢(x) =y, or
Xps ees Xp €07 (y). (2-40)

A singular point Xo is termed nondegenerate if the Jacobian determinant

of ¢ evaluated at Xo is nonzero. If Xo is an isolated singular point,
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there exists y arbitrarily close to 0 such that y is a regular value of

¢. The index of ¢ at x  is defined as

1im ¢ A
I>_<o(¢) = Z sgn J<;'<—> (2-41)

y regular, K
-y+0 ).(EQ (-V)

where sgn(x) = {ﬂ ); Z g

Now suppose that ¢ has only isolated singular points, Xqs ooes X
in S. The index of ¢ on S is defined as

m

I(0) = ) Ix(e). (2-42)
i=1
If ¢ is merely continuous on S, having singular points which may not
all be isolated, then given € > 0 there exists a differentiable vector

field ¢, on S having only isolated singular points and satisfying

¢ - 95' sup on S < €.

The index of ¢ on S is defined as

I(¢) = Tim I_ (o). (2-43)

S c>p0 § €
Let ¢ be a vector field on S <" and 2&S be such that ¢ # 0 on S.

Let ¢ be another vector field on Q such that y # 0 on S. A homotopy F

from ¢ to Y is a continuous function F(x, t), 0 < t <1, such that

Fix, 0) = ¢(x) and F(x, 1) = y(x) for VxeQ, and F(x, t) #0, 0 <t <1,

xe S. If such a homotopy exists, ¢ and y are termed homotopic on S.
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Theorem (basic homotopy lemma). Let Q be any set homeo-

2

morphic to the disc X, $1. Let ¢ and y be con-

k

™M=

1
tinuous vector fields on @, neither of which vanish on
o2. Then if ¢ and ¢ are homotopic on 3%, it follows

that I (¢) = I(w). [36]

It is said that the vector function y(x) is a principal part of ¢(x) if

¢(x) can be written as
o(x) = p(x) + w(x) (2-44)
where w is a function such that, along the boundary of some region
HoGO L] < et 1. (2-45)

Theorem (Rouché). A vector field is homotopic to its

principal part [80].

C. Current Work on Oscillation Theory

Most of the recent work in stability theory of nonlinear systems
‘concerns the development of frequency domain relations to guarantee
absolute stability. The introduction of the Popov criterion stimulated
interest in obtaining less conservative estimates of stability regions
of the system by taking into account characteristics of the nonlinearity.

Two techniques are generally used in proving stability criteria.

In the first method, a Lyapunov function is found for the system,
generally of the Lur'e-Postnikov form. This may be related to frequency

domain criteria using a form of the Kalman-Yakubovich Lemma.
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A transfer function G(s) is defined as positive real if G(o) is real
when o is real and Re G(s) > O for all Re s > 0. Brockett and Willems
[21, 22] expand on the Popov criterion by showing absolute stability of

a system if a positive real function exists of the form

H(s)

Z(s) (G(s) + 1/k) (2-46)

where G(s) = Transfer function of the linear part of the system

k

Maximum gain of the nonlinearity

Z(s) = Multiplier whose form depends on the nonlinear element

where, for the Popov criterion, Z(s) = (1 + as)jﬂ.

If the nonlinearity, denoted n, belongs to the class of functions
limited only to the first quadrant, i.e. 0 < xn(x) < », then one writes
neAk and the Popov criterion appears to be the least conservative stabil-
ity estimate. If, in addition, n is monotonic, 0 < dn/dx < =, n(Of = 0,
n'1 exists, then one writes neMk and Z(s) may take on values

n

I(s) = a,s + Z a (s + zi)/(cis +25)5¢5 <1, (2-47)

i=1
Equation (2-47) represents the most general driving point impedance
which can be constructed from inductors and resistors.

Further, if the nonlinearity is odd monotonic, one writes neOk, then
Z(s) can take on values given by (2-47) except Ci < 2. When n can be

expressed as a power law, then
n(x) = k |x|" san(x). (2-48)

. This is denoted by neP, and the multiplier Z(s) can be obtained from

(2-47) except C; < ¢(u) where #(u) > 2 and approaches 2 as u ~ 0.
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The proofs of the above criteria are based on Lyapunov functions
translated to frequency domain relations. Other authors with a similar
approach include 0'Shea [118, 119], Dewey [44], Thathachar and Srinath
[160], Thathachar, Srinath, and Ramapriyan [159], Thathachar [161], and

Narendra and Neuman [105].

The second technique involves functional analysis, as exemplified
by Zames [189, 190]. The analysis is done in the extended L, space
which contains functions that, when truncated to exist over some finite
time interval, belong to the L2 space. When ‘the complete function does

not have an L2 norm, its extended L2 norm is defined as infinity.

After defining gain and incremental gain as g{G) = sup (]|Gx]|/]]x]])
and g(G) = sup(|]|Gx - Gy||/|]x - y||) respectively, a simple theorem states
that, if the open loop gain of a system is less than one the system
motios is bounded, and if the open loop incremental gain of a system is
less than one, the system is input-output stable. The concepts of conic-
ity (restriction of a function to a sector of an input-output graph),
positivity (function lies only in the first and third quadrant) and simi-
lar incremental quantities are introduced. These are used to prove a
circle condition similar to the Popov condition. If the nonlinearity is
contained in the sector {a, 8} and the Tinear function is G(jw) then the
circle conditions are satisfied if there exists a § > 0 and the follow-
ing hold:

1) If o >0, |G(jw) + 1/2(1/a + 1/8)] > 1/2(1/a - 1/8) + 8,

we (=, ) (2-49)
and the nyquist diagram of H(jw) does not encircle

-1/2(1/a - 1/B)
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2) If a <0, |G(ju) +1/2 (1/a + 1/8)]
<1/2 (/o - 1/B) - 8 (2-50)

3) Ifa=0, Re {G(jw)} > - (1/B) + &, we (-, =).

If the circle criterion holds (incrementally), then the system is Lo

bounded (L2 - continuous).

Other authors proving stability inequalities using functional
analysis are Marendra and Cho L]OG]; Towle and Kazda [163], Sundaresham
and Thathachar [156], Cho and Narendra [31], and Zames and Falb [191].

Noldus [111, 112, 114] deals with finding the existence of oscilla-
tions using the torus principle. The torus Noldus chooses consists of
an n-dimensional ellipsoid intersecting a cone whose verfex is at the
origin. The origin is omitted from the torus. By using the Kalman-
Yakubovich Lemma, he proved that the trajectory will remain within the

torus if

1) There exists real scalars K1, K2, K3, K4 and a function h(u)

such that |n(u) - h(u)| is bounded for all u and

k0l < uh(u) < Kou? (2-51)

2 ¢ unlu) < K4u2 (2-52)

K3u
2) (1 + KZG(s))/(l + K1G(s)) is strictly positive real, where

G(s) is the transfer function of the linear portion.

3) The linearized equivalent system has at the origin n charac-

teristic values in the right half s plane.
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4) For some scalar function r

1+ K4G(jw -r)
Re > 0, Ywe R (2-53)

With some additional conditions on the numerator of the transfer
function, the Brouwer fixed point theorem is used to prove the exist-

ence of an oscillation.

Williamson [175] sets out to define conditions for proving oscilla-
tions using the torus principle and the notion of 1-forms. A 1-form is

defined by
n

z(x) = E: gj(x) dx; A <g(x), dx> . | (2-54)
j=1 '
A T-form is termed exact if it represents the derivative of some func-

tion, i.e.z{x) = df(x). If the system is described by
x = G(x) x(0) = Xg s xe R" (2-55)

then G carries a closed nonexact 1-form if

<g(x), 6(x)> > e >0, Vx, (2-56)

i.e. (dg(x)/dx) (dx/dt) > € > 0 while the rate of travel along some
trajectory is positive. By applying Poincare's method of successor
functions, then a function called a continuous one parameter semigroup
can be shown to intersect some surface of section repeatedly. If this
surface of section is a Brouwer set, (2-55) has a nontrivial periodic

oscillation.

Fitts [47], in a study of systems that violate the Aizerman con-

jecture, documents a class of systems that are fourth order, oscillate,
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but have no describing function solution. They do, however, have a dual
input describing function solution. Also given are some third order

nonlinear systems that exhibit this characteristic.

Garber [51] examines the problem of determining the error inherent
in using the describing function method (when applied to nonautonomous
systems) by considering the impulse response of the linear portion of

the system defined as

R(t -t) = - %— §%§1-+ E: Re G(jkw) cos k (t -t)
k =1

- Im G(jkw) sin k (t -1)) . (2-57)

He shows if a Lipschitz constant for the nonlinearity f(z) is equal to

M, a bound on the DF error is

2m/w R
|z - 3| < max Ijr (R - R) £(2) dt| + max |v - ]
T 0 . (2-58)
2m/w
1-M .jf |R] dt
0

Note that ¢ is the input to the system, 2, ﬁ, @ are terms of the DF.

solution, and the auxiliary condition

2T/ w
IR| dt <1 (2-59)

must be satisfied. By using a similar approach, Garber and Rozenvasser
[52] show that, for autonomous systems, when the equation of the higher

order harmonics is given by
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T/2
X, (£) =f bt -7) F(x(1)) dr. (2-60)

The error, A, due to higher order harmonics is given by

A < Ne(w);  [f(x)] < N (2-61a)
A< Al e(w) s JF(x)] < Molxl (2-61b)
1 - Moe(wS '
A < My Awe™(w) 3 f'(x)] < M = const (2-61c)
1 - M-IE(LU’ -
T/2 o
where  e(w) =j o, (u)] dus ¢, (u) = = Z 6L(2K + 1) ju] (2K + 1) Juu
0 ’ k = ~»
T/2 © ] .
e*(w) =/' Ly G[(%l;k*“:])ﬁw] (2K + 1) Juuy gy (2-62)
0 k = =%

Using these values, the following error bands may be plotted in the com-

plex plane to give the describing function error as

11/6(3w) - N(B)] < 4”}\“ . (2-63)
i

Bergen and Franks [10] study the problem using functional analysis
in an L2 space. They show that if the following conditions are satisfied:
1) G(jw) ~0 as w=>c

2) n, G have continuous derivatives
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x>

3) dn/dx # 0, x

"
>

4) dG/dw # 0, w
5) The G and -1/n locus are not tangent at (X,u)
and, if |[[n]| < =
6) [In]| <M
7) Py = M max |{G(jwk)]; K=3,5, ...} <1
or, if the norm of n is not bounded,

8) there exists a number M', ||nx - ny|| < M' ||x - y]],

9) k|G(juwk)] +'0 as k »
10) o', = (M'n/ V8 ) max {k|6(juwk)|: k = 3,5, ...} <1,
and furthermore, there exists an open, bounded, set Q such that
1) (@, 3) e

2) for Y(w, a) € 390
B(w) T(a) < |N£§7 + 6(50) |

where
lin(a sin 8)[|? 1/2

T(a) A 5 -1

la N(a)]

J6Gw)l oy g finf] <=
|6tiw)| o,
| - p w
then there exists an oscillation with (w, a) € Q.

B(w)
otherwise,

31

(2-64)

(2-65)

(2-66)
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Mees and Bergen [93] expand on the above work by considering the

DF solution to be an approximation to the exact solution
[G(jw) N(a) + 1] a = E(w, a). (2-67)

If the term E(w, a) can be bounded, then the existence or nonexistence
of oscillations can be analyzed. If it is assumed that the nonlinearity

satisfies the slope conditions
a(x1 - x2) < (nxq - nxz) < B(x] - x2) (2-68)

for all Xos Xy with Xy > X then it follows that

B, a)] < la()| £52 Aok,
where
() iup : BG(jkw) B - o 1 (2-69)
w) =k > + Q . < * N

These equations have a simple geometric interpretation which allows error
bands to be drawn around the DF lTocus. When the error bands completely
intersect the real axis, the Leray-Schauder theorem is used to prove the

existence fo an oscillation.

In a series of papers on harmonic balance justification, Braverman
et al [17, 18 19] derive a set of error expressions for a DF solution
in the time domain. When the nonlinear function satisfies a Lipschitz -

condition with constan B, and an M harmonic DF solution, they find

Ix(t) - R(t)] < €2 R ¢ (&), telt , t_+SIn (17e'/5)1  (2-70)
- o 0 0

where

€ = max (61, €95 €3)s



33

1d/do’ 6(jw)] du

lw] > (M +a)w.

€, = — , (i=0,1,2) (2-71
1 |d'/dw’ G(jw)| dw )
lw} < (M + a)d
ae(0, 1)
M o .
R = [maxBZ la|] [ [16(3w)| + Zlgg‘(g%ul)‘l +
k =1 -
d%6(ju)
—5 -1 dw {2-72)
dw
o -1
S = s[ l6(jw)] dw (2-73)
i} 2 7
¢a(w) = max {(1 T o a)z wz ,1} (2-74)

A similar theorem is given for the bounds on the DF solutions in a relay

system, with relay 1imit parameter A, and single harmonic DF solution,

namely
1/2
In (1/e /%)
0<ts [Z'M [R(T + )7 ~
.13 awo
5m1n{—2-a, —2—}
where

€ = Max {80, 61, EZ}, E.i

1] T, Ix(t) - x(t)] 581/2
w
(2-75)
ldi/de’ 6(jw)| du
ol >2 L (i=0,1,2)
/|d‘/dm‘ G(jw)| dw
o] 7z 20

(2-76)
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© . . 3
R = A max {%,A—Gz—,]} [ [IG(Jw)|+2|G((jg)w) +
w w oo
20y s
< i_‘(%‘—w) 1 dw (2-77)
iV}

2}

o=1+2 f l6(jw)| dw. (2-78)

aw ©



CHAPTER 111
STATEMENT OF THE PROBLEM

A. System Description

The system S is an autonomous feedback configuration of the Lur'e-
Postnikov type, and is shown in Figure 3-1. It is assumed the only
equilibrium state occurs at x = 0, The nonlinear element has no memory,
has bounded derivative on any closed bqunded set, and has odd symmetry.

It is assumed that g satisfies the condition

sup”  |m G(jum)| < =, Yw > 0. (3-1)
0<m«<Ko

As an example of the type of system being considered, the linear

element g can be represented by the state equations

X

A>_<+Bg

y=clx (3-2)

‘where A, B, C are suitabiy defined matrices. Further, (3-2) must be
completely controllable and completely observable; that is, given an
arbitrary initial condition (50, to) and an arbitrary final condition
(xg» te), it is possible to find a control function u(t) to take the
system from (50, to) to (§f, tf) (provided te > to). Also, given the
output y(t) and the input u(t) it is possible to construct the state
history, x(t). From (3-2) then it is possible to represent the transfer

function of g as

6(s) = c(sI - A)" ! B = g%%% , (3-3)

35



36

WILSAS 40v4a33d dVINIINON

‘(

L-€ 3dN91Id




37

where p and q are polynomials in s. From the form of (3-2) it is
guaranteed that the degree of p exceeds that of g, and controlability

and observability guarantee that p and q have no common factors.

The objective of the study is to investigate conditions under which
the system will or will not oscillate. An oscillation is represented

by a solution to the functional equation
X = -gnx (3-4)

that is periodic; moreover it is assumed that such a solution is
m-symmetric, so it can be written in the form

.

X = a cos wt + Z ay cos(kwt + ek). (3-5)

k=3
k odd

It is convenient to represent this as (a, 9) where

<1}
{

= (aj \33,‘..., aén l+.'1,\.o-)

8 = (89, B35 «ens Bpn 475 eee) (3-6)

It is also convenient to introduce X0 where

m

X, = a cos wt + }: ay cos(kwt + ek) (3-7)

which may be represented by (a,, Qm), where

a = (a, Ags ees am)

g = (e], B3 «ens em). ‘ (3-8)
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B. Describing Function Approach

In the DF approach, the soTution of (3-4) is assumed to be of the
form

m
x(t) = Z gk cos(kat + 'ék); 31 =
k=1

1
o

(3-9)

Here the symbols X, Sk, @, 8 are used to distinguish the DF solution
from the actual solution, (3-5). When (3-9) is substituted in (3-4)

one obtains, in transform notation,

[1 + 6(3ka) N (@, )13, =0, k=1, ...,m (3-10)
where

é\ (é\", 33’ ] /a\m)

§ = (é]s §3’ s 6m)- (3‘11)

This represents 2m real simultaneous nonlinear equations in 2m unknowns:

~ ~ N N

@y 81s +ees aps Bps ..., O . The quantity N (2, 8) is the describing func-

tion of n and may be calculated from

1 o + 2w
N (3, §) = ;g; ,/- n(x(t)) cos kit dit (3-12)
e

where o is an arbitrary real number.

Usually, one takes m = 1, although it may be advantageous in cer-
tain cases to allowm > 1. When m > 1 the DF is called a multiple in-
put describing function (MIDF). It is not true in general that all
systems exhibiting oscillatory behavior have DF solutions when m = 1;
this is related to Aizerman's conjecture and was disproved by counter-

examples [47].
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C. Topological Analysis

A w-symmetric, periodic, solution of (3-4) will be represented by

x(t) = Z ay cos(kwt + 6, ) = Z Ay gkut (3-14)
k=1 k = -
k odd

where ajeR, AjeC, A, = A, AjeR and 6, = 0. At times it will be

convenient to make a change of variables so that x = x(¢) where ¢ = wt

and w corresponds to'a particular solution. As a matter of notation,

one may represent

Ix]g = sup  |x(9)]. (3-15)
0<¢ <2m

Lat X be the Hilbert space of real valued, periodic functions of

period 2m. Two projection operators, P and P,, may be defined so that

m
PMx(t) = Z ay cos (kwt + ek) = Xg (3-16)
k =1
P*mx(t) = Z ay cos(kwt + ek) =x-Px= X o (3-17)
k=m+1

A space of this type leads naturally to the use of the L2 norm,

which will be defined as

2™
(IXI2)2=;—,,T[ (o) do = ) la, 2. (3-18)
0

~ x
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Moreover, use will also be made of the | |1 norm, which is defined as

o)

Xl = ) lagl - (3-19)
k =1

Since o« L 2

Z lag % < Z lay | (3-20)
k=1 k=1

-

it follows that boundedness of (3-19) implies boundedness of (3-18).
The converse, however, is not true in general. When [x[; < =, its

relation to |x| is

[o2] o«

Ixlg = Z ay cos(ke + 8y )| < Z lag | = Ix]y. (3-21)
k =1 s k=1 . -

In the theorems that follow, when either norm is used, it will be repre-

sented by || |]|.

Both the DF solution and (3-14) will be shown to exist in some

region Q of a suitable parameter space. One chooses Q so that it is
m

homeomorphic to the disc EZ: xk2 = 1. Henceforth, when the term disc

k =1
is used, it will mean any region homeomorphic to a disc. It is further

assumed that Q is small enough to contain only one nontrivial DF solution.

When m = 1, the following theorem can be used to examine the val-

idity of DF solutions: -

Theorem I: Consider a system S represented by x = -gnx
and let -gn map points of X into itself. Suppose there

exists a metric d(x', x"), such that
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d(Plgnx', Plgnx") < yd{xe's Xg")

vy <1, for all x', x"eX (3-22)

holds whenever (a, w) belongs to a disc Q in the (a, w)
plane.

1) If there exist a DF solution (a, ) €2 and in addition

a) [1/6(jw) + N(a)| >

(IPlg[n(a cos wt + x4) - n{a cos wt)]|| _
a

o (3-23)

on 39, where x, = x,{(a, w) is the unique fixed point of
-Pugnx (it is easy to see that the same value results

on the right side of (3-23) with either | [; or | |,) and

oN(a)
b) I——Eg— a=4a #0 and

¢) -1/6(jw) is not parallel to N(a) at w = @
then an oscillation exists with (a, w) ef.

2) 1If (3-22) and (3-23) are satisfied for V(a, w) €?, then no

oscillation exists with (a, w) eq.

Proof: The orthogonality of the fourier series allows (3-4)
to be seperated into simultaneous equations of harmonic balance,

i.e.
[a, + nyla, 8) G(3kw)] =0, k =1, ... (3-24)

where n,{(a, 6) is the output of n at the k*" harmonic. The DF equation

is related to the equation of first harmonic balance by
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[a + ny(a, @) G(Jw)] = [1 + N(a) G(jw)] a + H(a, 8, w) (3-25)
where H(a, 6, w) is the error in using the DF.

Applying P]* to (3-4), one obtains

Xe = = Py gn(xg + x4) (3-26)

It follows from (3-22) that (3-26) has the contractive property in Q3
hence x, can be determined as a unique function of (a, w). Substituting

this in (3-25) one obtains the following
a + my(a, w) G(Jw)] = [1 + N(a) G(jw)] a + H(a, w). (3-27)

It may not be possible to calculate the function H(a, w), but it

is possible to find a bound. Apply P to (3-4) and see that

X = - P1gn(x] + Xg). (3-28)

Adding P!

gnxy to both sides yields
1 _ ol ))
X; + Pignxy = P g(nx1 - n(x1 + Xg))- (3-29)

Taking norms on both sides, and converting to transform notation, one

obtains (3-23) which is equivalent to

11/6(jw) + N(a)| > ola, ) > gé%§§§l . (3-30)
One may define vector fields

o(a, w) = [a + ny(a) G(jw)] (3-31)
P(a, m} = [1 + N(a) 6(jw)] a. (3-32)
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From (3-30) and (3-31), y(a, w) is the principal part of &(a, w) on

3. Then &(a, w) and y(a, w) are homotopically equivalent on 39 and
have identical indices by the basic homotopy lemma given in Chapter II.
If the function yY(a, w) has only one singularity in Q which is non-
degenerate, then the index of { is nonzero. Since y is homotopic to @,
® also has nonzero index and hence must have at least one zero in Q.
Under these conditions, a DF solution implies an oscillation of the

system.

The DF has a non-degenerate singularity if its Jacobian evaluated

at the singularity is nonzero. For the DF equation

a, w

£> >

3 (g(a, w))
a
w

Re [Ql‘%g_a_) G(jw)] Re [N(a) _Eﬁ(&%w_)_}

§ u _ (3-33)
Im _B_Nj_a_) G(JUJ) Im N(a) @.G_(M A
da oW -3
W=
noting that use has been made of
[1 + N(3) 6(j@)] = O, ] (3-34)

When working with S, N(a) is always real; hence Im(G(jw)) = 0. Then

(3-33) is nonzero if

a (Re [S’ﬂdié‘"—) NS G(j&i)]) (Im [Nm @d(‘—}‘ﬂ| A])»# 0.(3-35)

w=w

Each term of (3-35) must be nonzero; N(a) and G(jw) are nonzerc from

(3-34). It is necessary to insure that
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di(a)
da 'a=§*0 (3-36)
Im @%“i’—l #0 (3-37)
w =W

The last relation is equivalent to saying -1/G(jw) is not parallel to
N(a) at w = @. This préves condition 1 of the theorem. When (3-22) and
(3-23) are satisfied at all point of Q, then the (3-27) cannot have any
solution with its right side equal to zero. .Henﬁe a =0, Then x4 =0
is an equilibrium solution of the system, and since (3-28) is a con-
tractive mapping, it {s the unique solution. Hence condition 2 of the

theorem is proved.8

The following result may be applied to examine the validity of

MIDF solution: -

Theorem II: - Let S have a nontrivial MIDF solution.
Suppose x, is contractively mapped into itself by (3-26)
so that (3-22) holds (with P," replacing P*1) over a
disc @ defined in the parametric space (ém, On> w). If,

on 99

11087 (W) + May 5 8)) agll > Hagll olay » g ) (3-38)

g = ”ng[n(xm + x-k) - n(xm)]ll (3_39)

Hag!]
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where in (3-38) the norm of a vector is defined as either

éml1 = (3-40)
la |, (3-41)
corresponding to the norm used in (3-39), and
N(a, 8) = diag [Ny(a, 8), ..., N (a, 8)]

Glw) = diag [6(jw), ..., G(Jmw)]
and
J (:El + May, 8y) 8wl Ei) # 0. (3-42)
a, 0 ,w
-Mm ~M 2
an = 3
O = 8
W =0

Then an oscillation exists with (a_, 6_, w) € Q.

Proof: When working with the MIDF, the equations of harmonic

balance may be written in vector form
fa, * nla, 8) &(w)] = [T + N3, &) G(w)] g, + H(a, 8, w) (3-43)
where

(2, &) = [ng(a, 0), ..., nyla, 9T

3

1
LR~

( s w) = [H](§9 9, W)s cees Hm(éy Q: w)]T

| <]

]



46

Again the higher order harmonics are uniquely determined from con-

traction mapping considerations, allowing (3-43) to be written as
la, + nla . 8.) Glw)] = [T + Na_, 0,) 6(w)] a +
H(a , 8. w). (3-44)

Define two vector fields in 2m dimensions as

o(a,, 8,, w) = [a; + nla,, g,) 6(w)] (3-45)

ola . 8, w) = [1+ Ma, 8) 6w)] g, o (3-46)
then from (3-38) and (3-39)

19(ags 8 1 > [[B(ags 8o @)1 Viags 8o w) €20 (3-47)

which, as in the previous case, implies J and Q are homotopic on 9Q.
Hence if the singularity is non-degenerate, which is implied by (3-42),

the conclusion follows.B



CHAPTER IV
GRAPHICAL RESULTS FOR SINGLE INPUT DF

The first result presents a graphical technique that gives suffi-
cient conditions for oscillation when the nonlinear function is an odd
power law. Generalization to other odd functions follows in Chapter VI.

Conditions are also given for absence of oscillations.

Theorem III: Let S satisfy (3-1) and have nonlinearity

n(x) = xP; p odd.

Let there be a region Q in the (a, w) plane, homeomorphic

to a disc.

1) Suppose there is a DF solution (a, @) e and
[1/6(jw) + N(a)| > o(a, w) on 3Q (4-1)
where o is a positive solution to

= .z_gp'-l p'1
A=p(l + X)

a (4-2)
Lo, p(1 +5 PP (4-3)
inf |_ 2 20, p-1 p-1]
k> 1 [aGkey Y PO T a

and -1/G(jw) is not parallel to N(a) at w = @, then

a m-symmetric oscillation exists with (a, w) eQ.

2) Suppose that

11/6(jw) + N(a)]>o(a, w) Y{a, w) et (4-4)

47



48

where o(a, w) is given by (4-2),(4-3). Then there is

no oscillation with amplitude and frequency (a, w) in Q.

Proof: Suppose an oscillatory solution (3-14) exists and
|x(t)]g < =, then |x|; < «. To see this, take A to be any positive

number satisfying

A > Idn(x)‘ . (4-5)
s
Solutions with convergent fourier seriessatisfy |x|, < . One

finds, using the mean value theorem,

2m 2 2m
i~ f n2(x(6)) o <5 [ 1E0)] do. (4-6)
0 o

Hence |n(x)|, < . Set

y=nx(e)) = Y 8, eIKE
k = -

If the linear element has a transform G{jw),

<«

Y o ekt Y (k) By et
kK = =

k = -

since, from orthogonality, A, = G(jkw) B. Observe that

=<} oo

Z 1Al = Z |6(3ke) By (4-7)

k = - k = -

and, applying the Cauchy-Schwarz inequality,
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0 (o] d co

Yooad <[ Y ek B) V2 [Y 18 13) V2. (a-8)

k = - K = wo k = -~

It was stated in Chapter III that g satisfies

sup |mG(jmw)| < «
0O<m<«< o
so that
E: l6(jkw) %) /2 < o, (4-9)
k =1

Hence |x|; < e.
The operator P*] may be applied to (3-4) yielding

X, = P*]gn(x] +xy). (4-10)

Consider two points, x4', X4", with the metric [x," - x*'lz. From

(4-10) one obtains

2T . 2n
([ (x2"(8) - x' ()2 do)1/2 = f (Pylg {n[x"(4)1}
0 (o]

1 . FEERTE
-Pu'g {nlx'(0)T3 )% ap) /2.
The mean value theorem implies that

In(x") - n(x")] < A]x" - x'|

and since Plg is linear, one sees that
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2w 2T 1/2
([ (xa"(8) - xu' (6012 d0)1/2 < x(f (Plg £x"(6) - x'(0)})2 do)
0 0

Applying Parseval's identity, it follows that

o c© 1/2
" 12\ 172 . " ‘112
k| > 1 k] > 1
and hence
0 1/2
" ] 2
E: A" - Ay
k| > 1°
00 1/2 )
<x sup le(ka)| [ ). 1A - A2 (4-11)
k > 1 lk‘ s 1

Hence one sees that ]P*1gnx" - P,Jgnx']2 <A osup |G(Jka| |x" - x'[,.
k> 1

Now obtain a bound on |x|S by using the norm |x|1. From (4-10)

one obtains

Xy« Y IAd < s laGke)| ). IBl.
k] > 1 [kl > K| > 1

For a power law nonlinearity, take

x> plx] P s

dn(x)
n{ |, (8-12)

which satisfies (4-5). It is easy to verify that

ZE: 18, | < (x|P < 2ix]q -
k] > 1
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so that

oo

YAl <a sw fatikal ). 1A ). (4-13)
k| > 1 kI > k= -

Comparing (4-11) and (4-13) it can be seen that
[xx" - X*"z < [fls [Xe" - X*'lz (4-14)
Ixxlq < 1Flg Ixaly + [Flg Ixq14 (4-15)

with |f|s =X sup |G(jkw)].

k| > 1
Note that, if [f[s < 1, then (4-10) is contractive under the L, norm by
(4-11) and (4-13) bounds the value of |x4|, as a function of |x]ll. By
applying the contraction mapping theorem, one may obtain bounds on lxlz.

Similarly, one may solve (4-15) for |x|;.

The slope of the nonlinearity may vary from O to k((x|1) for a
particular solution; Holtzman [68] shows that a sharper contraction
results, in this case, if a quantity equal to half the norm of a recur-

sive mapping is added to both sides. From (4-10) one obtains

]
X \1 ¥ ff_giilflll = P*19 Mixly) n(xy; + X«)). (4-16)
2 2
Provided that .
inf |1 + G(3kw) A([x]{)/2] # 0, (4-17)
k > 1
k odd

it may be shown that (4-16) yields the relation
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—
X' = Xg |2 < ZUE : 2 .1 [x4" - X*'iz . (4-18)
k odd P*lgk(lxl])

The map (4-10) is contractive if

A(,X|1)

p = 1inf < 1. (4-19)

. |
k> 1 |80key * MUl

For a certain region in (a, w) space, (4-19) is satisfied. Then (4-10)
has a unique fixed point in this regioanatisfying
°|

1 | A
LR (4-20)

| = Xu |5 <
1T-p

where x*0 is a starting point and x*1 is obtained by applying the map

to x,0. Take x,0 = 0, and from (4-20) and (4-16) one obtains

P*1g [A(lxl]) X1 - n(x1ﬂ l
llx*ll S] -p 2
1 + P*lgk(lx|1)
| L
< MID 111, (s-21)
ks 1 sy * Ml )‘ Mlxlq)

where use has been made of P*1gk(|x|1) x; = 0. Hence a bound on %]
exists as a function of [[x;[] and A(]x]q).

One now finds an expression for the DF harmonic error. Applying

pl to (3-4) yields
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Xp = - P]gn(x] + X,). (4-22)
The equation of harmonic balance is related to the DF equation by
1 1
Xp *+ Pan(xy + x4) = [xq + Pgnxq] + Pgln(x; + x4} - nxy].  (4-23)

When (4-22) holds, it is seen that the DF error is given by

P]g[nx1 - n(x] X4 ) + A(IXIT) X*7, (4-24)
2
where use has been made of P g A(lxl ) = 0. Taking norms on both
2
sides of (4-24) yields
1176(3w) + N(a)]a < [|n(xy + x4) = nxy - fﬁl;lll Xs| | (4-25)

and the right side of (4-25) is evaluated from the mean value theorem

as

[In(xq + x4) = nx

A(lx]4) dn Allxlq)

; '2'1 JERT- AL UPN
< MIxl)

2

The Tast step follows since 0 < %2 < A. Combining (4-25) with (4-20)

yields
A2(|x|])/4
[1/76(30) + N(@)| < 506 Axl{)] ACx]q) (4-26)
k> 1 |11/6(Jka) + — - —
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The right hand side of (4-26) may be interpreted as an error distance,

and for convenience define o by

2
g = A"(lx]1)/4 ) (4-27)
inf Ax1)] Alxlg)

A suitable value for X will now be determined for the power law non-

linearity. One may write

n(x) = xP; gg-= pxP = 1,

Equation (4-21) gives bounds on lx*l1 in terms of |x1|1, and, from

(4-27), one obtains

lxl] < 'X]|1 + lx*l] <1+ %g) a. (4-28)

Choose X to be the positive solution of
p p-1
A= P(1 + =) a > P'Xl-l > X (4-29)

which will be assumed to exist. It follows that (4-29) satisfies (4-4)

and (4-10). Substituting (4-29) in (4-27) one obtains

p-1p-1
P(1 + %g) a

20
A

. p-1p-1
inf 2 + P(1 + %go

— L 20y .p -1
k> 1 |BGka) - PO +5) a

(4-30)

or after some rearrangement,
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pp-1
P(1 + %?) a
20 _
A inf 2 +P(1+gg)p-1p-1 . (4-31)
k> 1 |G(3ka) A a

20
A

hence the conditions for contraction are verified and x, is unique.

A positive solution for in (4-30) implies that (4-17) is satisfied;

Hence the conditions of Theorem I are satisfied. The proof is
complete.B

It is possible to show that (4-3) has a positive solution when
%? is small. Let it be assumed that k can be found independent of A.

It is intended to solve iteratively on a computer the equation

£2 = (&2 (4-32)

which is equivalent to (4-3). Now (4-32) can be sketched as the para-

metric equations

20 _ . - 20
T—F(X),X Y

The first equation has a positive solution when x = 0; if its slope is
Tess than one for a long enough distance along the x axis, then (4-32)
will have a solution; if not, the iterations will soon lead to a nega-
tive denominator in (4-3). The situation has been sketched in Figure

4-2. A sufficient condition for the procedure to be successful is that
|F'(x)] < 1. (4-33)

The derivative of F with respect to x can be computed, yielding
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2

2 Re (2/6(jkw) + p(1 + x)P ~ 1ap - T
- (p-1) - : (4-34)

2/6(jkw) + p(1 + x)P - 1ap - 1|

Note that Re(2/G(jkw)) < 0, and from (4-17), (4-34) is always positive.

A sufficient condition for (4-33) to hold is

x = F(x) < é% (4-35)

i.e., one can expect the technique to work when the percentage harmonic

content is on the order of (4-35).

It turns out, because the system is usually low pass, the infimum
required (assuming a m-symmetric solution) in (4-3) usually occurs at
k = 3. A computer can be used to sketch the region Q@ in the (a, w)
plane, and examples of the technique are shown in Figures 4-2 to 4-6

for various combinations of linear function and odd power law.
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OMEGA

«990000
+99N339
.q49n678
«991017
« 991356
« 991695
.992034
«9923173
.292712
2993051
.993390
+993729
.9940AK8
.994407
.994746
»995085
. 995423
+ 995762
.996101
«996440
.9967179
.997118
2997457
.997796
«99R1 35
. 298474
.998813
2999152
2999491
999830
1.000169
1.000507
1,000847
1,001185
t.00152%
1,001867%
1.00220°
1,002%4p
1.002R80
1.003220
1.0035%A
1.003898
1.,004236
1.004576
1.004914
1,005252%
1.005592
1.00591%1
1.00R270
1.00AK09
1.00A94R
1.,0072R7
1.0076PR
1.00796%
1.008304a
1.00R603
t.NNHAQR?
1.009321
1.009660

RE 1/6(JW)

-1.,000000
-1.000000
=-1,000000
~1.,000000
«1.,000000
-1.000000
~-1.000000
-1.,000000
~1.000000
-1.,000000
«1.000000
~1.000000
~1.,000000
-1.,000000
~1.000000
-1,000000
«1,000000
=1.000000
-1.000000
-1.,000000
=1.000000
-1,000000
-1.000000
=-1.000000
=-1,000000
-1.000000
~1.000000
“-1.000000
-1,000000
-1,000000
-1,000000
=-1.000000
-1,000000
-1.000000
-1,000000
-1,000000
-1.000000
=1,000000
“1.000000
=1,000000
-1,000000
-1.000000
-1,000000
-1,000000
-1, 000000
-1,000000
-1,000000
-1,000000
-1,000000
-1,000000
-1,000000
-1,000000
-1,000000
-t.hn000n
-1.000000
-1.000000
~1.000000
=1.000000
-1.,000000

M 176 (JW)

-, 402020
-,388326
-,374637
=.360952
=, 3472712
-.333597
-,319926
-.306261
~e292600
~.278943
- 205292
-.251645
=.238007
=.220365
-,210732
-, 197104
-.1834R80
-, 169861
-.156247
-, 142637
-,129032
-, 115432
-. 101838
-.088245%
-, 074658
-~ 061077
-,047499
-, 033927
=-.020359
-, 006795
«006751
020289
. 033860
.047388
« 060950
. 074469
«.NB79R0
101532
«11603R
«128577
«16°2073
« 155603
. 1690090
182611
« 196090
4209563
« 223071
.236535
. P50033
.2h3URA
.P76978
.290425
« 303867
+317343
« 330776
.344203%
357647
«371125
+« 384540

I60JW )

1,077785
1.072752
1.067873
1.063149
1.0585R3
1.054176
1.049930
t.nasaar
1.0a1928
1.038176
1.,034592
1,031177
1.027932
1.024861
1.021963
1.019240
1.016693
1.n014324
1.012133
1.010121%
1.008290
1.006640
1.005172
1.003886
1.002783
1.001863
1.001127
1.000575
1.000207
1.000023
1.000023
1.000206
1.000573
t.0n0t1122
1.001856
1.002769
1.003863
1.005141
1.006595
1,00R232
t.0100a2
1.012034
1.014195
1.016537
t.n1904a4
1.021722
1.0248578
1.027594
1,030785
1.03a131
1,037650
t.na13290
1.005148
1.04914A
1.0532R7
1.057593
1.06203R
1.066646
1.0713R7

PROGF OF OSCILLATION BY THEOREM III

FIGURE 4-2

n(x) = 1/3x3

.05s
s . 055 41

G(s) =



59

G B G S Bm B tem Bam P Sm Par B B P pem bem G Bem mm hem Sm Sdn G S Gt fun P Rl Gom U G B Nt S pas S Dem P P Smm Gum P Om few Sun s fem FeP G G Bm G Geb P T e G S een

1.71

§~1/50453%=1252=-12
A

2.31

RAAAANRK
KRR A A Ak
REARXNARRA SRR
AARAAARARAAARN
RARRKRANRRRAARA AN
RARRAARRAERNARNANAR
AARRRAARARA IR AR KRR
(RARE R RSN R SR
AR ARRARARANDNRAARR
REARRRAAARAATAARA LA
AARARRA AR AN N ARR AR AR
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' RABEARARAR AN NN
ARRRRRARAN AN &
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RRAXRRN G A
RARR AR
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OMEGA

.9R0000
.980678
.981%356
.9R2034
KLEIXT]
.9A3390
.9R0068
.984746
.985424
L9861 02
.9R6TRO
L9RTUST
.988135
L9A8813
.989491
.990169
., 990847
.991525
.992203
L392481
.993559
.9942%7
.994915
.995593
.996271
.996949
.997627
.998305
.9989A3
.999661

1.000339

1.001017

1.001698

1,002372

1.003050

1.003728

t.004406

1.005084

1.005762

1,006440

1.00711A

1.007795

1.0n08473%

1.009151

1.009A30

1.010508

1.0111R6

1.011864

1.017542

1.013220

1.013R97

1.01487%

1.01524%3

1.015931

1.016609

1.017287

1.017965

1.018644

1.019321

RE 1/G(JwW) IM

-,698600
-. 708862
-.719121
~.7293717
“. 739631
-,749881
=, 760177
«, 770370
-, 780611
-,790848
-.801081
-, R11311
-,A21539
~.831763
~.3419R4
-.052201
-.862416
~.872627
-.R8283%
~.833039
-, 903242
-.913840
“,923635
~.933826
~,944016
=.954201
-.964383
~.974562
~+984738
-,994a911
-1,005078
~1.015246
~1.025396
-1,035557
-1.04%5715
-1.055870
=1.066022
=1.076170
~1.0R6315
=1.096457
=1.1065986
“1,116717
-1.136979
=-1.147105
~1.187°2217
-t. 167347
~1,177863
=-1.1R7576
-1.197686
-1,207778
~1.217882
=-1.”PP279R82
-1.23%A079
-1.,24R173
~1,798263%
-1 .26R350
-1.27R8434
=-1,28R851%

. 256564
«2G7981%
«239390
«230791
« 222183
« 213567
.2049440
.196313
«187673
«179026
« 170370
«161707
«153035
. 144356
« 135669
«126974
«118270
+109559
«100840
«092113
«083378
« 074635
+065885
«0571°6
«08R8359
+ 039545
030803
«022013
013215
.00aa610
=, 006402
-.013225
-,022043
~.0308A1
~. 089727
=-.046SR1
-,057442
- 066312
-,075189
IQQSBONu
-, 1932966
-.101854
-, 110762
=.119677
~.128601
-, 137532
-.146471
-. 155017
-, 1A0371
-,173333
=. 182290
-.191267
-, 200252
-.209744
-,71R244
-. 221252
-, 36267
-,P052R9
-, 750320

1/6(JW)

1G(JIW) 1L

.708222
.750986
157920
.765020
772282
779700
RETHT
.794990
.B02854
.810854
.R18997
.827270
.B35671
.R44197
.R52848
.BA1A0B
.870488
.879478
.RABSTS
.897777
.907082
.916484
. 925981
.935572
.945253
955022
.964A7S
.974810
984827
994920
1,005088
1.015332
1.025633
1.036017
1.046470
1.056987
1.067ShAR
1.078211
1.088914
1,099676
1,110894
1.121353
1.132280
1.143260
1,154291
1.165371
1.176500
1.187676
1.198897
1.210164
1.221457
1.232809
1.244203
1.255636
1.267109
1,278620
1.290168
1.301753
1.313374

PROGF OF OSCILLATION BY THEOREM III

FIGURE 4-3

n(x) = 1/3x3

st 4 g3 2125 - 12

G{s) =
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1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
t
1
1
1
1
t
1
1
1

1
1

OMEGA

.990000
. 990339
990678
2991037
«991356
.991695
.992034
.9973713
.992712
»293051
.993390
.993729
. 994068
.994407
.9947406
.995085
2995423
. 995762
.996101
.996440
,996779
.997118
.997457
.997796
.99A81 35
.99R474
.998813
.99915¢2
.999491
.999830
L000169
.000507
.000Ra7
NO118S
.001525
001863
002202
.0025482
002480
003220
L00455A8
.Nn3IAR98
LONNR 34
LN04576
004914
L0NS253
L 005597
00593
N06PT0
006609
L00694A
L0072R7
007626
.ON7965
L00R304
LNNARER
.NNAARD
LNna3sg
N0Y96KR0

RE 1/G6 (W) IM 1/6(JwW)

-1.004475
-1.,004174
-1.,003884
=1,003605
-1,003335
-1.003077
-1.002829
=1.002591
-1.002364
=t.002147
-1,001940
-1.001744
-1,00155%9
=1.001384
-1.001219
l—.°=n=@m
-1.000921
-1.000787
«1.000664
-1,000551
-1.000448
=1.000356
-1.000274
~1.,000202
-1,000140
=-1.0000R9
-~1.,000048
-1.000017

-,999997

=,9999a7

-.9999R7

-.999997
-1.000017
-1.0000aAR
-1.000089
-1,000139
-1.000200
-1.000P72
-1.000353
=1.00044%
=1,000546
-1.000658
-1,000780
«1.00091?7
-1.,001054
-t1.,00120%
=1.001368
=-1.001540
“1,001772
-1.00198149
-1,002116
-1.00232R
=1.002550
=1.0077873
-1.003025
~1.003277
-1.,003539
=1.003R11
-1.00009%

.134007
.1294a42
«124879
,120317
« 115757
.111199
+106642
«102087
097533
.092981
.NBRA3ZY
.0NA3AAQ
.N07933y
.074788
0702404
065701
.061160
2056620
.052082
« 047546
«N43041
+038477
.033945
.029415
. 024886
« 020359
.015833
.011309
006786
.002265
-, 002250
-, 006763
-.011287
-,015796
-, 020317
-,020R23
-, 029328
-,033844
-.03834¢
-, 042859
-, 047358
-,051868
=, 056364
-.060870
e 065363
-.069A85%5
-.074357
-.07RR4S
-,083345
-.087R30
=-,0923¢76
=-,09680A4
-.1017R9
-, 105781
-, 110259
-, 114748
-.119222
~-.123704
-, 12R1R0

1IG(INW) L

1.013374
1.012483
1.011622
1.050791
1,009991}
1.009222
1.,0084R3
1.007775
1.,007098
1.006451
1.005835
1.005250
1.004696
1.004173
1.003680
1.003218
1.002787
1.002387
1.002018
1.001680
1.001372
1.001095
1.000849
1.000634
1.,000450
1.000296
1.000173
1.000081
1.000020

999989

.999989
1,000020
1.000081
1.000173
1.000295
1.000aa7
1.000630
1.000844
1.00108A8
1.001362
1.001666
t.002001
1.002366
1.002761
1.003185
1.003639
1.004125
1.004638
1.005183
1.005756
1.006361
1.006993
1.007654
1.0083%a7
1.009067
1.009R§8
1.010596
1.011408
1.ny1p242

PROOF OF OSCILLATION BY THEQREM III

FIGURE 4-4

n(x) = 1/3x°

.09s2
s4 - .653 + 1.8152 - .65 +1

G(s) =
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OMEGA

.990000
.990339
990678
.991017
.9911356
.991695
.992034
.992373
«.99271°
.993051
+993390
.993729
994068
.994407
.994746
. 395085
.995423
« 995762
« 996104
.996400
.996779
.997118
.997457
.9971796
.998135
998474
.998A13
.999152
999491
. 9998130
1,000169
1.,000507
1.000R47
1.0011RS
1,001525
1,001R63
1,002202
1.00°542
1.,00PRA0
1.003220
1,0n3558
1.003898
1.004236
1.008576
1.,000914
1,005253
1,005592
1.,005931
1.006270
1,006609
1.00694A
1.007287
1.007626
1.007965
1.008304
1,00864%
1.00R982
1.009321
1.,009660

RE 1/G(JW) M 1/G(JW)

=-1,000000
=1.000000
=1.000000
«1,000000
=1.000000
-1,000000
=1.000000
=-1.,000000
=1.,000000
=1.000000
-1,000000
=-1,000000
=1,000000
=1,000000
=1.000000
=1.000000
=1.000000
=1,000000
-1.,000000
=1,000000
=1.000000
=1.000000
=1.000000
=1.000000
~-1,000000
=1.000000
«1.,000000
=1.,000000
=-1,000000
-1.000000
=1.,000000
~1.000000
=1.000000
=1,000000
=1,000000
«1.,000000
“1,000000
“1.000000
=1,000000
=t.,000000
-1,000000
«1,000000
-1,000000
-1,000000
=-1,000000
-1,000000
-1,000000
«1,000000
=1.000000
=~{,000000
=1.000000
=1.00n000
-1.,000000
=1.000000
=1.000000
-1.000000
-1.000000
-1, 000000

=-1,005050
-,970815
-.936591
=-,902380
-.868180
-,A3399p
~.799R16
=. 765652
~.731499
*.697358
=e6H32°P9
~.629112
-,595006
=-.560912
=, 526829
~,492759
-.458700
=.47465¢
~.390617
-,356593
~.322%A0
-,28R579
~.254590
-, 220612
=. 186646
-.152692
-,1187409
-, 084817
-.050R97
-.01A9A89
.016R79
. 050722
«0RAAS0D
« 118471
.152376
+1A61 4
+719960
53831
287594
«3214042
» 3559183
« 389008
+u22726
2856528
490224
523908
«HO576TH
«591334
«hP50RA
«hSBT23
H92406
«71260R3
e 759A6R
» 793187
826940
+RB6OOKNT
«AR9U1KA
.92781¢2
» 961350

16(JIw) !

1,0177R9
1.393729
1,370111
1.346956
1.,3242R7
1.302130
1,780510
1.259453
1,”73R988
1.219142
1,199947
1.181432
1,163629
1.146570
1.1302R7
1.1148814
1.1001R4
1.086430
1.N735R3
1.061677
t.050742
1.040R06
1.731899
1.02480486
1.017269
1.011590
1.007026
1.003591
1.001294
1.00014a4
1.0001a2
1.0012R86
1.003576
1.006993
1.011543
1.0171R3
1.023906
1.031712
1.040534
i.050393
1.061205
1.,072999
1.085A78
1,0992A81
1.113696
1,128979
1.,taa990
t.161758
1.179292
1.1974R?
1,216339
1.2357R6
1 .”55R?25
1.276486
1.737625
1.319335
1201468
t.3h0174
1 ,2R71R3

PROOF OF QSCILLATION BY THEOREM III

FIGURE 4-5

n{x) =.1x5

.02s
- 025 + 1

G(s) =

S
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OMEGA

2990000
+9903139
.990h78
«991017
«991356
«991695
.992034
+992373
992712
«993051
+ 993390
« 993729
. 994068
.994407
994746
+ 995085
«99542%
« 995762
« 996101
996440
.996779
«997118
2997457
«9397796
« 998135
« 998474
.998A13
»999152
.99949¢
«999R 30
1.,000169
1.000507
1.000R47
1.70118S
1.001525
1,001R6S
1.,0002202
t.0025482
1.002880
t.003220
t.003558
1.0n3898
1.,004P36
1.008576
t.00691a
1.,00525%
1,005592
1,00593%
1.006270
1.006609
1.00A948
1.0072R7
1,007h26
1.007965
t.00A304
1.00R647%
1.0089Rp
1.0093p1
1.009660

RE 1/6(JW) IM 1/6(JW)

-1,000000
=-1.000000
“1.000D00
-1.000000
=-1.,000000
=-1,000000
=-1.,000000
-1.,000000
-1,000000
-1.,000000
=1.000000
=1.,000000
=1.000000
-1,000000
=1,000000
-1,000000
=-1.,000000
=1,000000
«1.,000000
-1.000000
-1.000000
=-1,000000
=1.000000
«1.,000000
=1.000000
-1.000000
=1.,000000
=1.000000
-1.,000000
-1.,000000
-1,000000
=-1.000000
=1.000000
-1.000000
-1.000000
-{.,000000
<1 ,000000
1.000000
=1,000000
=1.000000
-1.000000
=1.,000000
-1.000000
=1.000000
-1.000000
“t.0N0N00ODD
=1, 000000
«1,000000
=-1,000000
-1.,000000
-1 000000
=1.900000
-1,000000
=-1.000000
=-1.000000
-1,000000
~1,000000
=1, 000000
1 ,000000

-2,680131
-2.58R837
=2.097575
-2.,006344
-2,31514%
~2.,P23977
=2,132R41
-2,041736
-1,950662
-1,R859620
-1,768609
“1,677629
=1,986681
~-1,095760
=-1,4DU878
-1.314023
=-1.723199
«1,132406
-1.,041644
-,950913
-, 860213
-, 7h9544
-.678906
-,588299
=, 0497723
- 407177
=.3166K%3
-, 226179
=.135726
-,045303
., 045009

. 135259

« 25733
«315972
L205335
JA9hU6T
+3B6SAN
«bTHRRY

o+ T6HILR
«AS57174
,471548
1,0%7353
1.127269
t,217408
1.307263
1,397088
1.087136
1.57690])
1.6668RA
1,756593
{.B46521
1,936165
2,025780
P.11561R
2.270%5173%
2.294950
2,384045
2.UT81673
?2.563599

160w}

2.860612
2715262
2.69n331
2.h05R57
2.5°1RB3
2.438457
?2.355634
2.273474
2.192050
2.111484a2
2.03174%
1.9530%9
1.875515
1.799252
1,7240436
1,651°59
1.57994a1
1.510742
1.,443961
1.379940
1.31907R
1.261823
1.2086R3
1.160218
1.137018
1.079719
1.088940
1.025259
1,009169
1.001026
1.001012
1.009106
1.025161
1.0a8717
1,079402
1.116456
1,159333
1,2075486
1.26022%
t.317101
1.377353
1.440869
1.506R96
1.575462
1 .605888
1.718N96
1,79°70R6
1.867748
1.9403841
2.021992
7.009%14
?2.179150
2.759156
2.300051%
2.021319
?.503%57
?.5R5649
C.66RR11
2.751734

PROOF OF OSCILLATION BY THEOREM I1I

FIGURE 4-6

n(x) = 1/35x7

.0075s
s - .0075s + 1

G(s) =



CHAPTER V

ANALYTIC RESULTS FOR SINGLE INPUT DF

By using more conservative conditions, the existence of an oscil-

Tation can be verified analytically.

In particular, the next theorem

may be applied when the nonlinearity is an odd power Taw.

Theorem IV:
n(x) = xP; p odd.

Suppose

1) there is a DF solution (&,

Let S satisfy (3-1) and have nonlinearity

®) and -1/6(jw) is not parallel

to the real axis at w = w, and
2) there is an dinterval along the w axis
W= {w ey <w<wl for which (5-1)

,/cz + c22/4

| Im(1/6(jw))| > {1/2 *‘”Ti_c{“ [1/6(jw) |, wedw (5-2)
where ¢, is a positive solution of

_(p+1)(p-1) (p-3) 4 p-1 _
27 -2y tp =4y =+ 3 (1 +1/¢) (5-3)
3) If there is a k such that
inf 2 _, N ‘ 2, il (5-4)
i>1 |G(3Tw) G(3kw) ~

63
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where A is defined by

i 7
A = max |[c, + 224 * S /% W16 (5-5)
WEW 4 + Cy

and for that k

“/G(jkw)l 2 2
—_— > (c2 t ¢, /2) + €y YTy * €y /4, Ywew (5-6)

11/6(jw)|

then there is a w-symmetric oscillation with wew and

2
a<max n | 1 +2V%2 Pt et | . (5-7)
WEW 4 + ¢y :

Proof: Define a rectangular region Q" in the (a, w) plane of

convenient size by
Q7 = {a, w:ag <ac<ay, w <w<uwl (5-8)

such that (3, @) en”. It will be demonstrated that under conditions
(5-2) to (5~6) @~ contains a disc Q that satisfied Theorem III, see

Figure 5-1.

The analysis will be done in the (M, w) plane, where N = N(a) is
the DF. There is a one-to-one relationship between the set N =
{N : NeIR, N > 0} and the set a = {a : a€lR,a > 0}, and Q° will also be
used to denote "the image of (5-8) in the (N, w) plane. As a matter of

notational convenience, the linear transfer functions will be represented
by

[1/6050)| = &5 |1/605k0)| = 6,7
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First, the existence of a positive solution to (4-2) and (4-3)
will be verified from (5-1) through (5-6). The following holds for
> 0

<y
/ 2
2 +¢yf2 +\fc, + c, /4

1 .1
(of c

2 2 2
- 2 + c2/2 + <y + Cs /4 +,/4/c2 + 1

2 2
4c2 + <, + 2c2,/c2 + <, /4
2(4 + ¢c,) (c 2/2 +c ,/c +c 2/4) - 2.(4c + C 2 + 2¢ \/c +c 2/4)
2 2 2 2 2 2 2 2 2 2

(5-9)

In particular, when C, is chosen to satisfy (5-3), it follows by com-
paring (5-9) with (5-5) and (5-6) that
/2

1/6(3kn) + %

A2 /2
— = S

-1 - - 2
K - A/2) - A2

(5-10)

N> 1

1

provided, of course, that Gk' - A >0, The expression on the right-

hand side of (5-10) was identified in (4-27) so that
éo 1
= <=, (5-11)
A - c2
By referring to any table of describing functions, e.g. [69], it may
be seen that (5-3) can be written as

_paP - 1

p -1 _
Cy = IV (1 + ]/Cz) (5-12)
and, from (5-11), one obtains the relation

Na) ¢y 3 paP "1 (1P TPy (5-13)
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The equality portion of (5-13) comes from (4-29).

It can now be shown that Q” contains a region 2 on whose boundary
|1/6(jw) + N(a)| > 0. In view of (4-1) and (5-11) it suffices to show
that the following holds on 3Q:

[Im(1/6(j0))] > o > 52 . (5-14)
| 2

Clearly if (5-2) holds then (5-14) is obtained. Along the N axis one
finds the boundary of the region from (4-26) and (5-10) as
22 /4
[1/6(jw) + N(a)| > 61 .3 (5-15)
-

which, from (5-13), yields the relation

q ¢, /4
6™ - N| > — - (5-16)
This in turn requires examining solutions of
- - - - 2 2
6] 6 1. (6, L ¢, G D) N+ (cy +¢,7/8) N = 0 (5-17a)
=1 -1 -1 =1 2 2 _
G Gk - (Gk + Cy G )N+ (c2 - ¢ /4) N° = 0, (5-17b)
The minimum and maximum of the solutions on Q° can be shown to be ’
¢ )
-1 -1 Jf* -1 21,2 2 21 . -
Ny = min < }
o~ 2
we 2(c, - c,°/4)
Y

(5-18a)
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’ \
-1 -1 - - - -
(Gk + ¢y G ) - JQGk ! +cy G ])2 - (cz2 + 4c2) G 1 Gk 1
N2 = max < f
L )
(5-18b)

Now N1 is always real and positive if Cy > 4, N2 will be real and posi-

tive if
Eﬁij- “(2c, + ¢,?) 55:1 +c, >0 (5-19)
-1 2 T C )3T )
G G
which in turn requires
-1 2 2
Gk , (2c2 * ¢, ) + ¢Q2c2 +Cy ) - 4c2 (5-20)
G-]
2

which is equivalent to (5-6).

A11 the requirements of Theorem III, condition 1, have been satis-
fied; hence an oscillation exists. The maximum value of N2 may be com-

puted from (5-13) and (5-5) as (5-7).8

A graph of the parametric equations

¢, =ci (1 +x)P ! (5-21a)
2 1

X = 1/c2 (5-21b)

where ¢, is a positive constant, shows that there is a unique solutinn

for c,. This is illustrated in Figure 5-2.

It is convenient to tabulate the values of c, and other pertinent

parameters as functions of p; this is done in Figure 5-3.
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11
13
15

17

21

23

27
29
31
13
35
37
39
41
43
45
47

49

c?

5.566316
11.247496
17,775694
25,019318
32.,89372¢R
41,338526
50,307R24
59,765247
A9 ,pR1024
R0,030247
Q0,791A46

101,946797
113,479539
125,375545
137,622000
150,207354
163,121126
176,353750
1R9,896447
203,741126
217,8R0297
232,306997
247,014739

261,997452

FIGURE 5-3

IM(GIN/GL

0.,88140077
0.92943621
0,9517490y
0,96426307
0,97211770
0.97743450
0,98123430
N, 984806350
N,98623861
0,968795443
0,98933684
0,99047049
0.99141416
n,9922098y
0,9928R¥37
0,99347262
n,99398008
0,99442425
0,99481573
0.99516292
N,99547257
0,99575016
0,99600017

0,99622632

LAMBDA/GT

9,812310
20,907659
33,836001
48,250408
£3,953150
B0,.811402
98,727525

117,625587
137,444232
156,.132474
179,647041
201.,95054R
225,010445
248,797708
273,.286567
298,453786
324,278299
350,740892
377,.823946
405,511228
433,787717
462,639457
492,053445

522.,017519

TABLE OF PARAMETERS VS. P

GKI/GI

41,3675
148,1372
350,6255
6750771

1146.8413
1790,5964
2630,5307
3RY0 ., 4468
49913,8348
6563,9252
8423,7277
10596,0622
13103,5821
15968,7940
19214,0731
22861,A769
26933,7561
31452,3638
3Jo439,4640
41916,9386
47906,5933
$4430,1635
61509,3188

$9165,6673

70

NMAX/GI

1,76280154
1.85887242
1.90349018
1.92852614
1,94423540
1.95486900
1.96246859
1.,96812701
1.97247722
1.97590885
1.97867369
1,98094098
1.98282833
1.,98441976
1.,98577675
1.98694524
1.98796015
1.98684850
1,98963146
1,99032584
1.99094514
1.99150031
1,99200034

1.99245265
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As an example of the use of Theorem IV, consider the system to be

a Van der Pol oscillator whose transfer function is

G(s) =

.03s
s . .03s + 1

and the nonlinear function is
n(x) = 1/3x3.

”~

The describing function solution is @ = 1, a = 2. The value of Cy

can be calculated from (5-3) as
c, = 4(1 +1/c,)%; ¢, = 5.566
2 2! 3 Cg = 2.906-
One computes from (5-2)
In|1/6(jw)| = .8814]1/6(jw)| (5-26)

which, by using a trigonometric substitution can be shown equal to

n|1/6(jw)| = 1.865 = {w® - 1 (5-27)
Re|1/G(jw)| .03w
or u? + 055950 - 1 = 0
yielding
wy = 05595 + / (.05595)2 + 4 = 1.0283662
7
) [Cosson s a -
w, = -.05595 + V (.05595)° + 4 = .9724162.
2
Now compute A = max [9.812]1/G(jw)|] = 44.1. It is easy

972 < w < 1,02

to see that, when the solution is assumed m-symmetric, the infimum is
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satisfied at K = 3. The final requirement of the theorem is that

11/6(j3w) |
|1/6(jw) |

> 41,36
is satisfied in the region
w = {w: .9724162 < w < 1.0283662}.
This is easily verified. The bound (5-7) is then found to be

a < N"V[1.7628]1/G(jw)|] = 3.9485.

As a comparison, one might easily solve the problem graphically by
applying Theorem III. This was done by computer in Figure 5-4, and the

regions obtained by the two methods may be compared.
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OMEGA

. 995000
.995169
.995339
« 995508
. F9AHATA
« 995847
«996017
+9961R6
. 99356
. 996525
. 996695
+ 39604
.997034
«997203
.997373
«99784p
.397712
.,397R81
.998051
.998220
.998389
.998559
.99R728
.99AB94
.999067
999237
«393406
.999576
.999745
+999915
1.0000Rg
1.000254
1.0004P22
1.000592
1,000762
1.000931
1.001101
1,001270
t,001440
1.00t609
1.001779
1.0n0194R
1.002117
1.002287
1.002457
1.002626
1.002795
1.00296%
1.003135
1.00%304
1.003%3473
1.0036073
1.,N03RY R
1.,003%Q87
_-ozz—ﬂu
1.,00437¢
1.00n490
1. 000kKAL
1.,000829

RE 1/6(JW)

-1.000000
=1.,000000
-1,000000
-1,000000
=1.000000
«1.000000
-1.000000
-1.000000
“1.000000
-1.000000
=1.000000
=1.000000
-1,000000
~1.000000
=1.000000
1, 000000
={.000000
~1,000000
-1.000000
-1.000000
-1.000000
-1.000000
-1.000000
=1.000000
-1.000000
~1.000000
-1.000000
~1.000000
=1.000000
-1,000000
-1.000000
-1.000000
-1.000000
-1.000000
-1.000000
=1.00N0000
-1.000000
-1.000000
-1.000000
-1.000000
-1.000000
-1.,000000
-1.000000
-1,000000
-1.000000
-1.000000
~1.000000
«1.000000
-1.000000
-1 .,000000
=1.000000
«1.000000
-1,000000
-1.000000
=1.000000
=1, 000000
=-1.000000
-1.,000000
-1.000000

IM 1/6(JW)

.334173
.322820
«311469
«300116
.2B8768
.277423
266076
.254735
«243395
232054
.220719
.209381
«19R009
186720
175348
«16406°
.152738
Jda1812
.13009°
.118770
107454

=-.096140
-, 084823

«073513
«062204

-.050894

. 0395189
028282
016981
«005683
»005595
.016910
+N2R159
.0%5470
«050779
062023
«N73329
«08ah32
.095934
,107170
-11RU6A
.129763
.180994
152286
163576
+174R64
186087
.197372
208654
«.P19R871
«231150
282427
«253702
264911
«?7H1A3
+2RT74S52
«29R656
«309921¢
. 321185

]
1IG60JwW) )

1.05435%8
1.050815
t.0a73R8
1.004064
1.040859
1.037769
1.034793
1.031935
1.029195
1.026572
1.024069
1.02168S
1.019023
1.0172R3
1.015264
1.013369
1.011597
1.009849
1.00A0826
1.00702R
1005757
1.,004611
1.003591
1.002698
1.001933
1.001294
1.000783
1.000800
1.000144
1.000016
1.000016
1.000143
1.000396
1,000779
1.0012R8
1.001922
1.002685
1.003575
1.004a591
1,005726
1.006993
1.008384
1.000891

1.011529
1.013290
1.015174
1.017167

1.019292
1.021536
1.073RA6
1.026368
1.02R966
1.031AR0
1,03a49a
1.n37438
1.040494
1.0a3645
1.046925
1.0503%14

A PLOT OF THE REGION SURROUNDING THE DF SOLUTION WHEN

FIGURE 5-4

.03s
- .03s +1

S

n{x) = 1/3x3, G(s) =



CHAPTER VI

EXTENDING THE METHOD TO MIDF AND MORE
GENERAL NONLINEARITIES

A. Multiple Input Describing Functions

The results obtained for DF can be extended to multiple input des-
cribing functions (MIDF). One needs to deal with some higher dimensional
spaces and use homotopy arguments to show the existence of a solution.

It is also desired to define a more general set of characteristics that
a nonlinearity must have for the method of Theorem III or IV to be

applicable, and to determine the modifications necessary to the theorems.
The next result represents the MIDF analogue of Theorem III.

Theorem V: Let S satisfy (3-1) and have nonlinearity
n(x) = xP; p odd.

Let there be a disc Q in (gm, 00 w) space.

1) Suppose there is an MIDF solution (gm, ém’ w) €2 and on

a0
1067 () * Mays 8,)) apll > lagll o (6-1)

where o is a positive quantity satisfying

m
A= ) g (6-2)
k=1
A= pll + %g)p - 1Ap -1 (6-3)

74
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20\p p - 1
20 PO+ a
T f 2 2 1 1 (6-4)
in 200p - 1p-
K>m l'e(“"\'jkm, el + 5 A
and
(1 + 6(w) N(a_, 68.)] a
J - ='=M" =M =M # 0 (6-5)
< ém’ Qm’ w R
an =
O = O
w o=

then an oscillation exists with (gm, 0. w) €.

2) Suppose (6-1) is satisfied for V(a , 8. ., w) €Q, where
o is given by (6-2) to (6-4). Then no oscillation with

parameters (gm, 8, w) €0 exists.

m

Proof: The scenario for analysis rigorously defined in Theorem III
applies here; the system definition is the same and hence the applicabil-
ity of | | and | lz follows. Of course, P, is defined as the summa-
tion of harmonics greater than m, and the contractive property of x, is
obtained by the same method as before, except only harmonics greater
than m are considered. Let Ixm]1 = A which is given in (6-2) and used

to estimate |x|y.

Applying the pm operator to (3-4) in this case yields

Xy = -ngn(xm + Xyl (6-6)

One adds a quantity ngnxm to both sides and since ng(x|x}1) Xe = 0,

one obtains
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}\(lxl'l)x

m m
Xo ¥ Prgnx . = P g[nxm - n(xm + Xg) - _—-37—_'* ]. (6-7)

Now (6-7) actually represents m coupled complex equations. After divid-
ing by G and taking the norm on both sides, either | [; or | 15, one

obtains the necessary condition for oscillation as
-1 Allx
1671 ) + Mags 200 gl < 2610 1)

where the norm of a vector is evaluated as in Theorem II. Then condi-
tion 2 follows from this and the fact that |]x.|| < %g Hx . Ifa
satisfies (6-2) through (6-4) it can be shown that it is greater than

or equal to the o of Theorem III. Hence condition 1 follows.B

The application of Theorem V implies plotting a region in a space
of dimension greater than two. This is inconvgnient. A sufficient set
of conditions for applying part one of the theorem is to examine a
region in the (a, w) plane given by

1/6(36) + Nyla, 8] > ”éf:” . (6.8)

subject to the conditions
(1/6(jkw) + Nk(gm, Qm)) =0, k=3, ...,m. (6-9)

Suppose (6-9) is solvable for (a3, cees am), (63, cens em) in terms of
(a, w) (this is not always the case). It can be seen that (6-9) and
(6-8) together imply (6-2). If the planar plot is bounded, then so is

the multidimensional plot required by the theorem.

An example of the technique will now be discussed using the dual
input describing function (DIDF). By (6-8) and (6-9), 2 is described

by the relations
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: a2 + a 2
11/6(jw) + N](a, a3, 8)| > 3 o (6-10)
a
1 + G(j3w) N3(a, a3, 8) =0 (6-11)
A=a+a,. (6-12)
3

Continuing with the example, (6-10) and (6-11) are applied to n(x) = x

whose DIDF 1is

N](a, ag, 8) = %{az + 2a32 - éa3 cos® + jaa, siq@? (6-13a)
3 3
3 2 . T
N3(a, aq, g) = Z(Zaz +ag" - 3%;; cos® -.]é%g-s1ne). (6-13bh)

From (6-13b) and (6-11) it is possible to find a5 given a, w by solving

4

2% - [16]1/6(330) 12 + 36a* + 48 Re|1/6(j3w) |Tay”

-(24 Re|1/6(j30)| + 36a%) a," - 9a5® = 0 (6-14)

and © is obtained from

8 = sin”! [433 Iml]/G(j3w)ﬂ . (6-15)
d

Now (6-10) is plotted in the (a, w) ptane with the aid of (6-14) and

the theorem is applied.

It is possible to check the non-degeneracy of a solution in this

example from the relation



78

3 3 3 3 j
5d - 734 COs6 3a; - ga cosé z3a5 sind BRell:G(Jw)l
%a3 sing %a sing %aas cosp OIm{1/6(jw) |
ow
2 3 3 .
det {3a - 22 coso  2a, + l-é—-cose 1-3—-sine 3Re|1/6(j3w) | #0
T a 2°3 - 14 a 4
3 3 3 ow
2 3 3 ' .
-%-%— sind %-%— sing -F 5= €os8 3Im|1/6(33w)|
3 3 3 ow
a=a
43 7 43
=8
W=
(6-16)

A number of systems were analyzed using the DIDF method; each con-
tains a cubic nonlinearity and different linear transfer functions. In
each case the system was analyzed using the DF method of Theorem III,
and the results compared. The (a, w) plots are shown in Figures 6-1
through 6-4, and the results are tabulated in Figure 6-5. Note that in
some cases it is possible to show oscillation with the DIDF method when

the DF method 1is inconclusive.

B. More General Nonlinearities

Next, the nonlinearity will be generalized to a polynomial that is
odd and nondecreasing. The minimum slope is required to be zero. Theorems

III and IV can now be restated in the following manner.

Theorem VI: Let S satisfy (3-1) and have nonlinearity

Q
n{x) = Z bpxp; bye R, n(x) odd, (6-17)
p=3
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«990000
«990339
.990678
«991017
«991356
«991695
.992034
«992373
.992712
« 993051
«3933990
»9937°9
. 934068
.994407
.994746
995085
»9954023
«995762
« 996101
2996440
+396779
.997118
«997457
« 997796
. 994135
.998474a
«998813
+999152
.99949}
«99983%0
1,000169
1,000507
t.000847
1.001185
t.001525
1.00186%
1.002202
1.002542
1.002880
1.003220
1.00355R
1.003R98
1.00423%6
1.00457¢6
1.004914
1.,0n5253%
1.0055%92
1.005931¢
1.006270
1.006A09
t.NNp9aR
1,0072R7
1.007626
1.,007965
1.00R300
t.00R6483
1.PDRARD
1.00932
1.009660

RE 1/7G(JW)

=-1,000000
-1,000000
=1.000000
=-1.,000000
=1.,000000
~1.000000
-1.,000000
-1,000000
-1.000000
=-1.000000
«1,000000
-1,000000
-1.,000000
-1,000000
-1,000000
=-1,000000
~1.000000
«1,000000
=1,000000
=-1,000000
=-1,000000
«1,000000
-1,000000
-1,000000
-1,000000
«-1,000000
=-1,000000
=1,000000
=1,000000
=-1.000000
-1,000000
-1,000000
~1.000000
-1.000000
-1,000000
-1,000000
«“1.000000
=1,000000
=-1.000000
-1,000000
=-1,000000
«1,000000
-1,000000
=-1.000000
-1,000000
-1,000000
-1,000000
-1.000000
=-1.000000
-1,000000
-1,000000
-1.,000000
=1.000000
-1,000000
-1.000000
~1.000000
~1,000000
-1.,000000
-1.000000

IM 1/G(JW)

-.002020
~.3883°26
-. 3706317
~.360952
Io#DﬂNﬂN
~=e333597
~.319926
-. 306261
=.292600
-,278943
-.265292
= 751645
~.238002
-, 224365
-e210732
-,197104
~,183480
~.169861
-,156247
~.142637
-,12903¢
-.115432
-,101836
-, 088245
-, 074658
-.061077
-,047499
-.033927
-,020359
~,006795
006751
+0202R9
033860
.047388
« 060950
.074469
.087944
101537
«115038
. 1285717
.142073%
«155603
+169090
182611
. 196090
. 2N956 3
«.P23071
« 236535
.2500%%8
+2634R9
2716978
«.290a42%
« 303AAT7
.31734%
. 330776
. 500243
e ASTHG6T
.3711°P5
. 384540

1G6(JwW) 1

1.07778S
1,07275¢2
1.,067873
1,063149
1.058583
1.054176
1.0a9930
1.045847
1.041928
1.038176
1.034592
1.031177
1.027932
1.,020861
1.021963
1.,019240
1.016693
1.0143240
1.,012133
1.010121
1.008290
1.0066480
1.005172
1.003886
1.002783
1.001863
1.001127
1.000S7s
1.000207
1.000023
t.00002%3
1.000206
1.000573
1.001122
1.001A56
1,002769
1.003863
1.005141
1.,006595
1,008232
1.n10042
1.012034a
1.014195
1.016537
1.01904a
1,021722
1.024578
1.02759a
1.030785
1.03413¢
1.037650
1.041320
1.00514A8
f.na914a6
1.0532R7
1,057593%
1.06203R
1.06066406
1.071%R7

PROOF OF OSCILLATION BY THEOREM V

FIGURE 6-1

n(x) = 1/3x3
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OMEGA

.990000
«990339
.990678
2991017
«9913S6
+991695
,92°034
992313
292712
«993051
.293390
«993729
.994068
.9948407
.994T46
+995085
.995423
0995762
«996101
.996440
«396779
«997118
. 987457
«997796
.99A1135
.998474
998813
.999152
999491
« 999830
1.000169
1.000507
1,00084a7
1.001185
t.001525
1.001863
{.002202
1.00°5%42
1.002880
1.003220
1.003558
1.ND3RYR
1.00423%6
1,004576
t.0049140
1.005253
1.005592
1.005931
1,006270
1.006A09
1.006948
1.007287
1.007626
1.007965
1,00R8304
1.008643%
1.008982
1.00932)
1,009660

RE 1/G(JW)

-~1.,000000
~1.000000
-1,000000
-1.,000000
-1,000000
~1,000000
~1.000000
-1.,000000
~1.000000
-1,900000
«1,000000
«1,000000
~-1,000000
-1,000000
~1,000000
~1.000000
~1.000000
-1,000000
~1.000000
~1.000000
«1.,000000
-1,000000
~1.000000
-1.000000
-1,000000
«1,000000
-1,000000
~1.000000
«~1,000000
-1,000000
-1.000000
-1.,000000
-1,000000
=-1,000000
-1.000000
=1.,000000
-1,000000
-1,000000
-1,000000
-1,000000
-1,000000
-1.000000
-1.000000
«1,000000
-1.000000
~-1,000000
-1,000000
=1,000000
-1,.000000
-1.0Nn0000
-, 000000
-1,000000
-1,000000
=1,000000
1. 000000
-1.,000000
-1,000000
-1.000000

IM 1/6(JW)

-,201011
~,1941648
-, 187319
-, 180477
- {73637
-, 166799
-,159964
-, 153131
~. 146301
-.1394a71°?
=, 132646
=, 125823
-.119002
-,112183
-, 105366
-,098552
~.,091740
-, 08093}
-,078124
-, 071319
~, 064516
-, 057716
=-,050918
-,048123
~,037329
-,030538
-, 023750
-, 016964
-,010179
,003398
.003376
,010145
016930
. 023694
0304715
«037235
.043992
2050766
.057519
064289
071037
077802
.084546
091306
.098045
.10478?
«111536
+11R268
+125017
.131745
.138490
<145213
«151934
«15R672
165389
«172122
.178R34
« 185563
.192271

16(JNW) !

1,020003
1.018675
1,017393
1.016155
1.014963
1.013816
1.012713
1.011657
1.010645
1.009679
1.008759
1.007885
1.007056
1.006273
1.005536
1.004845
1.004199
1.003600
1.003047
1.002540
1.002079
1.001664
1.001295
1.000973
1.,000697
1,0004866
1.000282
1.000144
1.000052
1,000006
1.000006
1.000051
1.0001a3
1.0002R1
1.000064
1.000693
1.000967
t,0012A88
1.001653
1.002064
1.002520
1.003022
1.003568
1.00a160
1.004795
1.005475
1.006201

1.006969
1.007784
1.n0A8641

1.00954aa
1.0104A8
1.011476
1.012510
1.n135AR4
t.014705
1.015865
1.017071%

1.018316

PROOF OF OSCILLATION BY THEQREM V

FIGURE 6-2

n(x) = 1/3x3
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B G G G Baw e T e S G P B Bes B e B Gub s S St B G B fum Gem G G G B Bue $em S Gen S Gm $m S 4 S b S ew S bw b G Sm P fen Sm 0 S S o S o b= S 0

§-1/58433~1282=12
A

2.31

LR
LE 2 2
Rhkdkh
Rk hhA
2.2 3 ]
* %

S e Bum B Ban am b Sm G Bmm P Sm b P G G P G B G P G e S e Gmm Guh G G Sem n P Sn Gt S Pt Bt G Gt B Pun S B w S S m SW P Pl S Sm S Pem B Sen S B Sum

OMEGA

. 980000
+9R06T8
.9R1356
+9R2034
982712
.983390
+ 984068
.3R84746
.985424
986102
986780
. 987457
<3BA135
.9888173
+989491
«990169
990847
2991525
.392203
.997881
«993559
.994237
.994915
+995593%
+99627)
«996949
.997627
.998305
.998983
«39966]
1.000339
1.,001017
1,001694
1.002372
1.003050
1.003728
1.004806
1.005084
1,009762
1.006440
1,007118
1.007795
1.008473
1.009151
1.000830
t.010508
1,011186
1.0118A48
t.,0M1P°Sap
1.013220
t.013R97
1.014575
t.015253
1.0159931
1.016609
1.0172R7
1.017965
1,01R643
1,019321

RE 1/G(JW) IM 1/G(JW)

-, 698600
-, 7T0RAKS
~. 719121
-, 729377
=.739631
-, 749881
-, 760127
= 770370
-.780611
-.79084a8
~,801081%
-.A11311
-,A21939
-,831763
-, 841984
~.852201
=, 862416
-.B72627
-,RA2835
-, 893039
=,903242
=,913440
=.923635
-,933826
=-.,944016
=,954201
-,964383
-,974562
-.384713%8
~,994911
-1.005078
~1,0152486
=1.025396
-1,035557
-1.04571S
=1.055870
=-1.066022
=1.,076170
-1,086315
=1.096457
~1.106596
-1.116717
-1.126850
-1,136979
-1,147105%
-1,157°27
=1,167347
=1.17744k3
=1.187576
~1,197686
-1.,”207778
-1.2178R2
~1.2°79R2
-1.23A079
-1.PUR173
=1.25R263
=1.26R350
-1 .27843%4
-1.PRA51S

« 256564
«287981
.239390
« 230791
«222183
« 713567
%204944
«196313
+187673
«179026
170370
«161707
« 153035
. 144356
135669
126974
«118270
«109559
.100840
092113
.083378
174635
«065885
057126
« 048359
+«039585
«030803
«.022013
«013215
004410
-.0044602
-,013225
-.022043
-. 030881
=,039727
-,048581
-.057442
=. 066312
-,075189
-, 084073
-, 092966
-.101R54
-, 110762
~.119677
-.12R601
-, 137532
~, 146071
-, 169017
=-. 164371
~.173333
=.182290
-, 191267
-, Pnn252
-.209244a
-.218244
- 227252
-.2%6267
=.245289
=.250320

16 (JWY L

784222
.750986
.7157920
+ 765020
.772282
2779700
.787271
794990
.802854
.A10858
,818997
+A8P7270
.835671
.8448197
852844
.861608
.870488
.870478
888575
«BeT77T7
2907082
.9164R4
925941
.935572
»945253
.955022
.964875
.974810
.98aR27
994920
1.005088
1.015332
1.025633
1.036017
1.086470
1.056987
1.067568
1.078211
1,0R8914
1.099676
1.110494
1.121353
1.,132780
1.1483260
1.154291
1.165371
1.176500
1.1R7676
1.19A897
1.”210164
1.221457
1.232R09
1.2048203
1.7255636
1,767109
1.278620
1.290168
1,301753
1,313374

PROOF OF OSCILLATION BY THEOREM V

FIGURE 6-3

n{x) = '|/3x3

s4 + s3 - 1252-12

G(s) =
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T ey S Bk P P G pew 4= Sem P Gen Bm S Gem G b fus B A Gm §mw BB Pem pue P S Gmw Gom e i Bms Gem Bam v St Sus Gob Grm Sem P Beb m Gum =m Ve P 4= G Bum G== St Gm Gen Put B tem S Oue

#9982/ 80~ A8341,9152«,65+1

A

2.17

*h
LA X ]
Kk hhRR
L2 A8 X2
TRERAR
LR AR ER]
R Ak
* &

Pu b S G B Y Gas Sam G B Pl fum B S Gm Sem (e et P e Gt Ber b G Gk S Bm Gum PR G Pun pev GuE m Ber S Gem Pem Gk Bem Ged Sm Bes G G Sim e G uE Gt Gum G S Pme S em Sen Gm

OMEGA

.990000
.9390339
.990678
.991017
991356
.991695
.992034
«992373
,992712
.993051
»99%390
.993729
.994068
.994407
<9967 46
.995085
2995423
. 995762
.996101
.996840
+ 996779
997118
.997457
.997796
.998135
.998474
«.99A813
.999152
.999491
2999830
1.000869
1.000507
1,000847
1.001185
1,.001575
1.001863
1. 002202
t.00254ap
1,00PRAQ
1.003p20
1.002558
1.003894
1.004236
1.004876
1.004914
1,00525%
1.005%92
1.005931
1,006270
1.006A09
1.00A34R
1,0072R7
1.007626
1,.007969
1.00A304
1.,00RAUT
1.00HQ87
1,000%0}
1.00966/(0

-

RE 1/6(JW) IM 1/6(JW)

-1,004475%
-1.0048174
-1.0038R4
-1.003605
-1.,003335
-1.003077
~1.002829
=1 .,002591
=1.002364
-1.002147
=1.001940
~-1.00t740a
-1.001559
-1.001384a
-1.001219
=], 001065
-1,000921
-1,000787
-1,00066a
-1,000551
~1.000448
-1,00035%56
-1.000274
=-1.,000202
=1.000140
-{1,000089
-1.,0000408
~1.,000017
-,.999997
-.39949487
-.999937
-,3999q97
=-1.000017
-1.000048
=1.000089
-1.,000139
=1.,000200
=-1.,000272
=-1.00035%
=1,0004485
=-1.00054Ubp
=-1.7006%R
-1.000780
=-1.000Q12
-1,001054
-1.001205
~1.001368
-1.00154n
-1,001727
-1,001914a
=t.007116
-1,002378
-1.00P255¢0
-1,00278%
-1.00302%
=-1.002277
-1.,0N035%9
-1.003811
-{.n0angy

«134007
«1294842
124879
.120317
115757
«111199
106642
102087
«N97533
« 092981
.08R43¢
.083882
«N7933%4
074788
.0N7024810
065701
«061160
« 056620
052082
047546
.Na3olt
.038ar7
. 033945
.029415
020886
020359
.015833
«011309
+.N06T786
002265
=-.002250
~, 006763
-.0112R7
~.01579¢
-, 020317
-, 020823
-.0N29328
-.038346
~.042859
-.04a7358
-,051868
-, 156364
-.060R70
=. 065363
-.069RS5S
-, 074357
-, 07RRUS
-.NA3345%
-, N87830
=, 092326
- 096R0A
-.1012A9
-, 105781
-.1102%9
-.114748
-.11927?
-.123708
-.1281R0

1I60JW) 1

t.01337a
1.0124R3
1.0116P2
1.010791
1.009991
1.009222
1.0084883
1.00777%
1.007098
1.00645%
1.005R35
1.,005250
1.004696
1.008173
1.003680
1.003218
1.002787
1 .0023A7
1.,002018
1.0016R0
1.001372
1.001095
1.000849
1.000634
1,000450
1.000296
1.,000173
1.000081
1.000020

.999989

.999989
1.000020
1.0000R1
1.000173
1.000295
1.00044a7
1.000630
1.000R40
1.001088
1.001362
“1.0016h6
1.002001
1.002%66
1.002761
1.003185
1.003639
1.000125
1,0040638
1.005183
1.005756
1.006361
1.006993
1.,007654
1.0083a7
1.009067
1.009818
1.0105%96
1,011005
1.012242

PROOF OF OSCILLATION BY THEOREM V

FIGURE 6-4
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Q Q
G(s) DF METHOD DIDF METHOD
.05s 1.93 < a < 2.12 1.96 < a < 2,07

L9977 < w < 1.0022 .9988 < w < 1.0008

- .05s + 1

s - 1.93 <a <2.17

o 1s + 1 - .9937 < w < 1.0055
s -1 1.90 < a <2.20 1.99 <a <2.02

+ s3 _ ]252 - 12 .9949 < w < 1.0084 .998 < » < 1.0016
.0952 1.96 < a < 2.06 1.99 <a <2.02

_ .653 + ].9152 . B + ] .9957 < w < 1.0042 .9988 < w < 1.0011

FIGURE 6-5

A Comparison of @ for n(x) = 1/3x3 when
Computed by DF Method (Theorem III)
and DIDF Method (Theorem V)
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with 0 < g§-< ©. let @ be a disc in (a,, 8., w) space.
1) Suppose there is an MIDF solution (§m, ém’ w) eR
and on 93Q
-1
1067 (@) * g, 8)) a1l > [agl] o (6-1)
where o satisfies
m
A= }: ags
K=1
x_ = (1 + 29) A (6-18)
S A
Q Q
A > max pbx-”",mz.lblxp" (6-19)
T x < x Y - p S
s |p=3 p=3
20 _
™ inf 2 .5l s (6-20)
k >m |[G(Fkw)
and
[T +Glw) Na ., 0 )] a
2 =‘Sm’ =m’Y Sm A
J #0 a_=a (6-5)
< Em’ Qm’ w =m :
o = & _
w =0
then an oscillation exists with (a_, 8., w) €.

2) Suppose (6-1) is satisfied for Via,. 8, w) €9,
where o is given by (6-18) to (6-20). Then no

oscillation exists with parameters (a, 8, w) eQ.
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Proof: The proof is the same as Theorem V except it must be shown

that A satisfies (4-5) and (4-12). Since

Ixlg < Ixly s+ 5 a

and, from (6-17) one obtains

Q
aﬂ = E: b xP - 1 .

Hence it follows that A > gn . Now relate |n(x)|; to |x][;. Noting that

lxp|1 < (|x|1)p, it is seen that, from the triangle inequality,

Q Q
Inx)iy = | ) bl o< ) Ibl IxlyP (6-21)

p=3 1 p=3
Hence (4-12) dis satisfied also.fl

Two special cases are worth mentioning. When bp > 0, n(x) is

slope monotonic, and (6-19) may be written

Q
A = Z pby (1 +%9)P - ‘AP -1, (6-22)
p=3

The theorem requires %E-to be in the range [0, »]. When finding
a bound on ||x4||, a pole shifting technique was used to sharpen the
results. The median slope was required, and the'minimum slope was set
equal to zero. Rather than restate the results, when %%—e [a, =] or
%ﬂ € [-», o], the system may be rearranged to meet the requirements.
In the latter case, multiply n(x) and G(s) by -1 so gx € [a, ©]. A new

function, n'(x), is constructed so that
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n'(x) = n(x) - ox (6-23)

and a linear function, g', is obtained from

The transformation is shown diagramatically in Figure 6-6, and it can be

seen that the two systems are equivalent.

One may apply Theorem IV to systems whose nonlinear elements satisfy

(6-17) with bp > O.ﬂvTo do so requires the following theorem.

Theorem VII: Let S satisfy (3-1) and have nonlinearity

Q
n(x) = Z bx?; b_ > 0. (6-25)

p p
p=3
p odd
If S has a DF solution and if Theorem IV predicts oscilla-

tion for a system S' in a region Q' whose linear element g'

is the same as g and whose nonlinear element is

0

n'(x) = x
then S has an oscillation with (N, w) in Q'.
Proof: Define two quantities, c2' and °2"’ which are solutions

to the equations

(cz') aP -

Q .
L.t
Cy' = max = (6-26)
Q
2.0

(a, w) eQ'
-1
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X0 = (X)u

il

043Z 40 3d01S WNWINIW ¥
JAVH 0L WILSAS 3FHL INIWHOISNVYL

(s)9

9-9 JNII4

X0

X0 - Axvc.

(s)9

(x)u
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a (C n)
C2" = ._Q._E__ (6-27)
By
where
ap(ey) = P(1 +1/cy)P - ! (6-28)
N(a) - J (p = 2) 3 ¢ (6-29)

I R CER DA R IR

It will be shown that cz" > cz'; it is sufficient to show that, for all

(o4
2 Q 1
P
(en) z; bp ap(cz) a
Q 2 > B = 3 , ¥(a, w) €. (6-30)
B Q
p-1
Z by Bp 2
p=3
Now
. .
§E=(P+]’H...%(1 s 1/ " P50 - (6-31)
p

from (6-28) and (6-29), and examining (6-31) one finds that for any €y

o Qo
_L_Ll>_£’1>o.
for1 B

since aP ~ LIS 0, this leads to

p-1 p-1 -
%y 4 1 Bp a > o Bp 418 (6-32)

which may be used to form the sum of terms
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Q Q
p -1 p-1
Z by o By 2 > Z b, Bq @, @ . (6-33)
p=3 p=3
p odd p odd
Q
On dividing both sides by BQ }: bp Bp aP ~ 1, (6-30) follows.
p=23
p odd

From (5-12), one sees that for the system S', one may write

N{a) c2" > A (6-34)
while from (6-22) and (5-11) one sees for the system S that

N(a) c,' > A. (6-35)

But c," > ¢c,'; hence for S, equation (6-34) also holds. Then applying
Theorem IV with (5-3) replaced by (6-27) yields a region Q' in the
(N, w) plane for the system S; however, this is equivalent to applying

Theorem IV to S'.H

The use of Theorem VI is illustrated in Figure 6-7.
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PROOF OF OSCILLATION BY THEQREM VI

FIGURE 6-7

n(x) = .00571x + .02x° + .2%°

54 + 53 - 16052 - 160

G(s) =



CHAPTER VII

SYSTEMS CONTAINING APPROXIMATELY DISCONTINUOUS
NONLINEAR FUNCTIONS

Many cases of nonlinear systems can best be modeled as discontinu-

ous. A simple example is the ideal relay shown in Figure 7-1.

However, a differential equation that is discontinuous need not
have a unique solution. For the purposes of this analysis, the ideal
relay may be approximated arbitrarily closely by a limiter as shown in
Figure 7-2. From the figure, the gain about the point x = 0 is A/e;

note that the ideal relay is the limit as € -~ 0 of the limiter.

Definition: n(x) eJe if %% is zero except on finitely many

intervals of the form (x0 - €y X ¥ €). The points of dis-
continuity of %% are finite jump discontinuities which occur

in pairs with distance between pairs 2e.

Step functions occur naturally as limits n.as e 0 with ne eJe.
It is convenient to represent ne for very small € - 0 by its 1imit. Two
other important functions that are limits as € +~ 0 of ne eJE are a relay

with deadzone and a staircase function, shown in Figure 7-3 and 7-4.

The analysis that follows deals with a single input describing
function approach. This is similar to work done by Blackmore [15],

although the scope of the system and the method of proof differ.

It is convenient to define a function T which will be used exten-

sively in the work that follows

Definition: Let T be a function of three real numbers,

a, b, ¢, such that

a1
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FIGURE 7-1

IDEAL RELAY
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FIGURE 7-2

LIMITER WITH HIGH GAIN
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FIGURE 7-3  RELAY WITH DEADZONE
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x

4 HA]

—te _A2

- _A3

STAIRCASE FUNCTION

FIGURE 7-4
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(
. 0 (b+c)>a
- 2
r'(a, b, c) = J J/ - <F ; f) 0<(b+c)<a
1 (b+c)<0 (7-1)
\

The first theorem in this section deals with some special functions

belonging to Je'

Theorem VIII: Let S contain n(x) ed, represented by one
of the following:

a) Ideal Relay

. _JA x>0
112 0 ns(x)-'{-A x <0
b) Relay with Deadzone
A x>8B
Tim ne(x) =¢0 -B<x<B
>0 -A x < -B
c) Staircase Function
(Ai, Bi <X < Bi + 1

1im ne(x) =¢ =A., -B.

< X < 'Bi
e~+0

and suppose € is sufficiently small (determined in the

proof).

1)  Suppose there is a DF solution (2, ©) € where @ is

a disc in (a, w) and on 3Q
11/6(jw) + N(a)| > ofa, x,) (7-2)

where xh(a, w) satisfies



yp =0 (a +yp)
(k| > 3

and, for the functions mentioned o is given as follows:

a) Ideal Relay

Y letske 1%

Xp =¥ * €

ola, xh) = ——-[1 - I'(a, xh, 0)]

b) Relay with Deadzone

ola, x,) = %é [r(a, B, -x;) - T'(a, B, x,)]

c) Staircase Function

K |
_ 4
ola, xp) == ) (A = Ay _ ) [Tla, Byy =xp)
i=1

- r(a, B xh)] with A, =

In addition, Let

o0

E: |G(jkw)| < =

k| >3

-and

20 lk] >3

) lalike)|

e

2

0.

1, ¥(a, w) €
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(7-3)

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)
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where for
a) Ideal Relay a=A, B=0
b) Relay with Deadzone o =A, B8 =28
c) Staircase Function o= A, B =B,

i = min {jla-Bj> 0} .

Then an oscillation exists with (a, w) €Q.

2) If, for all points within a disc Q in (a, w) (7-7) is
satisfied and (7-2) is satisfied, then no oscillation

can exist having (a, w) in Q.

Proof: The analysis will be done in the Hilbert space of L2 func-
tions; however, the | |1 norm is also used. Note that Ine(x)}1 may not
be bounded, independent of €. Employing the usual orthogonal projec-

tions, the system can be represented by

1

X* = ’P*

gns(x1 + Xy) (7-9)
xp + P1gn€x1 = P1g[n€x] - ne(x1 + Xg)]. (7-10)

If x is a solution of (3-4), then ]x*l1 is bounded; to see this proceed

as follows. Representing n{x) by a Fourier series one obtains

y = n(x) = Z By ejk“’t, B, € ¢ (7-11)

X = }: Ck ekat = -gn X = E: g(jkw) Bk ekat . (7-12)
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Applying P, to both sides and taking absolute values of each term of the

sum yields
Y oIgd = ). latike) Byl (7-13)
k| > 3 k| > 3

which, from the Cauchy-Schwarz inequality, becomes

172/ & 1/2
Yolgl <l Y gtk ? ( > |Bk|2> . (7-14)
53 kl53 ('

o 1/2
Since n_ is bounded and continuous, <: 2: [Bk[€> <o, Let
k
T = 21/w be the assumed period of osciltation and
a = |n_(x)] (7-15)

then from Parseval's theorem

® T
) lglf-q [ [n(x)1% dt < o (7-16)
k = = 0
A11 three functions considered are nondecreasing; hence
lne(x”s < ne(xs) : "€(|X|1) b n€(|x1|] * Ix*[])
<n (a +b) (7-17)

for any b > lx*|1. Then from (7-3), (7-14), (7-16), and (7-17) it

follows that one can set b = Xpe

That (7-9) can be solved for x4 as a unique function of (a, w) may

be shown by investigating the contractive properties of (7-9). Take two
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points, x4' and x,", with the metric |x," - x*'|1. Substituting, one

obtains
| TPian_(x; + x,")] - [Plgne(x1 *x" )1y g |PlG(jkw)|1 Fo(7-18)

where
2T
- ] n t jke
F = sup 5 [ne(x1 + X,") - ne(x] + %' )]e de{. (7-19)
)

It is easy to see that

PGliko)ly = ) [6(ike)] (7-20)
k] >3
and
2T
F< 5%[ |n(x1 + Xe') - n(x1 + xe')| dof. (7-21)
0

The integral on the right side of (7-21) can be estimated when

| x5 << lx]ls. Let the nonlinearity be represented in its Timit (as

e +0) by a jump of magnitude o at an input of 8 (with a symmetrical jump
of -0 at an input of -B). The integrand of (7-21) must be zero over
intervals for which Ix1 + Xe| > B + e when x4 = xi' and also Xy = Xx".
Likewise it is zero on intervals for which‘lx1 + X&| < B. For intervals
on which |x1 + x."| > B8 + ¢ and lx1 + X%'| < B, the integrand is equal
to o. Finally, on the interval [x; + xy| = B to |x; + x«| = B + & the

integrand is either a(x1 + xg)fe or afl - %y - Xs)/E.

Let |x4|, be the value of x4 when |x, + x,| = B. By using the
B 1

1imits enumerated above, (7-21) can be estimated by
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sin~! B * lx*'ls + e sin"] B ¥ lx*'IB + g
a a
2 1
ffTroi [ dé -E[ (X-|+X*')d9
sin”? B * Ixu'fg e sin—],ﬁ_i_lx*’lB
a a
sinl B [x"[gt e
a
1 11
‘o (x1 + x,") do |. (7-22)_
, sin"1 g + 'X*"IB
a

While the integrand in the last two integrals in (7-22) cannot be evaluated
without knowing the exact form of x4, it does possess certain character-

istics which may be used to bound the integrals:
1) It is zero at the lower 1imit of integration.
2) It is continuous, as all solutions x(t) are continuous.

3) The maximum value of (x1 - X"} as an integrand in (7-22)
must be X' - x*"lS as this is the maximum input the

nonlinearity sees.

Accordingly, each of the last two integrals in (7-22) can be repre-
sented, after a transformation of variables, by

sin"lg + |X*|B +€
a

€
-:-:-f (x1 + X,) d6 = %" - Xge'| f A(z) dz

sin"lg + [x*ls
a
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where A(z) is a suitable continuous function which, from characteris-

tic 3, has the property [A[s < 1. One may then estimate the integral

as
€
Xe" = Xg'| jr AMz) dz < sup [A(T)] [xe" = X&' .
& ‘o O0<g<e
Returning to (7-22), one obtains
F < %%. sin'] B + |X*'|B te sin'1 g + |X*"|B t €
a a
+ sup IA(Z)] [x" + X*']s} .
0<g<e
Applying the mean value theorem one obtains
1
Fe (e’ g = 0" g)
: w\/ -<s+|x*'|s+e> *'lg - Pl
a
tsup 1802)] Ixt - xatl
0<g<e
which, when substituted into (7-18) becomes
1 " 1 |
|IPagnixg + xx")] - [Pagn(xq + xi')1l;
1
20, E: .
A m l&(3ka)| 1.78+ Ixlq +e
K>3 :
+ sup [A(Z) ). [x&" - x*'l]. (7-23)

0<g<e
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sup

0<zc<ce [A(z)| from characteristic 1. Then

However, as € - 0, so does
if (7-8) is satisfied, the higher harmonics are contractive for e suf-

ficiently small from (7-23), and x, is unique.

Now turn to the DF equation. As P and g are linear, one may write

from (7-10)

1 1
|x; + Pgn_x;] < |Pgo(a, x,)|a

where
. N . . .1
ola, x,) = |P[n€x1 - n(xq + X%)1/a (7-24)
2w |
= 1/a Jf [ns(a sing) - nE(a sind + x,)] sin6 doj.
0

The integral is evaluated using the same techniques as (7-21); one
computes the function in brackets due to error in switching point and

takes the first Fourier coefficient.

a) Ideal Relay - one has two switching regions

o

sin) |y + €

2A a
o(a, |X*| ) <=
17 - ma sing de
)
L
s1'n'1 T+ |x*|1 te
a

+ sing do +

_ap \/[ ook 2 ) (7-26)
== 1 - '|_,<|Xl; E) -
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b) Relay with Deadzone - one now has four switching regions

with two possible conditions on [%x]q

in"1 B+ Ixefy ¥ e

s
a
a(a, lx*l1) = %2' sing de
sin™! B - Ixuly - e
a
44 B - - &\ P 2
= 1 _( Ix*i'l E) - "l - >+ IX*{] + g
2 a a
[xely < B + ¢ (7-27)
sin”? [Xxly +B + e
_ 4A a
ofa, [xe]q) = o=
sing de
0
iy [ C o B +e2]
Ta 3

c) Staircase Function - This is Just a sum of functions of

class b.

Then all conditions of Theorem I have been verified and the

results follow.®
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A word of comment on the solution of (7-3) is in order. The
theorem may be used to prove a periodic solution exists when a DF solu-
tion predicts oscillation; however, in the case of a staircase function,
the DF method may predict multiple modes of oscillation. To meet the
uniqueness requirement on x,., it is necessary for this type of analysis
that solutions be sufficiently separated so that Q contains only one DF
solution. The relay system has only one output while the staircase
function may 'change steps'. In the latter case, the uniqueness of
solution may not be preservéd, and the method would have to be modified

accordingly.

Some examples of the application of Theorem VIII on systems with
ideal relay, relay with deadzone, and staircase function are given in

Figures 7-5, 7-6, and 7-7 respectively.

The preceeding theorem is implemented graphically, similar to
Theorem III. The following corollary can be applied algebraically in

the case of an ideal relay.

Corollary VIII: Let S satisfy (3-1) and contain an ideal
relay with n(x) eJ_ and there is a DF solution (3, 0).

Let there exist an interval W along the w axis
W= {w: Wy < W< Wy, Wy << wz} (7-29)
such that everywhere along W the set

N'(w) =4 N(a): N(a) > N(a), [1/6(jw) + N(a)| >

T N3(a)| ZZ [G(J‘kw)lzl

Te [G(jkw)J"I (7-30)

[k] =1
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PROOF OF OSCILLATION BY THEOREM VIII

FIGURE 7-5

IDEAL RELAY, A = 1.57

54 + S

G(s) =
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PROOF OF OSCILLATION BY THEOREM VIII

FIGURE 7-6

RELAY WITH DEADZONE, A = 1.62, B = .5

s =1

G(s) =
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PROOF OF OSCILLATION BY THEQREM VIII

FIGURE 7-7

B-l = (0.0

.75,

STAIRCASE FUNCTION, A2 = 1.25,

.8

B, =
Ay = 1.6378, B4 = 1.0

S -

G(s) =
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is not empty. Suppose the following quantities exist

N(w) = inf IN(a) |
Ne N'(w)
N = sup N(w) .
weW
Then if
. “2 N3@ﬂ O . 2
[Im(1/6(jw)| > |- 16 )_J [6(3kw)1%, © = uy (7-31)
k| > 1 o =
2
and
N |G{jkw) |
k| > 1
: .
= 1, Ywel (7-32)
2 7 ~2 <t
1.2 Y ek 2
k| > 1

and ~1/G(jw) is not parallel to N(a) at w = @, an oscilla-
tion exists with (a, w) in the region W < w < wp,

0 < N(a) < N.

Proof: It can be shown that the DF of a limiter approaches that

relay as € = 0 in Figure 7-2. Then
_ 4A
Ne(a) = c(e), where c(e) ~1 as € > 0 (7-33)

substituting in the second condition in (7-30), one obtains

1 2 . 2
(—;) ) el (7-3)

[k| >1

4A

[1/6{jw) - N(a)]| > |°|$ =
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9 1/2
From Theorem VIII, Xp, = A }: [G6(jkw)] + e, Then (7-34)
k] > 1

can be written

11/6(30) - N(a)| > || 2 (Xh > (7-35)

a

T_J_(xh-eg <“> (ae)’

a \/
Hence by (7-30)

2
1/605w) - N(a)| > 38 [ . f (ﬁ)
a
3 2
> HELh 1-\/1-<xh' > (7-36)

for € sufficiently small. Consider a square region bounded on three

/"‘\
x
o

s}

\\_iz

sides by Wy s Wy, N which contains (N, w); these boundaries have been
shown to exist from (7-30) and (7-31). Now let N(a) -~ 0 in (7-36).
One obtains |1/G(jw)| > O which is surely true; hence the fourth side

of the square boundary must exist.

Equation (7-32) guarantees uniqueness of x, within the square, and

by Theorem VIII, an oscillation exists.l

An example of the use of this corollary is given in Figure 7-8.
For some nonlinearities, one may derive sharper estimates by represent-
ing it as the sum of two nonlinear functions, one a staircase function

and the second a polynomial. An example of a function that would be a



LINEAR TRANSFER FUNCTION, LUW ORDER TeRMS FIRST

NUMERATUR 00,0000 0,00UN 1,0000
NENUMLNATUR 1,00060 =(4,2500 1,0000 -y, 2500 1,0000
W NCW) SUpeG) L2(G)
0.9600 1.0300 0.5143 0,0420
0.9700 1,0300 Q,5031 0,040}
0,9R00 1,0300 0,4922 0,0384
00,9900 1,0300 0.,481R 0,0367
1.0000 1,0300 0.,4716 0,0352
1,0100 1,0300 Ue2h18 0,0337
1,0200 1,0300 Ved523 0,0323
10300 1,0200 044431 0,0309

THF. CONTRACTIUN CUNSTAMT IS UV,.45150028

FIGURE 7-8  PROOF OF OSCILLATION BY COROLLARY VIII

G(s) = 52/(54 - 2583 + s? - 255 + 1)
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candidate for such a procedure is shown in Figure 7-9. Let the two
functions comprising n be termed n_ and n,, with "e. a staircase

function.

Consider the case where n, may be represented by

0
ny(x) = kz3 b xP. (7-37)

If n, is odd, non-decreasing, and with non-decreasing slope, theﬁ one

writes nzeM.

The next theorem gives conditions under which the existence of
oscillations can be verified for n which is the sum of a function in

Je and one in M.

Theorem IX: Let S satisfy (3-1) and contain a nonlinearity
that can be represented by the sum of a staircase function

ne and nzeN, and let € be sufficiently small.

1)  Suppose there is a DF solution (a, @) € where @ is a

disc in (a, w), and on 3%
|1/6(jw) + N(@)| > o (7-38)

where

k
g = %% j{: (A; - A, _ ) [r(a, By, xp) - Tla, By, -x,)]
i=1

AX
+ Mh - -
-7 s Ay 7 0 (7-39)
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. s 2
12/G(Jkw) + A| = ln: : IETFEBT + k‘ (7-40)

and there is a solution to the system of equations

da 2N, (a+y) | ) [6/3w)1¥/]6(5k)|

:
vy = L] > :
2 + Al - A
G{jkw)
Xy =¥, te (7-41)
Q
DI RO R (7-42)
p=3

. 2
with lm"')\‘ - A>0.

Further, let

‘ 2A;

A+ B. + x\2 E: |G(jkw) |
m (B s

<1 WY(a, w) en (7-43)

where i = min {jla - By > 0}. Then an oscillation exists

with (a, w) €Q.

2) If, for all points within a disc Q in (a, w) (7-38) is
satisfied and (7-43) is satisfied, then no oscillation

with (a, w) ef exists.
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“« > >

FIGURE 7-9  NONLINEARITY UNDER CONSIDERATION
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Proof: A series of block diagram manipulations allows the system
to be represented as shown in Figure 7-6. The composition an is
represented by the symbol r. Figure 7-10 satisfies the functional

equation
X = =gnoX - r(x). (7-44)

Let x be a periodic solutien of (7-44). It was shown in Theorem VIII,
(7-3) that [r(x)|; < =, and (4-11) shows that lgn,x| < «. One'may
. associate a quantity A with n, such that A > |dny/dx|.. Taking the

usual projection operators on (7-44) yields
- _p) 1
Xge = ‘P*gng(x1 + Xg) - Par(Xy + Xy) (7-45)
X, + ﬁ'nx = ﬁ](n Xq = No(Xq + Xx4)) + ﬁk n x, - rix, + x.)). (7-46)
1 T ORINXy = FgNgXy = NotXy T X INeXy 17 Xl

First one shows the uniqueness of x, as a function of (a, w) by
investigating the contractive properties of (7-45). Consider the two

points X,', X," with the metric |x," - x4'|;. Let

(oo

y=nlx) =y B eIt B et

Start by evaluating the expression

1 ! = : 13 [}
|P19"2(X-| + xg") - P*an(x1 + Xg )l = Z IG(ka) (Bk - Bk )l
k| > 1

(2 e B," - B'|. (7-47)
'<|k|>1|(”’)> Ti7>1‘k |
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Examining the last term in (7-47), one sees that

2w
1 jke
max |B," - B,'| = max ——-.jr [n,(x") = ny(x")] e’ de|
FIE I YA T A 2
2m ) 2m
< ‘gE J[ |n2(x") - n2(x')| do| < 5# J[ |x" - x'| de
o} | (6}
<A Ix" = xS A" - e (7-48)

so that (7-47) becomes

|Plgn2(x] + X") - Plgnz(x] + X*)l]

< (A Z ]G(jkw)|> EFSEE T (7-49)

k| > 1

The quantity IPLr(x1 + xe") - PLr(x1 + x,')| was evaluated in Theorem
VIII, equation (7-23). From the triangle inequality, and (7-47), (7-23),

one obtains

lﬁl,,gnz(x1 + x") + ﬁlr(x1 + X") - ﬁlnz(x] + Xe') - P]*r(x1 + x*')l]

2Ai
A(lxfy) + E: 1G(jkw) |

| ma J] (ﬁ__}j‘:)z k] > 1

[x" - X*'I]- (7-50)

Hence when (7-43) is satisfied, the map (7-45) is Eontractive.
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An estimate of the bound on x, will now be obtained. Let

R, = PL r(x). (7-51)
From (7-45) one now obtains

Xe = ~Pagny(%; *+ xe) + Ry . (7-52)

Sharper results are gotten by pole shifting this equation to obtain

1
‘u (1 ; P*gx(lxh)): A (MIXH) ke = nylxy + x*)> FR,  (7-53)
2 2
which can be put in the form

PLg(A(I:h) Xe = Np(xq + x*)> + Ry

Xy = i (7-54)
2
provided that
inf |1+ G(jke) A([x]{)/2] # 0; (7-55)
k > 1

which is impiied by (7-40). Theorem III, equations (4-16) and (4-18),
show how the | [] may be estimated for the Ny function. When (7-50)

holds, there is a unique solution to (7-54) satisfying

lx*l] < TET 51 —-_%_—+ }\(le_l) (‘X*l] + lx'll'l) .
Psg

Ry l
s U Plgk(|x|1)| (7-56)

2
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when
A(lxl1)

inf 2 <1 (7-57)
k > 1 |a0key * AUxD)

one may solve (7-56) for Ix*l1 yielding

< Mxlg) Ixqgly + (2/6Gka)) Rl (7-58)
|2/G(jkw) + A] - A

lx*l]

where k is given by (7-40). Note that (7-57) implies (7-55). Finally,
-|R*|] is a function of [x|; however, it takes on only discrete values

corresponding to the steps of the staircase. From (7-3), one obtains

[Rely < Ay MZ Z |G(dkw) |5 [x[g < By (7-59)
>3

which, when combined with (7-58), yields (7-41).

Evaluation of the DF error (the right side of (7-39)) is straight
forward, and follows from the sum of the error terms given in Theorem
I1T (4-28) and Theorem VIII (7-6). The computation of A from n, given

in (7-37) follows exactly as in Theorem III.

The conditions of Theorem I have been verified and the results

follow. 1l

The remarks concerning solutions of (7-3) also apply to solutions
of (7-41). Likewise, the remarks concerning soluability of 20/X for
Theorem III. In fact, when n, = 0 one obtains Theorem VIII as a corol-
lary, and when ny = 0 one obtains a form of Theorem III. An example

of the application of Theorem IX is given in Figure 7-11.
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PROOF OF OSCILLATION BY THEOREM IX

FIGURE 7-11

n(x) =4(t = 1) = u(1 - £) +.169%°

s
s4 + 53 - 1052 - 10

G(s) =



CHAPTER VIII

CONCLUSIONS AND RECEGMMENDATIONS

It has been demonstrated that sufficient conditions for oscillation,
as well as for absence of oscillations, in a class of nonlinear systems
with differentiable elements can be obtained when the higher harmonics
are sufficiently attenuated. This applies even in the case in which
the nonlinearity is not bounded. The question of precisely what con-
stitutes sufficient attenuation of the higher harmonics is answered by
examining a plot in parameter plane of the error inherent in using the
DF approximation. In case that the DF predicts oscillation, and the
parameter plot contains a region homeomorphic to a disc, an oscillation
is indicated. Further, no oscillation can exist for parameters outside

this region.

When the degree of attenuation of the linear portion is not suffi-
cient to give conclusive results with a DF approach, a MIDF approach is
used. By constructing a DIDF model of a cubic nonlinearity, significant
jmprovements were demonstrated in estimating the region of oscillation
of some example systems. In one case, it was possible to draw conclu-
sions from the DIDF approach, while nothing could be said from the DF

alone.

Theorem III is different from theorems in some previous DF justi-
fication work [10, 68, 93] in that the error bounds are plotted as
functions of both a and w. This precludes plotting of error bounds in

the ccmplex plane containing N(a) and - 1/G(jw). One plots the region
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in the (a, w) plane containing the oscillatory parameter values. The
notion of error bands is not as natural here, although it is well suited

for topological examination of the system solutions.

In Theorem IV the attenuation in the linear portion (sufficient for
oscillation) can be represented as a function of the nonlinearity. This
leads to a simple method for checking the design of oscillatory systems,
although it is conservative. It has also been shown that the term with
the highest exponent in the polynomial dominates in such a manner as to
allow the application of the simple procedure given in Theorem VII as a

design aid.

Applicability of topological techniques to systems with bounded
nonlinearities was demonstrated in Theorem VIII. It is seen in Theorem
IX that in some cases the error estimates can be sharpened by represent-
ing the nonlinearity as the sum of two functions: one which is bounded
and has zero siope except in intervals of arbitrarily small width and

the other a polynomial.

The methods might be useful tools in analyzing systems which, while
lacking a DF solution, have a DIDF solution indicating oscillation. It
is probably true that such systems would require an even higher order
describing function to apply Theorem V. Application to, say, the Fitts
example [47] seems possible, although one would Tikely need a four or
five input DF to do the analysis. Programming this on a digital computer
should be possible with a reasonable computation time considering avail-

able computers and programming techniques.

Only nonlinearities with odd symmetry were considered in this work;

this form allows one to look for mw-symmetric oscillations. Such
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oscillations have only odd harmonics. It is possible to obtain equiva-
Tent results for nonlinearities that are not odd; in this case the four-
ier series representing the solution must contain all the harmonics,

not just the odd ones. This implies an oscillation whose average value

is not zero, and the term 3, must be taken into account. The new theorems
would look very much in form like the ones stated, but the computations

required to apply them would be increased.

In the course of pursuing a study of this nature, the need for more
research in various areas.becomes apparent. A method of solving simul-
taneous nonlinear equations is necessary for allowing Theorem V to be
applied to a describing function approach with a large number of harmon-
ics accounted for. The number of calculations required here is large,

and for the method to be useful, the algorithm must be efficient.

It would also be informative to extend the results presented to
treat the case of systems containing multiple nonlinearities. A method
of using describing functions in this case is given in [91], however,
no attempt has been made to rigorously show the existence or nonexistence

of oscillations.
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