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Analysis of Packet Loss for Compressed Video:
Effect of Burst Losses and Correlation

Between Error Frames
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Abstract—Video communication is often afflicted by various
forms of losses, such as packet loss over the Internet. This paper
examines the question of whether the packet loss pattern, and in
particular, the burst length, is important for accurately estimating
the expected mean-squared error distortion resulting from packet
loss of compressed video. We focus on the challenging case of
low-bit-rate video where each P-frame typically fits within a single
packet. Specifically, we: 1) verify that the loss pattern does have
a significant effect on the resulting distortion; 2) explain why a
loss pattern, for example a burst loss, generally produces a larger
distortion than an equal number of isolated losses; and 3) propose
a model that accurately estimates the expected distortion by
explicitly accounting for the loss pattern, inter-frame error propa-
gation, and the correlation between error frames. The accuracy of
the proposed model is validated with H.264/AVC coded video and
previous frame concealment, where for most sequences the total
distortion is predicted to within 0.3 dB for burst loss of length
two packets, as compared to prior models which underestimate
the distortion by about 1.5 dB. Furthermore, as the burst length
increases, our prediction is within 0.7 dB, while prior models
degrade and underestimate the distortion by over 3 dB. The
proposed model works well for video-telephony-type of sequences
with low to medium motion. We also present a simple illustrative
example, of how knowledge of the effect of burst loss can be used
to adapt the schedule of video streaming to provide improved per-
formance for a burst loss channel, without requiring an increase
in bit rate.

Index Terms—Distortion modeling, error propagation, error re-
silience, H.264/AVC, packet loss, rate-distortion optimization.

I. INTRODUCTION

V
IDEO communications over bit-rate-limited and error-

prone channels, such as packet networks and wireless

links, require both high compression and high error resilience.

Important applications within this context include video

streaming over the Internet and wireless video to handheld

devices such as with the emerging Third Generation (3G) cel-

lular system. To achieve high compression, most current video

compression systems employ motion-compensated prediction

between frames to exploit the temporal redundancy, followed
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by a spatial transform to exploit the spatial redundancy, and

the resulting parameters are entropy-coded to produce the

compressed bitstream. These algorithms provide significant

compression, however the compressed signal is highly vul-

nerable to losses when transmitted over error-prone channels.

Probably the most important problem that afflicts video com-

pressed with these coders is the error propagation problem.

Specifically, inter-frame prediction provides significant com-

pression, however, the decoder must have the same reference

frame as used by the encoder in order to perform correct

decoding. A channel error can cause the reconstructed frame at

the decoder to be incorrect, which can lead to significant error

propagation to subsequent frames.

The problem of error-resilient video communication has

received significant attention in recent years, and a variety

of techniques have been proposed to mitigate the effects of

packet loss and inter-frame error propagation, and thereby to

increase the robustness of video communication over lossy

networks [1]–[7]. Examples of recent work in this area in-

cludes intra/inter-mode switching [8]–[10], dynamic control of

prediction dependency using multiframe memory [11]–[13],

forward error correction (FEC) [14]–[16], channel-adaptive

packet scheduling [17]–[20], and the use of multiple description

coding and packet path diversity [21]–[25]. These approaches

for reliable or error-resilient video communication use models

of the effect of losses on the reconstructed video to motivate and

direct the design of the different approaches, and also to adapt

their operation to transmission conditions. In addition, many of

these recent algorithms use rate-distortion (R-D) optimization

techniques to improve the performance over lossy channels.

The goal of these optimization techniques is to minimize the

expected distortion due to both compression and channel losses

subject to the bit-rate constraint. Their performance crucially

depends on the accuracy with which they can predict the dis-

tortion that results for different loss events. Therefore, it is very

important to have accurate models for predicting the distortion

resulting from packet loss.

Developing an accurate model for the effect of packet loss

on the reconstructed video quality is critical for designing and

accurately predicting the performance of video communication

systems. An important question along these lines is whether the

expected distortion as seen by the client depends only on the

average packet loss rate, or whether it also depends on the spe-

cific pattern of the loss. For example, does packet loss burst

length matter, or is the resulting distortion equivalent to an equal

number of isolated losses?
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Most of the prior work on modeling the effect of losses

model the expected distortion as being proportional to the

number of losses that occur [26]–[28]. For example, [26] and

[27] analyze and model the distortion for a single (isolated)

loss and model the mean-squared error (MSE) expected dis-

tortion for multiple losses as being proportional to the number

of losses that occur, e.g., the average packet loss rate. This

model accounts for error propagation, intra-refresh rate, and

spatial filtering performed by the motion compensation loop

of the decoder. In this model, linearity and superposition are

assumed for multiple errors, specifically, the total distortion

increases linearly with the average packet loss rate. Therefore,

in this model, the estimated distortion does not depend on the

specific loss pattern or the burst length of a loss, and only

depends on the number of losses that occur. Such approaches

focus on the average packet loss rate as the most important

parameter to consider, and implicitly assume that burst length

does not matter. This model is accurate when the losses can

be considered to have independent effects, for example, when

single (isolated) losses are spaced sufficiently far apart (with

respect to the intra-update interval). This may be true when

the losses are isolated and not bursty, or when each frame is

coded into many packets and any loss event is restricted to

losing packets of a single frame. However, in many important

communication situations for example, video communication

over the Internet or over a wireless link, the losses may be bursty.

The effect of burst losses is particularly pronounced for low

bit rate video. For example, in the practically important and

challenging case of low bit-rate video communication over

lossy wired or wireless packet networks, a burst loss generally

leads to the loss of multiple video frames, e.g., QCIF resolu-

tion video (144 176 pixels/frame) coded with a conventional

H.263, MPEG-4, or an H.264/AVC video coder at less than

about 150 kb/s where each P-frame can fit in a single packet.

These cases of low bit rate video over a lossy packet network

are both practically important and technically quite challenging

and have lead to significant research on error-resilient video

coding. On the other hand, the effect of burst losses are gener-

ally much less pronounced for high bit rate video, for instance

MPEG-2 video at 4 Mb/s (e.g., [29]), where each frame may be

coded into about 10 packets, and, therefore, much longer burst

losses are required to have similar effects.

A model for estimating the overall end-to-end distortion for

pre-encoded video is proposed in [30], [31] to aid R-D opti-

mized streaming, by using partial derivative approximations on

a limited order. In [32], a statistical model to estimate channel

error induced distortion for different channel conditions is pro-

posed for wireless video coding, based on a theoretical analysis

of the distortion caused by channel errors as well as inter-frame

error propagation. In [29] and [33], the quality of compressed

video transmitted over a packet network is monitored from the

perspective of a network service provider, by extracting se-

quence-specific information including spatio–temporal activity

and the effects of error propagation. All of these schemes use

an overall packet loss rate and do not explicitly consider the

pattern of the losses.

In [21] the length of a burst loss was shown to have an im-

portant effect on the resulting distortion, where longer burst

lengths generally led to larger distortions. Furthermore, the ef-

fect of a burst loss was also identified as an important feature for

comparing the relative merits of different error-resilient coding

schemes. This was extended in [34] where a simple model was

proposed that distinguishes loss events based on the length of

the burst loss (e.g., single loss of length one, burst loss of length

two, burst loss of length three) and explicitly accounts for the

different distortions that result for different burst runlengths.

This model provides some improvement over the prior addi-

tive model in the sense that it accurately accounts for the dif-

ferent effects of burst losses as compared to isolated losses. It

also provides a simple mechanism that accounts for the different

distortions that result for different burst lengths. However, this

model also shares some of the disadvantages of the prior addi-

tive model. For example, it does not account for more general

loss patterns, such as two losses spaced apart by a short lag.

An understanding of the effect of packet loss on the recon-

structed video quality and developing accurate models for

predicting the distortion for different loss events, is clearly very

important for designing, analyzing, and operating video com-

munication systems over lossy networks. This paper examines

the question of whether the loss pattern, and in particular the

burst length, is important for accurately estimating the expected

distortion. Understanding that the effects of a single packet loss

and burst losses may be very different, we study and model

the distortion resulting from more general and complex loss

patterns, including burst losses and losses separated by a certain

lag. We: 1) verify that the packet loss pattern does, in fact, have

a significant effect on the resulting distortion; 2) explain why a

loss pattern, for example, a burst loss, generally produces a larger

distortion than an equal number of isolated losses; and 3) propose

a model that accurately estimates the expected distortion by ex-

plicitly accounting for the loss pattern. To estimate the expected

distortion the proposed model explicitly considers the effect

of different loss patterns, including burst losses and separated

(non-consecutive) losses spaced apart by a lag, and accounts for

inter-frame error propagation and the correlation between error

frames. The proposed model provides a significantly more accu-

rate estimate of the mean-squared error distortion resulting from

different loss events, compared to prior models. The accuracy

of the proposed model is validated for four standard video test

sequences coded with the H.264/AVC standard.

This paper is structured as follows. Section II presents the

proposed model, and specifically focuses on the cases of burst

losses and separated (non-consecutive) losses spaced apart by

some lag. Experimental results that illustrate and validate the

accuracy of the proposed model are presented in Section IV.

We conclude in Section V by presenting a simple illustrative

example of how knowledge of the effect of burst loss can be used

to adapt the packet scheduling to provide improved performance

for burst loss channels.

II. LOSS MODELING CONSIDERING ERROR CORRELATION

The goal of this section is to develop models that accurately

estimate the distortion for more general loss patterns, including

burst losses and separated (non-consecutive) losses where

the separation is less than that required to make the losses

independent.
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Throughout this paper we consider an H.264/RTP/UDP/IP

scenario, where the H.264 packetization is performed such that

packets are independently decodable. The packetized data are

encapsulated into RTP payloads and delivered over the IP net-

work through RTP/UDP. At the receiver side packet loss is iden-

tified through the sequence number.

We also assume that each predictively coded frame (P-frame)

is coded into a single packet, so that the loss of a packet cor-

responds to the loss of an entire frame. This corresponds, for

example, to the practically important case of low bit rate video

communication over lossy wired or wireless packet networks,

e.g., QCIF resolution video coded with an H.263, MPEG-4, or an

H.264/AVC video coder, and packetized with the conventional

packet framing option of sending each new coded frame in a new

packet. The results in this paper can also be extended to the case

where each frame is coded into multiple packets, by accounting

for the portion of each coded frame that depends on each packet

and the longer burst loss required to lose an entire frame.

The original video signal is a discrete space-time signal de-

noted by , where is the frame index. To simplify

notation, the 2-D array of pixels in each frame

are sorted in the 1-D vector (of length ) in line-scan

order. We use the 1-D vector to represent an original video

frame, to denote the loss-free reconstruction of the frame,

and to denote the reconstruction at the decoder after pos-

sible loss concealment. An error frame introduced by a channel

loss is defined as

(1)

which is also a 1-D vector. Since our primary concern is the

effect of channel loss, quantization error is not included in the

error signal being studied. Assuming the error frame to be

a stationary process, its mean-squared error (MSE) is given by

(2)

The distortion that would result from a single loss, as a func-

tion of the specific frame that it afflicts, can be evaluated at

the encoder by simulating the corresponding loss event and de-

coding the sequence. Note that these distortions can be straight-

forwardly computed and stored, and we refer to these distortions

as “pre-measured” distortions in the remainder of this work. We

will show that by using these pre-measured distortions, we are

able to accurately estimate the distortion from more general loss

patterns using the models proposed in this work. We denote the

initial error frame resulting from a single lost frame by ,

and its MSE by ; while and are used to represent

the error frame and the MSE at time resulting from a more

general loss pattern.

While the MSE above for each individual frame quantifies

the initial error power introduced by a channel loss, it does not

include the effect of error propagation. In order to describe the

overall effect of a particular loss event, we also define total dis-

tortion to be the sum of the MSEs of all the frames during the

entire error recovery period, given by

(3)

where with being the index of the first lost

frame, denotes the indices of the frames in error, and indicates

the sequence should be long enough to cover the entire recovery

period. Correspondingly is used to denote the total dis-

tortion for a single frame loss at frame . In Section II-A–C, we

study the MSE and the total distortion for different loss patterns.

A. Burst Losses of Length Two

With the notations defined above, we first study burst losses

of length two.

1) MSE of the Lost Frame: Assuming a simple loss conceal-

ment scheme where the lost frame is replaced by the previous

frame at the decoder output, the error frames of single losses at

and are, respectively, given by

(4)

(5)

In the case of a burst loss of length two afflicting frames

and , the residual error of frame is given by

(6)

(7)

where the last equality is recognized by considering the sum of

(4) and (5). The corresponding MSE of the error frame is

(8)

where

is the correlation coefficient between error frames and .

In (8), the distortion of a burst loss of length two is expressed

as a function of the distortion of two single and independent

losses. Note that the MSE of the loss-affected frame in (8) is not

just the sum of the MSEs of two independent losses, unlike what

the additive model predicts. Specifically, the first two terms in

(8) express the distortion when the two error frames are uncorre-

lated, and the third term expresses the change that results when

the two error frames are correlated. Note that as a simple loss

concealment scheme of previous frame replacement is used, in

this distortion model, the amount of motion from frame to frame

is implicitly accounted for through and .

2) Modeling of the Total Distortion: As defined above, the

total distortion expresses the distortion of the lost frame and the

subsequent error propagation. We model the error propagation

process in a typical video decoder with a geometric attenuation

factor resulting from spatial filtering, and a linear attenuation

factor from Intra update. With an Intra update period of , if a

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 12:05 from IEEE Xplore.  Restrictions apply.



864 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 18, NO. 7, JULY 2008

single error is introduced at with an MSE of the power

of the propagated error at is given by

for

otherwise.
(9)

The attenuation factor accounts for the effect of spa-

tial filtering, and for Intra update, in reducing the error

power. It is assumed that the error is completely removed by

Intra update after frames. In this model, linear attenuation as

a result of Intra update is intuitive since the update is assumed

to apply in a periodic manner. In [26] and [27], a

factor, is used to model the attenuation effect of spatial filtering,

derived from calculating the signal power spectrum density and

modeling the spatial filter as a linear system. The geometric at-

tenuation we use here is a simplification based on that for sim-

pler computation to be introduced later. The simplification is

based on the fact that usually the attenuation effect of the spa-

tial filter is relatively weaker than that of the Intra update, as

shown by simulations.

For a single error introduced at , and considering an entire

period that is sufficiently long for complete error recovery, the

total distortion is

(10)

where is the initial error power introduced at ,

and is the ratio between the total distortion

and the MSE of frame , where the error is introduced. In (10)

is a parameter describing how effective the spatial filter is in

reducing the introduced error power, and is dependent on the

strength of the loop filter of the codec and the power spectrum

density (PSD) of the input error signal. Since the variation of

from frame to frame is low, it is assumed that, for a fixed

error burst length, (and ) is constant for the entire recovery

period, and independent of frame index . In Section II-B, we

will discuss the effect of the error burst length and the shape of

the PSD of the input error signal on .

We now study the total distortion of two losses at

and . According to (3)

(11)

According to (8) and (10), (11) can be re-expressed as

(12)

which is again the sum of two uncorrelated total distortions, plus

a cross-correlation term, plus the distortion for frame .

Specifically, the cross-correlation term distinguishes the pro-

posed model in this work from the previous additive model. The

total distortion of a burst of losses is not only the sum of the

distortion of independent losses at the same locations, but also

largely affected by the correlation between the error frames.

B. Burst Losses of Length Greater Than Two

In Section II-A we developed analytical expressions for mod-

eling the total distortion for a burst loss of length two. We now

extend this to a model for a burst loss of length . With

the loss of consecutive frames from to ,

and its MSE

(13)

(14)

which is the sum of the MSEs of independent losses and the

cross-correlation terms.

Next we derive the total distortion of burst losses afflicting

frames through . According to the definition by (3),

the total distortion is

(15)

With obtained from (14), we are able to derive ac-

cording to (10).

However, as the burst length varies, the shape of the PSD of

the input error signal is different due to the concealment mech-

anism, which leads to the variation of the ratio (or ) in (10).

Since a lost frame is replaced with the last good frame received

by concealment at the decoder, as the burst length increases,

the PSD of the error frame has larger low-frequency compo-

nent. The process of error power reduction by loop filtering can

be modeled with a linear system, and is the proportion of

the power of the introduced error passing through the system.

In [26], the loop filter is approximated in the base band by a

Gaussian low-pass filter. Hence increases as the PSD of the

error is more concentrated in the lower band. In other words,

increases as the burst length increases.
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From the simulations presented in Section IV, it is found that

the variation of as a function of is near-linear. For this

reason, we approximate as a linear function of :

(16)

where is the ratio for , is the slope of the increase,

and . The equation described by (16) can be determined

by fitting at least two measured values of for different s.

With the obtained , (16), the total distortion is given by

or

(17)

C. Two Separated Losses With a Short Lag

To study the distortion of a loss with a general and arbitrary

pattern, we also want to analyze the effect of two losses, where

the two losses are not consecutive (i.e., not a burst loss), but they

are also not far enough apart to have the effect of independent

losses. We define the lag between two losses at frames and

as . With , the first error propagates

before the second error occurs. We study the MSE of two sepa-

rated losses at and .

For a single loss at , (4) takes a more general form as

where the error in is propagated from the error of a single

loss Still assuming the simple concealment scheme

of copying the previous frame, the error of a single loss at is

With two losses occurring at and , the error at is

(18)

and the corresponding MSE is

(19)

(20)

where

(21)

Fig. 1. Model of the distortion from two losses with a lag.

is the correlation coefficient between error frames (prop-

agated from ) and .

We now examine the total distortion for two losses occurring

at and , with an arbitrary lag of . is the

distance such that for , the two losses are sufficiently

far apart so that their effects can be treated as independent. For

instance, can be the period of Intra update. In other words,

for the total distortion is additive, i.e., the total distortion

from two losses spaced apart is equal to the sum of the

total distortions corresponding to each independent loss event.

As illustrated in Fig. 1, we split the distortion into two parts,

the distortion before and the distortion after the introduction of

the second loss at . The first distortion is given by

(22)

for . At , the second error is introduced, and the MSE of

frame , , is obtained from (20). The second component of

the total distortion is

(23)

given .

Hence, the total distortion is shown in (24) and (25) at the

bottom of the page. Note that, in (25), the total distortion is

(24)

(25)
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re- expressed as a function of the distortion of two single and

independent losses. The scaling of these two distortions, which

is a function of the lag and the correlation between the error

frames, is what distinguishes this model from the prior additive

model.

III. PARAMETER ESTIMATION AND ALGORITHMS

Before applying the model, the model parameters need to be

estimated for a particular video sequence. In this section, we

present two approaches for parameter estimation: local estima-

tion and global estimation.

In calculating the MSE of an arbitrary frame in error, and the

total distortion of the error event, we need the MSE of a single

loss and the ratio . Note that is frame content

dependent and varies as the frame index . For a video sequence

with a total of frames, if is pre-measured and stored for

a single loss occurring to each frame in the sequence, e.g., for

, a loss in a general pattern occurring at any

particular location in the sequence may be accurately obtained.

This approach is referred to as the local estimation, since the

parameters are estimated and stored for localized error events.

Local estimation is useful when the estimation of loss occurring

at particular locations is desired, such as in the applications of

real-time channel-adaptive R-D optimization.

When estimating the average distortion of a video sequence

afflicted by stationary error events, or by errors occurring at un-

determined random locations, an averaged parameter for the

entire sequence is required. In this case, a smaller number of sim-

ulations and decodings are needed, for single loss events at only

a subsampled of frames in the sequence, for instance, at frames

only. and are estimated by averaging the

measured MSEs, for instance, . This

approach is referred to as the global estimation, and fewer global

parameters need to be stored for a particular sequence. Global

estimation gives a low-complexity alternative for the estimation

of the distortion averaged over a sequence.

Next we provide more details for parameter estimation in the

cases of different loss patterns.

In the case of two separated losses, using local parameter es-

timation, we perform simulations, each time with a single loss

occurring at a particular location , where .

In each simulation, e.g., a frame loss at , we measure the MSE

of the frame in error, , and the resulting total distortion,

. We also estimate the MSE (or equivalently the

correlation coefficient in (21)) according to (19), for the frame

frames after, if it should get lost. Here we count ,

since we consider two losses as independent if they are more

than frames apart. We estimate according to (19), and

assume the reconstructed frames are available at the encoder.

The ratio is obtained as the ratio of the averaged and the

averaged (both averaged over ), and can be solved from

(10). In summary, to estimate the required model parameters,

decodings during pre-measurement are required in total.

A total of parameters need to be stored: including

, and (or equivalently, ), for

and . With the obtained parameters, the total

distortion of a particular loss event can be calculated using the

model by (25).

Using global estimation, we perform decodings, with a

single loss occurring only at subsampled locations, for instance,

at frames . In each simulation, ,

and are measured in the same way as using the local

estimation. However only the average and average are

stored, which are the values of and averaged over

, respectively. The ratio is obtained in a similar way, except

the and the used to calculate is averaged over sam-

ples instead of . In summary, for global estimation,

decodings are required. A total of parameters need to

be stored: , and (or equivalently, ), for .

In the case of burst loss with , to pre-measure the

ratio using local estimation, loss events at all locations,

e.g., , are considered. For each , where

the loss takes place, 2 simulations with two different error burst

length and are performed to measure the resulting

and . is obtained as the ratio of the averaged and the

averaged , for a particular . With the obtained and

, can be calculated according to (16). The MSE

of the frames in error, , can be calculated from the recon-

structed frames using (13) online, without pre-decoding the se-

quence. In summary, to estimate the parameters, decod-

ings during pre-measurement are required. A total of 2 param-

eters are stored for a particular sequence: and in (16) for

the estimation of . With these parameters, the total distortion

is obtained from (17). Burst loss with is a special case

of the above, in which is a constant and the only parameter to

store, and only decodings are needed.

Using global estimation, the ratio is obtained in a similar

way, except that loss events are simulated at subsampled loca-

tions. As a result, only decodings are needed. The MSE

of the frames in error, , is estimated in the same way. Two

parameters, and , are stored.

IV. SIMULATION RESULTS

To validate the accuracy of the proposed model and to com-

pare it with prior models, we simulate different loss patterns on

standard video test sequences, and measure the resulting total

distortion at the decoder. Specifically, we compare the measured

distortion with that predicted by the proposed model and pre-

dicted by the additive model described in Section I.

To perform our tests, we use the H.264/AVC emerging video

compression standard [35]. Specifically, all test are performed

with the JVT JM 2.0 codec implementation of this emerging

standard. We evaluate the performance on four standard

video-telephony-type sequences in QCIF format, Foreman,

Mother-Daughter, Salesman and Claire, where each has 280

frames and is coded at 30 fps. Note that these standard test

sequences represent a range of video complexity, from little

motion in Mother-Daughter or Claire to significant motion in

Foreman. Each sequence is coded at a constant quality (con-

stant PSNR determined by a constant quantizer stepsize), and

the bit-rate and PSNR for each sequence is shown in Table I.

The first frame of a sequence is Intra-coded, followed by

Inter-coded frames. Every 4 frames, a slice is Intra updated for

increased error-resilience and reducing possible error power,

which corresponds to an Intra-frame update in a period of

frames. When a loss occurs, the lost frame is
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Fig. 2. Measured versus estimated total distortion,D (in MSE), and modeling error, for burst loss of length two. Foreman, Mother-Daughter, Salesman and Claire

sequences. Local parameter estimation.

TABLE I
BIT RATE AND PSNR FOR SEQUENCES TESTED

replaced by the last correctly decoded frame, as implemented

in the JVT JM 2.0 codec. The distortion we study in this work,

including the lost-frame MSE and the total distortion, only

includes channel-induced error, as defined in (1)–(3). We use

both the local estimation (LE) and the global estimation (GE)

to obtain the model parameters, as described in Section III.

For LE of the parameter, frames is used; while for

GE, .

1) Distortion for Burst Losses of Length Two: Fig. 2 plots

the total distortion for burst losses of length two as we vary the

frame where the burst loss begins. It is observed that the pro-

posed model using (12), predicts the measured distortion quite

well, while the additive model generally underestimates the dis-

tortion due to the prevailing positive correlation [as expressed in

(8)] between the two adjacent error frames. Table II lists the av-

erage modeling error for the two methods.

2) Distortion as a Function of Burst Length: Fig. 3 shows the

total distortion for burst losses of varying lengths. For each burst

length, we simulate the loss event occurring at different frames

in the video sequence, decode the sequence and compute the

resulting total distortion. The averaged distortion is computed

TABLE II
AVERAGE MODELING ERROR (DB) FOR BURST LOSSES OF LENGTH TWO,

GIVEN BY THE ADDITIVE MODEL, PROPOSED MODEL WITH LOCAL

PARAMETER ESTIMATION (LE) AND GLOBAL ESTIMATION (GE). ALSO LISTED

ARE THE RATIO �, AND THE AVERAGE MSE FOR A SINGLE LOSS

over all loss realizations. The averaged total distortion is then

normalized to the distortion resulting from a single loss (also

averaged over all loss realizations), and presented on the loga-

rithmic scale.

It is observed from Fig. 3 that as the burst length increases,

the total distortion is much greater than the sum of the distortion

of individual losses, unlike what is predicted by the additive

model. These plots clearly illustrate that burst length matters,

and that the total distortion is not equivalent to an equal number

of isolated losses. Furthermore, the proposed model accurately

accounts for the effect of burst length, as shown by its accuracy

in predicting the total distortion for burst losses.

Note that the observation found above can be very different

from the scenario of high rate video over ATM networks [36],

where it is found that “short burst cell loss causes greater video

degradation compared to long burst cell loss.” This is because,
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Fig. 3. Measured versus estimated total distortion, D, and modeling error, as a function of burst length, averaged for loss realizations at different frames
in a sequence, and normalized by the average distortion of a single loss. Foreman, Mother-Daughter, Salesman and Claire sequences.

in [36], ATM cells are small in relative to video frames, and

they do not contain independently decodable packets. A com-

pressed video frame typically has to be distributed across many

cells. In that scenario, the loss of a single cell resulted in the
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Fig. 4. Total distortion and error correlation of two losses with a lag. First loss at Frame 80, and second loss at frame 80 + lag. Foreman and Claire sequences.

loss of an entire frame, hence a single loss or a burst loss within

a single frame would have the same effect. It is therefore more

beneficial to have a longer burst losses afflicting one frame

instead of distributed short bursts at the same average loss rate

afflicting multiple frames. However, in this paper we consider

a fundamentally different situation in our H.264/RTP/UDP/IP

scenario.

3) Distortion as a Function of the Lag Between Two Losses:

Figs. 4 and 5 show the distortion for two separated losses as a

function of the gap between the losses. Fig. 4 plots the distor-

tion and error frame correlation, calculated according to (25)

and (21), respectively, for one particular realization in which

the first loss occurs at Frame 80. When the lag is small, the ad-

ditive model underestimates the distortion for Foreman due to

the positive correlation. However, it overestimates the distortion

for Claire due to the negative correlation, which is in accordance

with (20).

Fig. 5 shows the distortion for different lags, averaged over

all loss realizations, as well as the modeling error. The averaged

total distortion is also normalized, and given on the logarithmic

scale. Note that for Foreman, the proposed model (LE) underes-

timates the error by up to 0.24 dB, while the additive model un-

derestimates the error by up to 1.64 dB. Furthermore, for Claire,

the proposed model (LE) estimates the distortion to an accuracy

of within 0.09 dB for all lags, while the additive model under-

estimates the distortion by 1.57 dB for some lags and overesti-

mates it by 0.86 dB for other lags. To summarize the results for

this figure, the proposed model provides much higher accuracy,

especially for small lags. The additive model does not take the

lag into consideration, and is accurate only for large lags when

the two losses are isolated and can be treated independently.

Note that the distortion models work well in the sense that as

soon as a loss afflicts overlapping portions of consecutive frames

the error signals will be correlated. While the specific video

source material may affect the modeling results, the first-order

effect is the number of packets per frame as compared to the

burst length. When the ratio of the average burst length to the

average number of packets per frame is greater than 1 the model

is applicable, and becomes more important as the above ratio

increases. The correlation between error frames typically does

not come into effect when the ratio is smaller than 1. Since the

model considers first and second-order loss events, it works well

for video-telephony-type of sequences with low to medium mo-

tion. Corresponding modeling of losses for high-motion content

is the target for further study.

V. APPLICATION TO DELAY-DISTORTION OPTIMIZED

PACKET INTERLEAVING

Section II describes that a burst loss generally produces

greater total distortion than an equivalent number of isolated

losses. This suggests that when communicating over a channel

that exhibits burst losses, it would be beneficial to use in-

terleaving to convert the burst losses into an equal number

of isolated losses that in general are easier to recover from

and produce lower total distortion. In this section, we explore

a simple packet scheduling scheme, packet interleaving, to

achieve this goal. We apply the proposed loss model to the

design of an optimal packet interleaver that maximizes the

performance (minimizes total distortion) given knowledge

of the burst loss characteristics of the channel. Compared to

other types of error-resilience techniques, packet interleaving

provides the advantages of: 1) being simple and 2) not requiring

any increase in bit rate.

A. Packet Interleaver

A simple block interleaver is used at the sender to interleave

the packets before transmission. Packets are first read into the

interleaver in rows, with each row corresponding to a block of

packets. Packets are transmitted as soon as rows of packets

fill up, and are transmitted by columns. Here is referred to as

the block size and is the interleaving depth of the interleaver.

Fig. 6 shows an interleaver.

A simple packet interleaver permutes the locations of losses

in order to convert burst losses into isolated losses. The effec-

tiveness of the interleaver depends on the block size and the

interleaving depth of the interleaver, and the loss characteristics

of the channel. A larger interleaver is more effective in that it

can convert a longer burst loss into isolated losses or increase
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Fig. 5. Measured versus estimated total distortion, D, and modeling error, for two losses separated by a lag, averaged for loss realizations at different
frames in a sequence, and normalized by the average distortion of a single loss. Model parameters obtained using LE and GE. Foreman, Mother–Daughter,

Salesman and Claire sequences.

the separation of the converted isolated losses. However, this

is at the cost of higher latency. At the client, an interleaved

packet received cannot be used until all the packets it depends

on are received. For an interleaver, the -th packet in

Authorized licensed use limited to: Stanford University. Downloaded on October 29, 2008 at 12:05 from IEEE Xplore.  Restrictions apply.



LIANG et al.: ANALYSIS OF PACKET LOSS FOR COMPRESSED VIDEO 871

Fig. 6. Block interleaver with block size n = 4 and interleaving depth
m = 3.

the original order suffers from the highest delay, which has

to be transmitted in the th place. Hence,

the decoding delay corresponding to an interleaver is

, and a trade-off exists between the effec-

tiveness in permuting the packets and the latency. It should be

noted that generally a large delay is not required since, as will

be shown in Section V-C, as increases beyond a certain

point, further increase in or does not necessarily improve

the performance, i.e., a larger interleaver is not always better.

In Section V-B, we determine the optimal interleaver

under certain delay constraints.

B. Optimal Block Interleaving

We use the set to denote the indices of

the original lost packets when transmitted over the channel with

no interleaving. With interleaving, the losses are redistributed

across packets, and the loss indices are a function of the inter-

leaver parameters. We use to denote the

indices of the lost packets when an interleaver is used,

where is the functional representation of the interleaver

, and denotes the indices of the lost packets before

interleaving.

The total distortion of the decoded video sequence, which

depends on the loss pattern, is a function of the lost packets

, and hence a function of the interleaver used, . If the

channel loss statistics are known (for instance, the distribution

of is known) we are able to determine the optimal interleaver

that achieves the lowest distortion given a delay

constraint. The problem is formally stated as follows: given the

channel loss characteristics, and the delay constraint , de-

termine the optimal interleaver , such that the total

distortion of the decoded video sequence is

minimized, i.e.,

(26)

This is a delay-distortion optimization problem. To solve for the

optimal and , we need to estimate the distortion that results

for different loss patterns . This is achieved using our pro-

posed loss model presented in Section II. When the character-

istics of a channel are known, e.g., the probability distribution

for burst loss length , the distortion in (26) is the expected dis-

tortion. The optimal interleaver is then selected to minimize the

expected distortion.

Given an estimate of the channel loss characteristics, we can

estimate the probability of different loss patterns and hence the

associated loss events . For a given delay constraint ,

we determine all factorizations of and , such that

, which correspond to eligible inter-

leavers with acceptable delay constraints. For each set of el-

igible interleaver parameters , we calculate the indices

of the redistributed losses. For a particular loss

event , we are able to estimate the corre-

sponding total distortion, , using the loss model discussed

in Section II. The estimated distortion for a particular loss event

, and for a particular video sequence, can also be stored at the

sender or streaming server for future use.

C. Simulation Results

We illustrate the potential performance gain that may be

achieved by using the simple interleaving scheme for a channel

that exhibits a significant amount of burst loss. In addition, we

investigate the trade-off between performance gain from larger

interleavers and the corresponding delay. A simple bursty

channel model is used to illustrate the effects. We simulate

that time is divided into 100-ms intervals, with each interval

corresponding to 3 packets (frames) for a frame rate of 30 fps.

Each interval may be in either a good state or a bad state. In a

good state, 3 consecutive packets are received; while in a bad

state, 3 are lost. Each time interval is assumed to be independent

and identically distributed (Bernoulli), with the probability that

a time interval is in the bad state is 0.10. The average packet

loss rate is therefore 10%. Our primary reason for choosing

this simple channel model is that it simplifies interpretation

of the results. The experimental conditions are the same as

in Section IV. The distortions are obtained by averaging the

results for 6 random channel loss realizations shifted across the

whole sequence, or, a total of 280 6 loss realizations.

For different delay constraints, all of the eligible interleavers

are identified and their performances are then estimated. The

PSNRs for Foreman and Claire with different interleavers as a

function of delay constraint are shown in Fig. 7. Note that the

PSNRs shown in Fig. 7 are the averaged results for all frames,

including both good and error-afflicted frames, in a sequence;

while the quantities previously shown in Fig. 3 are the normal-

ized total distortion of the error-afflicted frames only, where the

total distortion is defined by (10). For a particular delay con-

straint , an optimal interleaver is determined

using the algorithm in Section V-B. Although many eligible in-

terleavers are tested, only those providing optimal performance

are marked with circles in the plot. For example, for

frames, is found. For , in-

creasing the interleaver size further more does not improve the

effectiveness. In particular, for short burst lengths, a small inter-

leaver with low latency is sufficient to provide most of the gain.

This is because, for a given burst loss model, as the size of the

interleaver increases beyond a certain point, the burst losses are

isolated and spaced apart far enough from each other such that

they can be considered independent. Further separation of the

losses will not bring additional gain.. The PSNR curve in the

plot is stair-cased, which is the outer bound of all data points

tested.

It is observed from Fig. 7 that using interleaver (5, 3) with

a delay of 8 frames (267 ms) provides a gain of 0.67 dB over

the case of no interleaving for Foreman. Using interleaver (7,

3) with a delay of 12 frames (400 ms), increases the gain to

0.72 dB. For Claire sequence, gains of 0.81 and 0.93 dB are

achieved for delays of 333 and 533 ms, respectively.
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Fig. 7. PSNR of the optimal interleaver versus delay constraint. Optimal experimental data points are marked with circles.

TABLE III
GAIN IN PSNR (DB) PROVIDED BY THE OPTIMAL INTERLEAVER FOR

DIFFERENT DELAY CONSTAINTS

The gains in PSNR for all four video test sequences examined

in the experiments are listed in Table III, for different delay con-

straints and corresponding optimal interleavers. Note that these

gains are obtained without requiring any increase in bit rate. The

optimal interleavers for delays of 8 and 12 frames are (5, 3) and

(7, 3), respectively, for all sequences, which indicates the op-

timal interleaver’s weak dependence on the sequence.

VI. CONCLUSION

This paper examined the question of whether the loss pat-

tern, and in particular the burst length, is important for accu-

rately estimating the expected distortion for video communica-

tion over error-prone channels using previous-frame conceal-

ment. We verified that the loss pattern of packet loss does in fact

have a significant effect on the resulting distortion and, there-

fore, should be accounted for. This is consistent with prior work

[21], [34]. We proposed a model for estimating the expected dis-

tortion that explicitly accounts for the loss pattern. This model

explains why a loss pattern, such as a burst loss, generally pro-

duces a larger total distortion than an equal number of isolated

losses. This model was shown to provide significant improve-

ments in accurately predicting the distortion that results for dif-

ferent loss patterns (loss events). The proposed model can be

used to estimate the distortion for general and complex loss

patterns, including burst losses and separated (non-consecutive)

losses. By accounting for the inter-frame error propagation, ex-

plicitly accounting for the correlation between error frames, and

modeling spatial filtering at the decoder as a linear system, the

proposed model provides a significantly more accurate estimate

of the resulting distortion, as compared to prior models. The

proposed model is validated with H.264/AVC coded video, and

experiments on four video–telephony-type test sequences that

represent a diverse range of video content. Specifically, for most

sequences, the proposed model accurately predicts the total dis-

tortion to within 0.3 dB for two packet losses, as compared

to the prior additive model that could underestimate the distor-

tion by about 1.6 dB or overestimate by about 0.9 dB. Further-

more, the accuracy of our prediction is within 0.7 dB as the

length of a burst loss increases, while that of the prior model de-

grades and may underestimate the total distortion by over 3 dB.

The proposed model works well for video-telephony-type of se-

quences with low to medium motion. We also present a simple

illustrative example, of how knowledge of the effect of burst

loss and accurate modeling can be used to adapt the schedule

of video streaming to provide improved performance for a burst

loss channel, without requiring an increase in bit-rate. We ex-

pect that the use of this more accurate loss model can improve

the design and performance of various error-resilient video com-

munication schemes.
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