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Abstract In this article, we construct the diquark—diquark—
antiquark type interpolating currents, and we study the
masses and pole residues of the J¥ = %_ and %+ hidden
charm pentaquark states in detail with the QCD sum rules
by calculating the contributions of the vacuum condensates
up to dimension-10 in the operator product expansion. In

/ M%C — (2M,)2
to determine the energy scales of the QCD spectral densi-
ties. The present predictions favor assigning P.(4380) and

the calculations, we use the formula u =

P.(4450) tobe the % ~and %Jr pentaquark states, respectively.

1 Introduction

In 1964, Gell-Mann suggested that multiquark states beyond
the minimal quark contents gg and ggg maybe exist [1]; a
quantitative model for the tetraquark states with the quark
contents gqqq was developed by Jaffe using the MIT bag
model in 1976 [2]. Later, the five-quark baryons with the
quark contents ggqqq were developed [3], while the name
pentaquark was introduced by Lipkin [4]. QCD allows the
existence of multiquark states and hybrid states which con-
tain not only quarks but also gluonic degrees of freedom.
We can construct the tetraquark states and pentaquark states
according to the diquark—antidiquark model and diquark—
diquark—antiquark model, respectively [5-7]. In the light
quark sector, the nature of the scalar mesons below 1 GeV is
under controversy [8], although those light tetraquark states
are not ruled out in the N, limit [9]. In the heavy quark sector,
several X, Y, and Z mesons are observed, such as Z.(3900)*,
Z.(4020/4025)%, Z(4430)*, the net charge indicates that
their constituents are ccud or cédii; for a recent review of
both the experimental and the theoretical aspects, one may
consult Ref. [10]. Some X, Y, and Z mesons are assigned
tentatively to be tetraquark states, irrespective of the diquark—
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antidiquark type or the meson—meson type. The two heavy
quarks play an important role in stabilizing the multiquark
systems, just as in the case of the (u~e™)(u"e™) molecule
in QED [11]. The spatial separation between the diquark and
antidiquark in the tetraquark states [11,12] (or meson and
meson in the molecular states [13—15]) may lead to small
decay widths. We can study the decay patterns by performing
the Fierz re-arrangements non-relativistically in the Pauli-
spinor space [12—15] or relativistically in the Dirac-spinor
space [16-19].

Recently, the LHCb collaboration observed two exotic
structures (P, (4380) and P.(4450)) in the J /¢ p mass spec-
trum in the Ag — J/Y¥ K~ p decays, which are referred to
as charmonium-pentaquark states now [20]. P.(4380) has a
mass of 4380+8+29 MeV and a width of 205+18+86 MeV,
while P.(4450) has a mass of 4449.8 +1.7+2.5MeV and a
width of 39+ 5419 MeV. The preferred spin—parity assign-
ments of P,(4380) and P.(4450) are J* = 3 and g*,
respectively. The significance of each of the two resonances
is more than 9o [20]. The P.(4380) and P.(4450) have
attracted much attention of theoretical physicists, and several
attempted assignments are suggested, such as . D*, ¥ D*,
Xc1 p molecular pentaquark states [21-25] (or not the molec-
ular pentaquark states [26]), the diquark—diquark—antiquark
type pentaquark states [27-29], the diquark—triquark type
pentaquark states [30], re-scattering effects [31-33], etc. We
can test their resonant nature by using photoproduction off a
proton target [34-36].

The quarks have color SU(3) symmetry, we can con-
struct the pentaquark states according to the routine quark —
diquark — pentaquark,

BR3)BRIIVI=CD6)RBD®6)®3
=3®3Q3®---=1&---, (1)

or we construct the molecular pentaquark states according
to the routine quark — meson and baryon — molecular
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pentaquark state,

BR3)®ABR3IR3})=(108)R(1&---)
—(1IDH® - =1@---, (2)

where the 1, 3 (3), 6, and 8 denote the color singlet, triplet
(antitriplet), sextet, and octet, respectively. In the diquark
model, the pentaquark states consist of two diquarks and
an antiquark, which are colored constituents; it is easy to
form compact bound states due to the strong attractions at
long distance. In the meson—baryon model, the molecular
pentaquark states consist of a colorless meson and a col-
orless baryon, and attractions induced by exchanges of the
intermediate mesons (Yukawa-like potentials) are needed to
form loose bound states. In this article, we take the P.(4380)
and P,(4450) as the diquark—diquark—antiquark type pen-
taquark states, construct the interpolating currents consist of
five quarks according to Eq. (1), and study their masses and
pole residues with the QCD sum rules.

In previous work, we described the hidden charm (or bot-
tom) four-quark systems ¢’ Q Q by a double-well potential
[16-19,37-39]. In the four-quark system ¢g’'QQ, the Q-
quark serves as a static well potential and combines with
the light quark ¢ to form a heavy diquark Df] 0 in a color
antitriplet [16-19],

q+0Q — Dy, 3)

or it combines with the light antiquark ¢’ to form a heavy
meson in a color singlet (meson-like state in a color octet)
[37-39],

§+0—40 @20, “)
the Q-quark serves as another static well potential and com-
bines with the light antiquark ¢’ to form a heavy antidiquark
D;, - in a color triplet [16-19],

=/ A i

or it combines with the light quark ¢ to form a heavy meson
in a color singlet (meson-like state in a color octet) [37-39],

g+ 0 — 0q (0x%g), (6)
where i is the color index and A¢ is a Gell-Mann matrix. Then

D;Q + D;, - — compact tetraquark states,

GO + Qg — loose molecular states,
7’2" Q + Q1%q — molecule-like states, )

the two heavy quarks Q and Q stabilize the four-quark
systems ¢gg’Q Q, just as in the case of the (u"et)(ute™)
molecule in QED [11].

The hidden charm (or bottom) five-quark systems gq1¢g> Q
Q can also be described by a double-well potential by using

@ Springer

the replacement

A J
antatQ— quz(é

y+0F =T ®)

9192 GHQ°
just like the four-quark systems g¢g’Q Q [16-19,37,38],
where 'Z;’l 00 denotes the heavy triquark in a color triplet, the

g’ in the bracket denotes that Déwz is in a color antitriplet,
just like the ¢'/. In the heavy quark limit, the Q-quark (O-
quark) can be taken as a static well potential, the diquark
D;, 4, and quark g lie in the two wells, respectively.

The QCD sum rules have been applied extensively to
study the hidden charm (bottom) tetraquark states [40-45],
however, the energy-scale dependence of the QCD spectral
densities is not studied. In previous work, we studied the
acceptable energy scales of the QCD spectral densities for
the hidden charm (bottom) tetraquark states and molecular
(and molecule-like) states in the QCD sum rules in detail
for the first time [16-19,37-39,46-48], and suggested the
formula

w= M3y, — @Mo)? ©

to determine the energy scales based on the analysis in Eqs.
3), 4, (5), (6), and (7), where X, Y, and Z denote the four-
quark systems, and the M denotes the effective heavy quark
masses [16—19,37-39]. The energy-scale formula works well
for all the tetraquark states, molecular states, and molecule-
like states.

In the non-relativistic quark model, the heavy quarks
have finite masses, which quantitatively affect the spin—spin
interactions between the quarks within one diquark or in
two different diquarks [12]. In the QCD sum rules, the net
effects of the different dynamics are embodied in the effec-
tive masses M. and M, respectively; for example, Z.(3900)
and Z;(10610) can be tentatively assigned to be the J¥¢ =

1= tetraquark states with the symbolic quark structures
leuls=olcd]s=1 —lculs=i[cdls=0 »pq [Puls=olbdls=i—[buls=ibdls=o

V2 NG
respectively, where the subscript S denotes the spin. The opti-
mal energy scales of their QCD spectral densities are quite
different, MZ.(3900) = 1.5GeV and MKZ,(10610) = 2.7GeV
[16-19,46], although they are cousins. Meanwhile, in the
heavy quark limit my — oo, we naively expect that the two
energy scales 7. 3900y and (4 z, 10610y coincide. In this work,
we extend the energy-scale formula to study the diquark—
diquark—antiquark type pentaquark states, and we try to
assign P.(4380) and P.(4450) to be the 3 and g* pen-
taquark states, respectively.

The article is arranged as follows: we derive the QCD
sum rules for the masses and pole residues of P.(4380) and
P.(4450) in Sect.2; in Sect.3, we present the numerical
results and discussions; Sect.4 is reserved for our conclu-
sions.
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2 QCD sum rules for P.(4380) and P.(4450)

In the following, we write down the two-point correlation
functions I, (p) and I1,,4g(p) in the QCD sum rules,

I (p) = i/d4xeip'x<0|T{JM(X)J_V(0)}I0>, (10)

My () = i / dxe P O T {0 () T O}0), (11
where

Tu(x) = e ™yl () Cysdi (x) ), (x)

xCypucn(x) Cc (x), (12)
Jun (x) = —z& MM T () Cysdli (x)

x [uf, (0 C 0 () Y CEL (6) + ufy ()

X Cyea(®) v, CEl ()] (13)
i, j, k,...arecolorindices, and C is the charge conjugation

matrix. The diquarks qu CT g;, have five structures in Dirac-
spinor space, where CI" = Cys, C, Cy,ys, Cyy, and Coy,
for the scalar, pseudoscalar, vector, axial-vector, and ten-
sor diquarks, respectively. The structures Cy;, and Coy,, are
symmetric, while the structures Cys, C, and Cy,, ys are anti-
symmetric. The scattering amplitude for one-gluon exchange
is proportional to

(5).65),-

where i, j and k, [ are the color indices of the two quarks
in the incoming and outgoing channels, respectively. The
negative sign in front of the antisymmetric antitriplet indi-
cates that the interaction is attractive, while the positive sign
in front of the symmetric sextet indicates the interaction is
repulsive. The attractive interactions of one-gluon exchange
favor the formation of the diquarks in a color antitriplet 3.,
flavor antitriplet 3,«-, and spin singlet 15 [49,50], while the
favored configurations are the scalar (Cys) and axial-vector
(Cyy) diquark states [51-53]. The calculations based on the
QCD sum rules indicate that the heavy-light scalar and axial-
vector diquark states have almost degenerate masses [51,52],
while the masses of the light axial-vector diquark states lie
(150-200) MeV above that of the light scalar diquark states
[53], if they have the same quark constituents. In this arti-
cle, we choose the light scalar diquark and heavy axial-
vector diquark as basic constituents, and construct the scalar
diquark—axial-vector diquark—antiquark type currents J,, (x)
and J,, with the spin—parity %_ and %Jr, respectively, to
interpolate the pentaquark states P.(4380) and P.(4450),
respectively; see Egs. (3) and (8).

1
—§(5jk5il — 8ikbj1)

1
+6(8jk5il + 8ikdj1)s (14)

In fact, we can also construct the axial-vector diquark—
scalar diquark—antiquark type current 1, (x) and the axial-
vector diquark—axial-vector diquark—antiquark type current
Ny (X),

gilagijkglmn

Nu(x) = T
207 () Cyudy (Wl (0 Cysen ()] CET (),

(4] (OC Y (0] () Cysen()

gilagijkglmn
) = ————

Nuv \/6
207 () C i (Ol () Cyien ()| 752 ()

+ (u < v), (15)

(4] O Cya (0] () C e ()

to study the spin—parity %_ and %+ pentaquark states, respec-
tively. As the masses of the light axial-vector diquark states
lie (150-200)MeV above that of the corresponding light
scalar diquark states [53]. The currents 7, (x) and 7., (x)
are supposed to couple to the pentaquark states with larger
masses compared to the currents J,, (x) and J,, (x), respec-
tively.

The Ag can be well interpolated by the current J(x) =
eyl (x)Cysd;(x)bi(x) [54], the u and d quarks in the A
form a scalar diquark [ud] in color antitriplet, the decays
Ag — J/¥pK ™ take place through the mechanism,

Ag([ud]b) — [ud]ccs — [ud]ccuus
— Pf([ud][uc]E)Kf(its) — J/YypK~,
(16)

at the quark level. In the decays Pj([ud][uc]é) — J/yp,
the scalar diquark [ud] survives in the decays, the decays are
greatly facilitated. On the other hand, if there exists a light
axial-vector diquark [ud], which has to dissolve to form a
scalar diquark [ud], the decays are not facilitated.

The currents J,, (O) and J,,(0) couple potentially to 2+,
3— 1+ 3—
and

5 37,3 " hidden charm pentaquark states P},

2
3 , and P1 , P; , PS , respectively,

014, (0)|P+(p)> f;pMUﬂp,s),

01/, (0)[ P35 (p)>—?» U, (p.s), 7

g pupUt(p,s),

[N]

2

01w (0)| Py (p)> = f5 [puUy (p.$) + poU, (p.s)],

<
<
<0|Juu<0>|P+(p>>
<
<

0|JW<0)|P+<p>> m/ (P, s), (18)

the spinors U*(p,s) satisfy the Dirac equations (/p —
M1)U*(p) = 0, while the spinors Uf(p, s) and Ulfv(p, s)

@ Springer
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satisfy the Rarlta—Schwmger equations (f—M+)U; t(p)=0

and (f — MU} (p) =0, and the relations y“Ui(p, s) =
0, p"Uy (p, v) = 0 yrUE (p.s) = 0, pHU; (p,s) =0,
and U + L(p,s) = ( D, s) respectively. On the other hand,

the currents Ju (0) and J,v(0) also couple potentially to the
%_ 3t and 1 R %+, %_ hidden charm pentaquark states

P, P3+, P, P;r, and P, respectively,
707 1 1 3

017, (O] P, (19)> = f;Pul'J/sU_(P, 5)s

0lJ, <0)|P+(p>> = mysw(p, 5), (19)

pupviysU™ (p,s),

%
0|J,w(0)|P+(p)> = f;iys [PuUS (P, $) + poUL(p,9)],

(20)

<
<
<0 [ (O) Py (p)>
<
<

017w (0) P5 (P)> = )»giVSU,IU(P, 8),

the spinors U#_(p, s) and Ulj'(p, s) (U;U(p, s) and
( p, s)) have analogous properties, and the pole residues

obeyxg/s #0.fFs #0.and g # 0.

We insert a complete set of 1ntermed1ate pentaquark states
with the same quantum numbers as the current operators
Ju(x),iysJu(x), Jyu(x), and iysJ,, (x) into the correlation
functions I, (p) and I1,,, (p) to obtain the hadronic rep-
resentation [55,56]. After isolating the pole terms of the low-
est states of the hidden charm pentaquark states, we obtain
the following results:

2 b+ M_ YuYv 2pupy
I e — + + —
;tv(p) 2 M2 ( 8 3 3[72

Pu)’u - PvVu)

+2 16 7//4)/1) 2pupy

2 ( g + + 73p2

Pu)’v - PuVu)

42 ﬁ + M 2 p—M_

+f M2 Pupl u+f| _7p2pupv+"'7
(21)
2 ﬁ + M, g;wlgvﬁ + guﬂgva glwgaﬁ
ul =t —
Mvaﬁ(p) 2 M2 p |: 3 5

1 YuPa — YaPu  PubPa \ ~
10 (Vu)/a + \/p - Y 8vB
1 YWPo —YaPv  PvPa | ~
~10 (Vu}’a+ \/17 - p2 Sup+ -
2 p— M- guotguﬁ + guﬂgva gﬂu{?aﬁ

+ A5
3 ME— p? 2 5

@ Springer

1 YuPo = YaPu  PuPa \ ~
10 ()/MVDZ + \/1? - p2 gl)ﬁ
1 YoPa — YaPv  PvPa \ ~
10 ()’v)/a+ \/? - pz gup + -
2 p + M_ "W
+f% 5 5 |:Pupa ( g”ﬁ + v3ﬂ
2 _
+ pv127ﬂ _ PvYB — PWy S
3p 3/ p?
2 15 WY,
+f;— |:pupot ( 8vB + v3 B
2 —
+ pvsﬁ _vaﬁ PBYv T
3p 3V p?
20+
+g + ﬂpupvpapﬂ
2 p—M_
+81 + e, 22
81 ME g2 PuPvPaps (22)
Pul’v

where §,w =guw— , the M4 are the masses of the lowest

pentaquark states with the parity =+, respectively, and )»7/ 5

f 13 and g1 are the corresponding pole residues. In the
272

calculations, we have used the following summations [57]:

D ULU, = (p+ Mx)

2 _
% _gHV+Vqu+ Puzpv _ PuYv — Pv¥u
3 3p 3V p?
(23)
— Sualug + 818 v
D UnwUap = (I5+Mﬂ:){ e 2 S WS *
N
1 YuPa — YaPu  PuPa \ ~
10 ()’uyoc + \/? - 2 8vp
1 + YWPa —YaPv  PvPa
~10 YvYa \/? p2 guﬂ

1 YuPp —VBP
(VM//H— upPp BPu

PubPg \ ~
10 7)2 [)2 gUDt
1 YvPB — YBDv PvPB \ ~
10 ()’vVﬂ + \/? 2 Spa (>

(24)

and p?> = M3 on the mass-shell.

We can rewrite the correlation functions IT,,(p) and
IT,,vep(p) into the following form according to Lorentz
covariance:
My (p) = T3 (P?) (=) + T3 (P) vy

+1'I?%(p2) (Puvv = povu) + Ty 3 (P) pupy,
(25)
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Sna8vp + 8up8va
2

+l'l2%(p2) (8uvPapp + 8apPupy)

Myuvap(p) = M5 (%) + 15 (P?) guvsap

+H%(p2) (8uavvvp + upv Ve

+8va YV + guBYuVa)

+H‘§(p2) (808 (ViuPa — Vapy)

+gva (Yurp — vapu)

+8up (YvPa — YaPv) + Sua (Ywpp — v8Pv)]
+Hé’%(p2) (81 PvPp + gup Py P

+8vaPupp + &uB PuPa)
H?% %(PZ) (VuVanl’ﬁ

+Vw,spvpa + WYaPuPp + YvYgPuPa)

x 5(17 ) [()’Mpa - Val’u) pPvPB

(mpﬁ — ¥gPu) PvPa + (VoPa — YaPv) Pupp
+ (ywpp — vgPv) Pupa]

(
+I1 %(pz) PuPvPaPps (26)

N\'—‘
N\v..:

the subscripts %, %, and 5 in the components H%(pz)

I3 (p?), T5(p%), M, s(pz) 3 (p). T (p?), nz(pz)
n3(p2) n4(p2) I, 5(p2>, I3 5 (P, H 5(p2> and
l'I 133 (r% denote the spins of the pentaquark states which

means that the pentaquark states with J = 2 2, and 5
have contributions. The components 1'[1 3 (p?, H 3 (pz)

1'[2i 5(pz) 1'[ 5(172) and 1'[1 3 s(p ) receive contrlbu—

tlons from more than one pentaquark state, so they can be
neglected. We can rewrite y,, ¥, = gv —i0,,; then the com-
ponents Hla(pz), 1'[2§ (pz), 1'[3é (pz), and H‘é (pz) are asso-

ciated Withztensor strzuctures thich are antis;zlmmetric in the

Lorentz indices i, v, @ or B. In the calculations, we observe

that such antisymmetric properties lead to smaller intervals

of dimensions of the vacuum condensates, and therefore

worse QCD sum rules, so the components l'Ilé (p?), 1'[?i (p%,
2 2

1'135 (p?), and Hi (p?) can also be neglected. If we take the
2 3

18 (x) to
subtract the contributions of the J = % pentaquark states,
a lot of terms o g, gap disappear at the QCD side, and
this results in smaller intervals of the dimensions of the vac-
uum condensates, so the components 1'[1% ( pz) and H?% ( p2)

replacement J,,, (x) — J,(x) = Jyp (x) —

are not the optimal choices to study the J = % pentaquark

states. Now only the components I1 3 (p?) and T 3 (p?) are

left. The present conclusion is tentative, we can obtain a defi-

nite conclusion by obtaining the QCD sum rules based on the

components IT} (p*), 113 (p?), Ty (p*), I3 (p?), T3 (p),
2 2 2 2 2

and Hi (p?). In this article, we choose the tensor structures
2
guv and g0 8vp + gup&ve Tor analysis, thus we separate the
. . 3+ 5% .
contributions of the 5 and 5~ pentaquark states unambigu-
ously, and tentatively assign P.(4380) and P.(4450) to be
the %7 and %+ pentaquark states, respectively.

The current J, (x) has non-vanishing couplings with the
scattering states pJ /v, AF D*0 pxc1 etc. In the following,
we illustrate how to take into account the contributions of the
intermediate baryon—meson loops to the correlation function
M, (p),

Huv(p)
1 _2
= = - - = )‘g 8uv
p_M—_2p1/¢(p)_ZAJD*U(p)_Ede(p)JF‘“ 2
1
+iys
b — M+_ ,,JN,(P) A*D*O(p) px,-l(P)+"'
XiVS)Lg guv + 0, (27)
2

where kjf and Mi are bare quantities to absorb the diver-
2

gences in the self-energies » PI (p), EA+D*0 (p), Z pyer (P)s
etc. The renormalized self-energies contribute a finite i imag-
inary part to modify the dispersion relation,

p+M_ 2
M, (p) = e
T oM iy
- M 5
b My A g (28)

+ 2
p? = M3 +iy/pT(p?) 2

If we assign the P.(4380) to be the J© = %_ pentaquark
state, the width obeys | (p2 = M%) = FPC(4380) =
205 + 18 4+ 86 MeV, which is much smaller than the width
of Z¢(4200), Tz, 200y = 370779179, MeV. In Ref. [39], we
observe that the finite width (even as large as 400 MeV) effect
can be absorbed into the pole residue Az, 4200y safely, the
intermediate meson loops cannot affect the mass Mz, (4200)
significantly, so the zero width approximation in the hadronic
spectral density works. The contributions of the intermediate
baryon—-meson loops to the correlation function I, .. (p)
can be studied analogously, furthermore, the width I' p,_ (4450,
is much smaller than the width I"p_4380). In this article, we
take the zero width approximation, which will not impair the
predictive ability significantly.

Now we obtain the spectral densities at the phenomeno-
logical side through the dispersion relation,

T (s—m2)+ A%”zéi (s - Mi)]
+ [M_x;a (s—ME)—M+AJ%“28 (s—Mi)],
=503 4+ 0] 40, (29)

= [,\J%rza <s - Mi) + A;a (s - M%)]

ImIT 3 (5)
2 — 15 |:

T

ImITs5 (s)
2
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+25 (o2 _ =20 _ a2
+[M+A% 5 (s — M%) M2 (s M_)],
=505 4O +0] ). (30)

where the subscript H denotes the hadron side, then we intro-
duce the weight function ex (— %) to obtain the QCD sum
rules at the phenomenological side (or the hadron side),

[ as[vael o+ 0 0] e (~75)

2
e

2 M?
=2M_M\~ ——, 31
3 exp 72 (3D

[02 as [ Vol =8, exp (- 5)

mt‘
T2

%0 1 0 s
Azds V5P @)+ 03 ) exp(—ﬁ)

me

M2
—2M AT exp (— +) , (32)
2

M?
= oMt exp [t ), (33)
3 T2

0 ! 0 s
Azds \/E,O%H(s)—,o%ﬂ(s) exp(—ﬁ>

e

2 M?
=2M_\° -, 34
S (34)

where the s are the continuum threshold parameters and the
T2 are the Borel parameters. We separate the contributions of
the negative parity pentaquark states from that of the positive
parity pentaquark states unambiguously.

In the following, we briefly outline the operator prod-
uct expansion for the correlation functions IT,,(p) and
T,vep(p) in perturbative QCD. We contract the u, d, and
¢ quark fields in the correlation functions IT,,(p) and
1,,vep(p) with the Wick theorem, and obtain the results:

HMV (p) =i 8ila8ijk€[mngi/l/u/gi’j/k/gl/m/n/ / d4xeip~x
x| [ys D oysCUT ()€ |
XTr [ Y Caw O CU, (10C | €CL, (~1)C
=T [ 15D (¥)y5CUL (1)C
x C,,,,r(x)y,,CUij,(x)C] ccja(—x)c}, (35)
H}Lle,ﬁ (p) — % 8i1aeijkslmngi’l/a/gi’j’k’SI/m’H’ f d4xeip-x
x| [ysDue yvscu, ic]

XTr [ 1 Conw ()7 CUL ()| 1o CCL (=0)C s

+Tr [7/5 Dy (X)VSCUJ-TJ-/ (x)C]

@ Springer

XTT | Yo Co (X) ¥ CUL (x)C] YuCCL (=x)Cyp

+77 [ s D (0y5CU T, (0)C |

mm a

[
[
XTr [ 1 Con ()5CUL (0C | 1 CCL (~)Cr
+77 [ s D (0y5CU T (0)C |
|

X Tr [ Yy Cow (1) ypCUT ,(x)c] Y CCL (=x)C

=T[5 D (4)y5CUL L () CuCon ()72 CUT, (1)C |
xyCCL (—x)Cyp
=T[5 D (4)y5CUL L (Y CYCon ()76 CU L, (0C |
xyuCCL (—x)Cyp
T [y Date (075 C UL () CuCo ()75 CU T, (C |
X1 CCL, (—x)Cya
T [y Date 075 CUL (Y CH Co )y CU T, IC |
X7 CCh,(=0)Cra ), (36)
where U;;(x), D;j(x), and C;;(x) are the full u, d, and ¢
quark propagators, respectively (S;;(x) = U;;(x), D;j(x)),
i%ij £ 8ijlaq)  8ijx*(dgs9Gq)
2mw2x4 12 192
ig;Gagti (¥o*f + o )
3272x2

Sij(x) =

1 _
—g(qj'a”"qz')ffw +e 37

i —ik-x
Cij() = G /d4ke o

X 6ij _ gSGZﬂlinj Uaﬂ(k +me) + K+ mc)o'a/g
K—m 4

(k2 —m2)?
_gf(t“lb)ijGZﬂGﬁv(f“ﬂ“” + OBV pervh) L }
4(k2—m2)3 ’
FEPR = A me)y® U+ me)y? |+ me)
Xy H+me)y" | +me), (38)
and 1" = % and A" is for the Gell-Mann matrices [56],

then we compute the integrals both in the coordinate and
momentum spaces to obtain the correlation functions I, (p)
and IT,,g(p), and therefore the QCD spectral densities
,oé /3 ,QCD(s) and p(%)/ ; ,QCD(S) through the dispersion rela-
tion. In Eq. (37), we retain the term (g0,,,4;), which comes
from the Fierz re-arrangement of (g;¢ ;) to absorb the gluons
emitted from both the heavy quark lines and the light quark
lines to form (g gs Ggﬂ 1 Ouvgi) SO as to extract the mixed
condensate (gg;0Gq).

Once the analytical QCD spectral densities p! (s)

5/%,QCD

and p9 (s) are obtained, we can take the quark—hadron
5/5,QCD

duality below the continuum thresholds sg and introduce the
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weight function exp (—iz) to obtain the following QCD
sum rules:

oM 272 M
_ €X —_—
R

= [ 5[0 qen® + 8 qep®] exp (~73).

n12

(39
2
2 M
2M+A“%L exp <_T_;>
S0 ' . )
B .ltmg @ [ﬁp%,QCD(S) - p%,QCD(S)] exp <_ﬁ> ’
(40)

M2
+2 +
2M+)\.% eXp <—F>

50
_ 1 0 5
= Amzds [\/Epg,QCD(s) p;,QCDm]exp( =)
@1)

2M_25 LE
— €X —
3 TP\ T

50 5
[ as [fps acp® + 7%, QCD(s)] exp (—75)

" (42)
where
P3 qcn®) = Pacp (),
P3 qen®) = 200cD ), (43)
P3 qep(®) = mePacp (),
P§ qep®) = 2mePoen(s), (44)
POCD(8) = po(s) + p3(5) + pi () + p3(s) + pg(s)
+03(5) + pg(s) + plo(s),
Bocp(s) = Bo(s) + BS(s) + BY(s) + BE(s) + Pa(s)
+PE () + P9 () + Plo(s), (45)

the explicit expressions of the QCD spectral densities ,oil (s)
and ,B?(s) withi =0, 3, 4, 5, 6, 8, 9, 10 are shown in the
appendix.

From Egs. (39), (40), (41), (42), (43), and (44), we can
see that if we set )»45_ = ﬁ)@" and A5 = \/5)\.; the four

QCD sum rules in Egs. (39), (40), (41), and (42) are reduced
to two QCD sum rules, the negative parity pentaquark states
have degenerate masses, and the positive parity pentaquark
states also have degenerate masses. The LHCb collaboration
observe that the best fit leads to the spin—parity assignment

( g_, 3 ) for the (P (4380) P.(4450)), but other assign-

ments, such as (2 ,2 ") and (5+, 37), are also accept-
able [20]. Meanwhile, Egs. (39), (40) (41), (42), (43), and
(44) indicate that the pentaquark states with the spin—parity
(g_, 5 )a d (2 , 2 )have degenerate masses, which con-
tradicts with the assignments (2 , 2 ") and (5 +, 3~ ).

In this article, we carry out the operator product expan-
sion to the vacuum condensates up to dimension-10, and we
assume vacuum saturation for the higher dimension vacuum
condensates; see Egs. (35, 36), (37), and (38). We take the
truncations n < 10 and k < 1 in a consistent way, the
operators of the orders O(ak) with k > 1 are discarded.
The condensates (g3 GGG), (“VGG> and (%99) (5,0 Gs)
have the dlmenswns 6, 8, and 9, respectively, but they are the
vacuum expectatlons of the operators of the order (’)(ozY ),
(’)(az) (’)(ag ) respectively. Furthermore, the numerical
values of the condensates (7¢)(5*GG) and (g q)? (22GG)
are very small and accompanied by large denominators, and
they are neglected safely.

We differentiate Egs. (39), (40), (41), and (42) with respect
then eliminate the pole residues )\. 35 and obtain the

to T2’

QCD sum rules for the masses of the pentaquark states,
f4m2 dss I:\/_'OQCD(S) + m"oQCD(S)] exp (—%)

Syt s [ V5pben () + mepbep(®) | exp (=75

f:";g dss [ﬁpéCD(s) — mcf)gCD(s)] exp (—%)

102 ds [VEoben(®) = mBep@® |exp (< 72)
| 47

where the M_ (M) are the masses of the J© = %_, %7

(3+, st ) pentaquark states. Once the masses M4 are
obtalned we can take them as input parameters and obtain the
pole residues from the QCD sum rules in Egs. (39), (40), (41),
and (42), and the relations )tf = ﬁ)ﬁ{ and A5 = ﬁ)@

2 2 2 2

hold.

3 Numerical results and discussions

We take the vacuum condensates to be the standard val-
ues (Gg) = —(0.24 £ 0.01GeV)?, (Gg,0Gq) = m}(Gq).

= (0.8 £0.1)GeV?, (259 = (0.33GeV)* at the
energy scale u = 1GeV [55,56]. The quark condensates
and mixed quark condensates evolve with the renormal-

4
= (d9)(©@) [242] and

(42,0 Ga)(w) = (48:0Ga)(Q) [‘;‘;i,%;] Inthe article, we

take the M S mass m.(m.) = (1.275 £ 0.025) GeV from the

ization group equation, (gq)(u)

@ Springer
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Particle Data Group [58], and take into account the energy-
scale dependence of the M S mass from the renormalization
group equation,

2
mc(u)=mc(mc>[“3(“) ] ,
s(me)
o () = L |:1 by logt b%(logzt—logt—1)+b0b2:|
M= ot Bt b3t? ’
(43)
where t = log & A2’ by = 331723:”' by = % by =

2857 5033 325
% A = 213 MeV, 296 MeV and 339 MeV

for the flavors ny = 5, 4, and 3, respectively [58].

In Refs. [16-19,37-39,46-48], we studied the accept-
able energy scales of the QCD spectral densities for the
hidden charm (bottom) tetraquark states and molecular
(and molecule-like) states in the QCD sum rules in detail
for the first time, and we suggested the formula u =

\/ M)z( Yz~ (2M)? to determine the energy scales, where

X, Y, and Z denote the four-quark systems, and Mo denotes
the effective heavy quark masses. The effective mass M, =
1.8 GeV is the optimal value for the diquark—antidiquark type
tetraquark states [16—19,46—48].

In this article, we use the diquark—diquark—antiquark
model to construct the currents to interpolate the hidden
charm pentaquark states, but there also exists a cc quark pair.
The hidden charm (or bottom) five-quark systems gg1g2Q Q
could be described by a double-well potential, just like the
four-quark systems ggq’ Q Q; see Egs. (3), (4), (5, 6), (7), and
(8) and the related discussions in the introduction. The heavy
five-quark states are also characterized by the effective heavy

quark masses Mg and the virtuality V = ,/M%,L_ — (ZMQ)Z.

The QCD sum rules have three typical energy scales 2, T2,
V2, we can also take the energy scale, u> = V? = O(TZ)
[16-19,47,48]. In this article, we can take the analogous for-
mula,

w=/Mp — QM)

with the value M. = 1.8 GeV to determine the energy scales
of the QCD spectral densities [16—19,47,48], and obtain the
values u = 2.5GeV and u = 2.6 GeV for the hidden charm
pentaquark states P.(4380) and P.(4450), respectively. The
energy-scale formula can be rewritten as

= (2M,)* + 2.

(49)

(50)

In this article, we choose the Borel parameters T2 and the
continuum threshold parameters sqg to satisfy the following
criteria:

1. pole dominance at the phenomenological side;
2. convergence of the operator product expansion;

@ Springer

3. appearance of the Borel platforms;
4. satisfying the energy-scale formula.

In the QCD sum rules for the multiquark states, it is diffi-
cult to satisfy the criteria 1 and 2. In previous work [16—
19,46], we observed that the pole contributions can be
taken as large as (50-70) % in the QCD sum rules for the
diquark—antidiquark type tetraquark states ¢’ Q Q (X, Y, Z),
if the QCD spectral densities obey the energy-scale formula

n= \/ M)% 1Y)z~ (ZMQ)Z. The operator product expansion
converges more slowly in the QCD sum rules for the pen-
taquark states ¢g1g> Q Q compared to that for the tetraquark
states qq’ QQ, s0, in this article, we choose smaller pole
contributions, about (50 £ 10) %. For the tetraquark states
qq’ QQ [16-19,46], the Borel platforms appear as the min-
imum values, and the platforms are very flat, but the Borel
windows are small, 72.. — T2 = 0.4GeV?Z, where max

max min
and min denote the maximum and minimum values, respec-

tively. For the three-quark baryons ¢q¢'Q, ¢QQ’, QQ' Q"
[54,59-63], the Borel platforms do not appear as the mini-
mum values, the predicted masses increase slowly with the
increase of the Borel parameter, and we determine the Borel
windows by the criteria 1 and 2; the platforms are not very
flat. In this article, we also choose small Borel windows
T2 —T2, = 0.4GeV?,justlike in the case of the tetraquark
states, and we obtain the platforms by requiring the uncer-
tainties 6131/1 [’)Z < induced by the Borel parameters to be about
1%.

Now we search for the optimal Borel parameters 72 and
continuum threshold parameters so according to the four
criteria. The resulting Borel parameters, continuum thresh-
old parameters, energy scales, and pole contributions are
shown explicitly in Table 1. Furthermore, the contributions
of the vacuum condensates of dimension 10 are less than
5 %, the operator product expansion is convergent. So the
four criteria of the QCD sum rules are satisfied; we expect
to obtain reasonable predictions. From Table 1, we can see
that the values /so = MPC(27,5+ + (0.6-0.8) GeV ( or

.
5ot ) = 26+ 1) GeV2, s “‘2 "
lead to satisfactory results.

In Fig. 1, we plot the predicted masses with variation of
the threshold parameters sg, where we assign P.(4380) and
P.(4450) tobe the %7 and %+ pentaquark states, respectively.
From the figure, we can see that the predicted masses increase
slowly with (or are not sensitive to) the threshold parameters
so for central values of the other parameters.

InRefs. [54,59-63], we study the JP = %i and %i heavy,
doubly heavy and triply heavy baryon states systematically
with the QCD sum rules by subtracting the contributions from

= (27 £ 1) GeV?) can

the corresponding J ' = 2 and 3T heavy, doubly heavy and
triply heavy baryon states. The contmuum threshold param-
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Table 1 The Borel parameters, continuum threshold parameters, energy scales, pole contributions, masses, and pole residues of the pentaquark
states

T2(GeV?) /50(GeV) w(GeV) Pole (%) Mp,(GeV) Ap,(GeV®)
PG 3.3-37 5.10£0.10 25 (40-61) 4.3840.13 (1.55+£0.28) x 1073
P.3T) 3.1-35 5.154+0.10 26 (40-63) 4.4440.14 (0.84 £0.17) x 1073
68— ' ' ' ' ' ' ' From Table 1, we can see that the present predictions
! 1 Mpussoy = 438 +0.13GeV and Mp as0) = 4.44 +
eor ] 0.14 GeV are in good agreement with the experimental data
_ 22 I ] of the LHCb collaboration, M p, (4380, = 4380 &8 29 MeV
> 4'8 3 ] and M p, 4450) = 4449.8 = 1.7 £ 2.5MeV [20]. The present
% 4'4 3 E predictions support assigning P.(4380) and P.(4450) to be
4:0 i b the %_ and %+ hidden charm pentaquark states, respectively,
a6l —P_(4380) | which are consistent with the assignments that P.(4380) and
aof - - -P_(4450)| ] P.(4450) are diquark—diquark—antiquark type pentaquark
ogl v vy states [27-29] or the diquark—triquark type pentaquark states

20 22 24 26 28 30 32 34 36
2
s,(GeV?)

Fig. 1 The masses of the pentaquark states with variations of the
threshold parameters so

eters /s = Mgy + (0.6-0.8) GeV work well, where the
subscript gr denotes the ground states. In the present case,
the hidden charm pentaquark states carry a baryon number
of one, i.e. they are doubly heavy baryons. So the thresh-
old parameters /sy = MPC(%*,gJ’) + (0.6-0.8) GeV make
sense. One may worry that there exist some contaminations
from the higher resonances. The upper bounds of the factors

exp (—%) are about 0.0007 and 0.0004 in the QCD sum
rules for P.(4380) and P.(4450), respectively, if we take the
largest values of the continuum threshold parameters; so the
contaminations are greatly suppressed and can be neglected
safely.

We take into account all uncertainties of the input param-
eters, and obtain the values of the masses and pole residues
of the %7 and %+ hidden charm pentaquark states, which are
shown in Figs. 2, 3 and Table 1. The QCD sum rules in Egs.
(39), (40), (41), (42), (46), and (47) indicate that the pen-
taquark states with the spin—parity (3, 3 ™) and 3.3 "
have degenerate masses, and k+ = \/_)f" and )»5 = «/—A_

Naively, we expect that addltlonally one unlt spln or P-Wave
can lead to larger masses, so M 5+ > M 3 , while the relation

M 3* > M 5 needs detailed and reﬁned analysis to obtain
the answer ¢ yes ’or “no”. Itls sensible to assign P.(4380) and
P.(4450) tobe the 3 5 “and? 3

However, the assignment (gf, 5 )of (P.(4380), P.(4450))
is not excluded.

pentaquark states, respectively.

[30].
In this article, we take the energy-scale formula u =
— (2M,)? to determine the energy scales of the QCD
spectral densities. The pole contributions are about (40—
60) %, and the contributions of the vacuum condensates of
dimension 10 are less than 5 %, the two criteria (pole domi-
nance at the phenomenological side and convergence of the
operator product expansion) of the conventional QCD sum
rules can be satisfied, so we expect to make reasonable predic-
tions. In subsequent work, we shall extend the present work
to study the %i and %i hidden charm pentaquark states in
a systematic way [64—66], where the energy-scale formula
w=\Mp -
the predicted masses. The typical energy scales, which char-
acterize the five-quark systems g1q2g3cc and serve as the
optimal energy scales of the QCD spectral densities, are
not independent of the masses of the five-quark systems
q1g2q3cc. All the predictions can be confronted to the exper-
imental data in the future.

The diquark—diquark—antiquark type current with special
quantum numbers couples potentially to special pentaquark
states according to the tensor analysis in Egs. (21), (22), (25),
and (26). The current can be re-arranged both in the color
and Dirac-spinor spaces, and they can be changed to a cur-
rent as a special superposition of the color singlet baryon—
meson type currents. The baryon—meson type currents cou-
ple potentially to the baryon-meson pairs. The diquark—
diquark—antiquark type pentaquark state can be taken as
a special superposition of a series of baryon—meson pairs,
and this embodies the net effects. The decays to its compo-
nents (baryon—meson pairs) are Okubo—Zweig-lizuka super-
allowed, but the re-arrangements in the color-space are non-
trivial [67].

(2M,)? serves as an additional constraint on

@ Springer
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Fig. 2 The masses of the pentaquark states with variations of the Borel parameters T2
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Fig.

In the following, we perform a Fierz re-arrangement to
the currents J,, and J,,,, both in the color and Dirac-spinor

spaces to obtain the results,

1 1 1
J = =Sccyuu+ —Sucyc — =Sysccyuysu
4 4 4
1 _ i . i .
=3 SVsu Eyuyse— 3 Syuyse ciysu— 2 Syuysuciyse
L L P
7 Svuccu — 2 Syuuce — 2 Sopuccyu
i _ i -
—ZSUMM cy*c + ZSOAMJGC cy)‘y5u
i = A 1 = AT
+4—186wy5u cy )/SC—i-gSaMyMcca u
1
+§SO')LT)/MM éo've, (51)
- 1 .
Ju = ﬁzs (gv)»y;/. + gu)»Vv) ccyu

1 _
+ﬁ8 (gvk}/u + guﬂ/v) MCVAC

@ Springer

3 The pole residues of the pentaquark states with variations of the Borel parameters 7>

6.0 i T T T T T T T ]
56 -
52 -
481 -
%‘ R T T =9
(@] 4.0 _— —_
= 36[ .
3.2 Central value | 7]
28 P (4450) |- - -Upperbound | A
[ © —-—- Lower bound ]
241 -
2.0 [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i
2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
T4(GeV?)
20 - r -~ r 1t T 1 T Tt T T T T ]
8 Central value | ]
16 | P (4450) - — - Upper bound -
o (o3 .
14 | —-—- Lower bound i
3 12 .
O b -~ d
D -
- 8| -~ e e — e =]
< i im e T 4
6E-"—""" -
al ]
2 ]
0 i 1 1 1 1 1 1 1 ]
2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
T4(GeV?)
L (gvavu + guawv) vsc ey ysu
% v
2\/5 M M
1
——=S (8va¥u + &us sucy’ysc
Ve (gvavu + guavv) ysucy’y
1 _
+m8 (VMUM Vv + VvUMV;L) ccou
1 _
+ES (V/LUM)/U + J/vGArV;L) ucoe, (52)
where we take the replacement J,;, — j:w,
JMU - 'Z;LV?
1 . ..
— —281108”]{81’”"14;6')/561](
x [unﬂc;/ﬂcn wCel +ul Cyyen yuCEl
1 _
=3 8uity Cyien v CEg } , (53)

to subtract the contribution of the spin—% pentaquark state,
and we use the notations ST'¢c = e”kuiTCy5deck and
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STu = &'/*u! Cysd;Tuy for simplicity; here T denotes the
Dirac matrices.

The components S(x)T"c(x)c(x)Tu(x) and S(x)Tu(x)
¢(x)Ic(x) couple potentially to the baryon—meson pairs.
The relevant thresholds are My, = 4.035GeV, M, , =
3.922GeV, My, nN(1440) = 4.414GeV, My ,p = 4.353GeV,
My+po = 4.151GeV, My+po = 4.293GeV, My, =
4.463GeV, My, = 4.449GeV, and M+ 59500 =
4.457 GeV [58]. After taking into account the current—hadron
duality, we obtain the Okubo-Zweig-lizuka super-allowed
decays,

P.(4380) — pJ /¥, ATD*™, pne, ATD®, pxeo,  (54)
P.(4450) — pJ /¥, ATD*, pn., AFD°, N(1440)1,.
(55)

We can search for P.(4380) and P.(4450) in the A} D*0,
PTes Aj‘DO, P X0, and N (1440)n, mass distributions in the
future, which may shed light on the nature of those pen-
taquark states.

4 Conclusion

In this article, we construct the diquark—diquark—antiquark
type interpolating currents, and we study the masses and pole
residues of the %_ and %Jr hidden charm pentaquark states
in detail with the QCD sum rules by calculating the contribu-
tions of the vacuum condensates up to dimension-10 in the
operator product expansion. In calculations, we use the for-
mula u = /MI%C — (2M.)? to determine the energy scales
of the QCD spectral densities. The present predictions favor
assigning P.(4380) and P.(4450) to be the %7 and %+ pen-
taquark states, respectively. The pole residues can be taken
as basic input parameters to study relevant processes of the
pentaquark states with the three-point QCD sum rules.
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Appendix

For the QCD spectral densities ,ol.1 (s) and ,'5?(s) with i =
0, 3,4, 5,6, 8,9, 10 of the pentaquark states, we have

4
Try — A =
po(s) = 19152078 /dydzyz(l y—72) (s mc)
X (7s — ZWE),
4
~0 4 —2
=— [dyd 1—y— _
Py (s) 983040718/ ydz(y+2)(1—y—2) (s mc)
X (65 — WZ) , (56)
p3(s) = —M/dydz (y+2)(1—y—2)? (s —n_12.)3 ,
- 307276 ¢
~N N _mc@éﬁ N =2 3
p3(s) = 15367[6/dde(1 y—2) (s mc> , (57)

2
1 m; as;GG / Z y
=M dydz (£ + 2
Pa(s) 73728n6< - > e \ptz

x(1—y—2z)* (s —mf) <2s —mﬁ)

19 ;GG X
- dyd 1l—y—
7077888716< o >/ ydz(y +2)(1-y—2)

2
x (s - n‘af) (7s - 4m§)

13 as;GG 2

dydz yz(1 — y —

+393216n6< = >/ ydzyz(d =y =2)

2
x(s—ﬁf) (5s—2ﬁg),
2

~0 mg ozSGG/ r 1 vy z
- - dydz(— + =+ 2+ —
i) = = gaoane ' V(T a T AT

x (1 —y—z)4 (s —ﬁ%) <3s —mﬁ)

1 ;GG y Z
dydz (2 + 2
+2949127r6< - >/ Y Z(zz+y2>

x(1—y—2z)* <s —mf)z <4s —n—ﬁ)

19 a;GG 3
- dydz (1 —y —
1179648n6< - >/ yde(l =y =2)

<(s-m) (20— m)

13 [aGG s
dyd l—y—
+786432n6< - >/ ydz(y +2)1—y—2)

x (s - mﬁ)z (45— 72). (58)

me(qgsoGq) _2\?
W / dde (y+Z)(1—y—Z) (S - mc)

mc(égsan>/
Mc\98:9749) [ qya
t 6553670 yae

<(2+5)a-s-(-my

mc(q'gsan>/ Yy, z
_ ST g (2 2
9830476 Yazty

pis) =
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2
x(1—y—2z)? (s —171%)
3mc(q8;0Gq)
3276876

X(l—y—z)<s—mg)2,

~0, . _ MclGgsoGq) o __5)\?
,05(s)_—1024ﬂ6 dydz(1—y—12) (s mc)

mc(q'gsaGm/ 11
DeA96s9747 [ qyvdz (2 o =
e300 ) YR\ T
2
x(1—y —1)2 (s —ﬁ%)
mc(cigsan)/ 1 1
_ g5 | qvds (24 2
9830476 Y& A$T3
2
(1 =y =2 (s =)

3me{qegs0G 2
+—c(61g5 q) /dydz (I1—y—2) (s —mﬁ) ,

/dydz +2

1638476
(59
PL(s) = M/dydz yz(l—y—z) (s —ﬁz) (2s —ﬁ2>
6 9674 c c)>
- \2
Po(s) = %/dydz O+ -y-2) (s —ﬁf)

(60)

X (3s — mf) ,

35{99)(q8:9Gq) _
1 )
pg(s) = 61442 /dydz yz (3s 2mc)

(99)(qgs0Gq)
1228874

X/dde(y-I—Z)(l—y—z) (5s—4m§> ,

2s) = ~35(q9)(q8s0Gq) /dydz 5+ 2) (2s—m§)

122887
(éq)(égschn/
ACLTAVE. il VA BN

61447 ydz

x(1—y = 2) (45 = 372),

(61)

- 3 yf
1 me{qq)
=——" | d

_ melaq)’ /yf &
y

’.‘O —
() 7272

Py (s (62)

i

19(7¢50 Gq)* /yf
Z\osT w Al dv v(l —
2astent ), Y
X [24—%%8 (s —ﬁ%)]
17(Gg50Gq)*
44236874

Pllo(s) =

/dydz (y+2)
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x [4+2s (s —m2)].

Bo(s) = w /yjf dy [1 + 728 (s — ﬁg)]

4915274
17(4850Gq)* s s
T 0118404 /dydz [3+m08 (s _m0>]’
(63)

: - 14/ 1—4m?
where [dydz = [}/ dy fz], Ydz, yp = %m'/s yi =
Ioldmg/s o ymg o

O+2m?  ~2 m2
2 Ll T ys_m%’ c yz 4 c

= 3
Syl dy — fol dy, fzi._y dz — fol_y dz when the § functions
8 (s —mZ) and & (s — 2) appear.
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