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Abstract

Background: Malaria transmission is highly heterogeneous and analysis of incidence data must account for this for

correct statistical inference. Less widely appreciated is the occurrence of a large number of zero counts (children

without a malaria episode) in malaria cohort studies. Zero-inflated regression methods provide one means of

addressing this issue, and also allow risk factors providing complete and partial protection to be disentangled.

Methods: Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB)

regression models were fitted to data from two cohort studies of malaria in children in Ghana. Multivariate models

were used to understand risk factors for elevated incidence of malaria and for remaining malaria-free, and to

estimate the fraction of the population not at risk of malaria.

Results: ZINB models, which account for both heterogeneity in individual risk and an unexposed sub-group within

the population, provided the best fit to data in both cohorts. These approaches gave additional insight into the

mechanism of factors influencing the incidence of malaria compared to simpler approaches, such as NB regression.

For example, compared to urban areas, rural residence was found to both increase the incidence rate of malaria

among exposed children, and increase the probability of being exposed. In Navrongo, 34% of urban residents were

estimated to be at no risk, compared to 3% of rural residents. In Kintampo, 47% of urban residents and 13% of rural

residents were estimated to be at no risk.

Conclusion: These results illustrate the utility of zero-inflated regression methods for analysis of malaria cohort data

that include a large number of zero counts. Specifically, these results suggest that interventions that reach mainly

urban residents will have limited overall impact, since some urban residents are essentially at no risk, even in areas

of high endemicity, such as in Ghana.
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Background

Malaria transmission is highly heterogeneous in endemic

areas, with a small fraction of the population suffering a

disproportionately large fraction of infections and clin-

ical disease [1]. Recognition of the fact that a sub-group

of individuals suffer more malaria attacks than one

would expect is crucial to targeting malaria control ef-

forts for maximum impact [2], and is also necessary for

correct statistical inference [3,4]. However, the propor-

tion of individuals in cohort studies who experience a

count of zero malaria episodes is often larger than would

be expected on the basis of a Poisson or negative bino-

mial distribution, and may form a distinct sub-group,

but this is less frequently considered. Zero-inflated

versions of Poisson and negative binomial regression

models can be used to address such situations [5], and

have been used to analyse data on HIV prevention [6],

sexual health [7] and cholera [8]. Use of zero-inflated

methods in the study of malaria has focused mainly on

spatial applications [9-11] or time series analysis [12,13]

but these approaches have not been used widely to ana-

lyse prospective data from cohort studies.

Zero-inflated regression models are two-part models,

comprising binary and count components [5], which

* Correspondence: matthew.cairns@lshtm.ac.uk
1MRC Tropical Epidemiology Group, London School of Hygiene & Tropical

Medicine, London, UK

Full list of author information is available at the end of the article

© 2013 Cairns et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

Cairns et al. Malaria Journal 2013, 12:355

http://www.malariajournal.com/content/12/1/355

mailto:matthew.cairns@lshtm.ac.uk
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


explicitly model the two separate processes that may

give rise to a child experiencing a count of zero malaria

episodes. In the case of malaria, a child who is exposed

to bites from infectious mosquitoes may not experience

malaria during a particular study, because, by chance, s/he

happens not to become infected or does not become un-

well during the time observed. These ‘sampling’ zeroes are

estimated by the count section of the model. Alternatively,

a child may not experience malaria because they are never

exposed to infection so cannot become unwell. These ‘cer-

tain’ zeros, estimated by the binary component of the

model, are responsible for the excessive number of zero

counts observed. Zero-inflated models allow these two

distinct processes to be disentangled, and the fraction of

the population not at risk to be estimated.

Understanding whether part of the population would

remain malaria-free regardless of protective measures may

be particularly important for studies of preventive inter-

ventions, such as a vaccine, when absence of an episode

may be considered a success [14]. Failure to account for

an unexposed fraction can lead to biased estimates of

intervention effects. For interventions that may partially

protect some individuals and completely protect others,

differentiating partial and complete protection may be of

particular interest [15-17]. This is possible within the

zero-inflated model framework by including covariates in

the count or binary sections of the model, respectively.

Understanding what factors are associated with remaining

malaria-free, particularly in areas of apparently high trans-

mission, may be important in understanding where mal-

aria control efforts should, and should not, be focused.

To explore these issues, data from two cohorts of

Ghanaian children followed from early in infancy until

two years of age were re-analysed.

Methods

Data

This study used data from a cluster-randomized trial of

intermittent preventive treatment (IPTi) undertaken in

2,485 infants followed until two years of age in Navrongo,

Ghana (described in detail in [18] and Additional file 1).

Malaria transmission in Navrongo is intense and highly

seasonal [19]. Data from a birth cohort in Kintampo,

Ghana [20], an area of year-round high transmission [21],

were used, restricting the study cohort to children followed

up beyond 18 months of age (n = 733). In both studies,

clinical malaria was defined as a history of fever within

48 hours (or a recorded temperature ≥37.5°C) plus para-

sitologically confirmed malaria infection. For this analysis,

only passively detected clinical episodes were included. To

avoid counting the same episode twice, malaria attacks oc-

curring within seven days of a previous episode were

discounted. To avoid making any additional assumption

about the duration of post-treatment prophylaxis from the

anti-malarials used for treatment, person-time at risk was

not adjusted after treatment for a malaria episode.

Statistical methods

All analyses were undertaken in Stata 12 (StataCorp, TX,

USA). The count of malaria episodes per child was

described first. The Kaplan-Meier method was used to

estimate the proportion of children free of malaria;

levelling-off of the survival curve was used as a graphical

means to assess whether follow-up was sufficient to es-

tablish that children who remained malaria-free were

unexposed. Several formal tests of sufficiency of follow-

up have been proposed, e g, Maller and Zhou [22] and

Shen [23]. The Maller and Zhou test was used to assess

formal evidence of an unexposed fraction in the cohorts

(Additional file 2).

Four types of model were then fitted to the data:

Poisson, negative binomial (NB), zero-inflated Poisson

(ZIP) and zero-inflated negative binomial (ZINB). For

each model, a set of covariates were included on the basis

of having a plausible association with malaria incidence.

For the Navrongo trial, these were sex, intervention group

(placebo or IPTi), zone of residence (urban, reference;

rocky highland rural; lowland rural; irrigated rural, as

defined in [19]), and season of birth (late wet season (Sep-

Nov, reference); early dry season (Dec-Feb); late dry sea-

son (Mar-May); early wet season (June-Aug)). For the

Kintampo study, the covariates included were as defined

in [20]: sex, socio-economic group based on quintiles of

asset scores (least poor as reference), rural (vs urban) resi-

dence, distance of residence from a health centre (≥5 km

vs <5 km), thatched roof (vs non-thatched), sibling anti-

body titre (used as a proxy measure of exposure; based on

tertiles, with low as reference) and bed net use (based on

tertiles; low use as reference). Red blood cell polymor-

phisms were measured in a sub-group of children studied

in Kintampo (Additional file 3).

In each model, person-days at risk were included in

the model to account for varying exposure. Robust

standard errors were used to account for the cluster-

randomized design of the Navrongo trial data. The effect

of assuming an inverse Gaussian distribution instead of

a Gamma distribution for the heterogeneity was also ex-

plored (Additional file 4).

Model fitting

The fitted probability distribution from each model was

compared visually to the observed distribution of mal-

aria episodes in each cohort. For the Poisson model, the

deviance and Pearson goodness-of-fit tests were used to

assess the null hypothesis that data were Poisson. For

the NB model, a likelihood ratio test (LRT) that the

overdispersion parameter, α = 0 was used formally to as-

sess the evidence against the null hypothesis of a Poisson

Cairns et al. Malaria Journal 2013, 12:355 Page 2 of 10

http://www.malariajournal.com/content/12/1/355



distribution; for the Navrongo data, this was not possible

due to the use of robust standard errors, so the point es-

timate of α and its confidence interval were inspected.

ZIP and ZINB models were then fitted, including the

same set of covariates in the count component of the

model as for the Poisson and NB models. The logit com-

ponent of the zero-inflated models estimates the odds of

not experiencing any malaria episodes, i e, remaining

malaria-free. For simplicity, only covariates that could

plausibly influence whether a child never experienced

malaria by two years of age were included in the logit

component (for Navrongo, intervention group and zone

of residence; for Kintampo, socio-economic group, rural

residence, thatched roof, sibling antibody titre category

and bed net use).

The Akaike information criterion (AIC) was used to

compare all models. For the Kintampo data, the Vuong

test was also used to assess evidence for the superiority

of the zero-inflated model over its non-zero-inflated

equivalent (i e, ZIP vs Poisson, ZINB vs NB), and a like-

lihood ratio test was used to compare the ZINB and ZIP

models [5]. Having identified the most suitable model to

analyse the data, the importance of the different risk fac-

tors for malaria in the two datasets were then evaluated.

Results

Malaria incidence

In Navrongo, there were 3,650 malaria episodes in 4,358.2

child-years of follow-up, an incidence rate of 837.5 per

1,000 child-years (Table 1). The mean number of malaria

episodes was 1.47, (range 0 to 11, variance 2.18); 31.6% of

children did not experience an episode of malaria during

the period of observation, whereas 22.2% experienced

three or more episodes. Of children in urban areas, 55.2%

remained malaria-free, compared to 27.0% of children in

rural areas (Figure 1). Only 9.56% of the total burden of

malaria episodes was borne by urban residents (16% of the

population).

In Kintampo, 1,286 episodes occurred in 1,365.8 child-

years at risk, a rate of 941.6 per 1,000 child-years (Table 1).

The mean number of malaria episodes was 1.75 per child

(range 0 to 10, variance 4.03); 38.2% of children never ex-

perienced clinical malaria (66.1% in urban areas, 28.7% in

rural areas), while 28.8% had three or more attacks. Only

9.8% of all malaria episodes occurred among urban resi-

dents (25.4% of the population).

Analysis of time to first event using the Kaplan-Meier

method indicated that a sub-group of children was ap-

parently at no risk of malaria in both study sites; this

sub-group was much larger in urban areas (Figure 2).

The levelling off of the survival curves was not due to

changes in transmission in the study areas over time, as

indicated by the continued high incidence overall in the

second year of life (see Additional file 1). The Maller

and Zhou non-parametric test provided strong evidence

against the null hypothesis that the whole population is

susceptible (i e, there was evidence of an unexposed

fraction, see Additional file 2). However, the second part

of the test (which assesses whether there is sufficient

follow-up time to reliably establish the existence of an

unexposed sub-group) was usually indeterminate, except

for urban residents in Navrongo, where there was evi-

dence of sufficient follow-up (Additional file 2).

Comparison of different regression models

In both cohorts, the Poisson and negative binomial

models tended to underestimate the number of children

with zero malaria attacks, and overestimate the number

with one malaria attack (Figures 3 and 4). This was most

marked in the Kintampo data. The ZIP model estimated

the proportion of zero counts better, but tended to under-

estimate the proportion of children with a single malaria

attack, and overestimate the number with two attacks.

The ZINB model provided the closest fit to the data in

both cohorts.

For the Navrongo data, there was strong evidence

against the null hypothesis that the data was Poisson

(both deviance and Pearson goodness-of-fit P < 0.0001),

with overdispersion parameter, α = 0.25 (95% CI: 0.19,

0.34). The ZINB model had the lowest value of the AIC

(Table 2), with the next lowest being the NB model (dif-

ference in AIC 22.8), providing very strong grounds for

preferring the ZINB model [24]. Accounting for excess

zeroes was particularly important among urban residents,

where 33.5% of children were estimated to be at zero risk,

compared to 2.97% of rural residents (7.96% overall).

For the Kintampo data, there was strong evidence

against the null hypothesis that the data was Poisson

(both deviance and Pearson goodness-of-fit P < 0.0001),

with α = 0.43 (95% CI: 0.32, 0.57), LRT p < 0.001. The

ZINB model provided the best fit to the data, with the

smallest AIC (Table 2). The NB model provided the next

Table 1 Malaria incidence in the Navrongo and Kintampo

infant cohorts

Navrongo Kintampo

Number in cohort 2,485 733

Person-years at risk 4,358.2 1,365.8

Number of malaria episodes 3,650 1,286

Malaria incidence rate 837.5 941.6

(per 1,000 person-years at risk)

Number of malaria episodes per child 1.47, 1, (0, 11) 1.75, 1, (0, 10)

Mean, Median, (Range)

Variance in number of malaria episodes 2.18 4.03

Children were followed from two months of age until 24 months in Navrongo,

and from birth until 24 months of age in Kintampo.

Cairns et al. Malaria Journal 2013, 12:355 Page 3 of 10

http://www.malariajournal.com/content/12/1/355



best fit (difference in AIC 8.5), again providing strong

grounds for preferring the ZINB model [24]. Of urban

residents, 46.6% were estimated to be at no risk, com-

pared to 12.8% of rural residents (21.1% overall). The

Vuong test, comparing the ZINB and NB models, indi-

cated that the ZINB model gave a superior fit to the NB

model, p = 0.0017, and the LRT comparing ZINB and

ZIP indicated the ZINB model to be superior, p < 0.0001.

The ZINB model was therefore used for subsequent

stages of the analysis of both datasets.

Interpretation of ZINB regression model output

Navrongo

IPTi reduced malaria incidence (IRR 0.87 (95% CI: 0.78,

0.97); p = 0.01), but was not associated with odds of

never experiencing malaria, although the CI for the OR

was wide (OR 1.16 (0.46, 2.89); p = 0.755) (Table 3).

Residence in the lowland or irrigated rural areas was

associated with an increased incidence of malaria com-

pared to the urban area (IRR 1.27 (1.08, 1.51), p = 0.005

and 1.27 (1.05, 1.54), p = 0.016, respectively). A similar

point estimate was obtained for residence in the rocky

highland rural area, although the CI overlapped unity

(IRR 1.22 (0.95, 1.58), p = 0.123). Residence in the low-

land rural and irrigated rural area also reduced the odds

of never experiencing malaria by 24 months of age (OR

0.04 (0, 0.97), p = 0.048 and 0.08 (0.01, 0.85), p = 0.036,

respectively). Malaria incidence was similar by season of

birth, except for children born late in the dry season

(Mar-May), who experienced a lower incidence of mal-

aria (IRR 0.86 (0.77, 0.97), p = 0.015, compared to chil-

dren born in the late wet season. Gender was not

strongly associated with either incidence rate of malaria

or the odds of remaining free of malaria.

Figure 1 Number of malaria attacks experienced by 24 months of age. The figures show the number of malaria attacks experienced by

24 months of age in A) Navrongo and B) Kintampo, for all residents, and by area of residence (urban or rural).
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Kintampo

Rural residence was strongly associated with an in-

creased incidence rate of malaria (IRR 1.58 (1.18, 2.13),

p = 0.002) and also with reduced odds of never experien-

cing malaria by 24 months of age (OR 0.23 (0.1, 0.55),

p = 0.001, Table 4). Socio-economic status influenced the

rate of malaria attacks, with strong evidence that the three

lowest quintiles all experienced higher malaria incidence.

Fitting SES as a linear trend suggested an increase in inci-

dence for each unit decrease in SES group (IRR 1.08 (1.01,

1.15), p = 0.02), and a reduced odds of never experiencing

malaria (OR 0.59 (0.42, 0.85), p = 0.004). Other factors

including sex, distance from health centre, roof construc-

tion, sibling antibody response category and bed net usage

were not associated with malaria incidence rate, nor with

odds of not experiencing malaria.

Discussion

Including a zero-inflation component improved the fit of

negative binomial models and allowed more meaningful

interpretation of the association of malaria with different

risk factors. ZINB models have not been used widely in

malaria cohort studies, despite the fact that their formu-

lation allows for two well-accepted aspects of malaria

Figure 2 Time to first malaria episode according to place of residence. Figures show Kaplan-Meier estimate of time to first malaria episode

in urban and rural areas for A) Navrongo and B) Kintampo cohorts. Tables show number of children remaining at risk at 6-month intervals. For

clarity of presentation, the three rural areas in Navrongo (rocky highland, lowland rural, irrigated rural) were combined. Malaria incidence rates on

the same time scale are shown in the Additional files.
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Figure 3 Poisson, negative binomial, ZIP and ZINB model fits to data - Navrongo.

Figure 4 Poisson, negative binomial and ZINB model fits to data – Kintampo.
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epidemiology: overdispersion (a greater degree of vari-

ability between individuals than would be expected on

the basis of a given statistical model) and zero-inflation

(a larger number of children remaining free of malaria

than would be expected if all children are genuinely at

risk). However, given that these models can be fitted eas-

ily in standard statistical packages, this approach could

be used more widely to disentangle the different ways

that risk factors influence a child’s chances of developing

malaria.

In both of the study cohorts, residence in a rural area

was a clear risk factor for higher malaria incidence rates,

consistent with other studies [25,26]. Urban residents

were at substantially higher odds of never experiencing

malaria. The relatively large fraction of children who did

not experience malaria in both cohorts suggests that a

considerable proportion of children, predominantly urban

residents, are at no malaria risk, despite the fact that these

studies took place in areas of Ghana with very high mal-

aria transmission [19,21]. This adds to a growing body of

evidence that malaria can be focal in areas of high trans-

mission [26] in addition to areas of lower endemicity

[2,27]. In Kintampo, higher socio-economic status was

associated with lower incidence rates, and there was evi-

dence of decreasing odds of remaining malaria-free with

lower SES when this was fitted as a single linear term.

Given the well-known links between urban/rural resi-

dence and relative wealth, it is likely that these two factors

are inter-related.

IPTi reduces the incidence rate of malaria. There was

no evidence from these analyses that some children were

completely protected, and although the CI was wide, this

fits with the rationale of IPTi as periodic chemopreven-

tion that allows infection (and development of immun-

ity) between courses [28]. Identification and separation

of the influence of factors that provide partial and

complete protection is of major interest for the analysis

of the results of malaria vaccine trials, since this could

help understand the mechanism by which a particular

vaccine provides protection [4].

Table 2 Log-likelihoods and Information criteria for the

regression models

Log-likelihood
(null)

Log-likelihood
(model)

Model
degrees of
freedom

AIC

Navrongo

Poisson −4072.6 −3982.8 9 7983.6

Negative
binomial (NB)

−3983.3 −3918.1 10 7856.2

Zero-inflated
poisson (ZIP)

−3934.0 −3917.9 14 7863.8

Zero-inflated
negative
binomial (ZINB)

−3916.8 −3901.7 15 7833.3

Kintampo

Poisson −1432.2 −1291.7 13 2609.3

Negative
binomial (NB)

−1284.0 −1213.2 14 2454.3

Zero-inflated
poisson (ZIP)

−1238.7 −1212.3 24 2472.6

Zero-inflated
negative
binomial (ZINB)

−1215.8 −1197.5 25 2444.9

AIC = Akaike information criterion.

Table 3 Zero-inflated negative binomial regression output for the Navrongo cohort

Negative binomial component Logistic component

Incidence rate ratios (IRR) Odds ratio (OR) for not having malaria

IRR (95% CI) P OR (95% CI) p

IPTi 0.87 (0.78, 0.97) 0.01 IPTi 1.16 (0.46, 2.89) 0.755

Zone of residence Zone of residence

urban - urban -

rocky highland 1.22 (0.95, 1.58) 0.123 rocky highland 0.22 (0.02, 2.85) 0.247

lowland rural 1.27 (1.08, 1.51) 0.005 lowland rural 0.04 (0, 0.97) 0.048

irrigated rural 1.27 (1.05, 1.54) 0.016 irrigated rural 0.08 (0.01, 0.85) 0.036

Season of birth -

late wet -

early dry 0.99 (0.88, 1.10) 0.8

late dry 0.86 (0.77, 0.97) 0.015

early wet 0.94 (0.84, 1.06) 0.305

Sex (female vs male) 0.96 (0.90, 1.04) 0.335 -

Table shows output from the zero-inflated negative binomial regression model. Incidence rate ratios are from the count component and odds ratios are from the

logistic component.

CI = confidence interval; IPTi = intermittent preventive treatment in infants.
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The lower incidence of malaria among children born

late in the dry season in Navrongo could be due to pro-

tection from maternal immunity and foetal haemoglobin

which lasts until around six months of age [29,30], a

similar length of time as the rainy season. This effect

would balance over the course of childhood, but not

during the course of a cohort followed up to a fixed age.

This idea is supported by the finding that month and

season of birth were not associated with malaria inci-

dence in Kintampo, where malaria transmission is per-

ennial (data not shown).

An analogous, analytical approach to zero-inflated

models is the use of cure or mixture survival analysis

models [22], which also assume that a proportion of the

population is not susceptible to the outcome of interest.

Halloran et al. developed frailty mixing models, limited

to survival analysis of first episodes [16]. This was ex-

tended recently by Xu et al. to multiple episodes [31].

These approaches have the potential advantage over

zero-inflated models that they can allow for event de-

pendence and variation in the hazard with time. In the

study of Xu et al., which also used the Navrongo data,

IPTi was found to provide complete protection to some

children, as well as the partial protection seen in this

study. It may be that the information provided by timing

of events gives greater power to identify factors enabling

complete protection.

The Akaike information criterion (AIC) is used as a

guide to comparing models. The large differences in AIC

to the next best fitting model (the negative binomial) pro-

vide very strong grounds for preferring the ZINB model

[24]. The advantages of the zero-inflated model were

retained when heterogeneity between individuals was

modelled as inverse-Gaussian rather than a gamma distri-

bution, suggesting that the excess zeroes cannot be

accounted for by simply assuming a different distribution

of heterogeneity between individuals (Additional file 4).

Conclusion

Zero-inflated models can help understand the mechan-

ism by which different risk factors influence malaria, ei-

ther by preventing or allowing exposure, influencing the

level of exposure, or both. The protective effect of urban

residence on malaria incidence was partly due to de-

creasing incidence rates in children who were exposed,

and partly because living in an urban area prevents some

children from being exposed at all. This finding is an

elaboration of what would have been found using only a

Table 4 Zero-inflated negative binomial regression output for the Kintampo data

Negative binomial component Logistic component

Incidence rate ratios (IRR) Odds ratio (OR) for not having malaria

IRR (95% CI) p OR (95% CI) p

Rural residence 1.64 (1.21, 2.20) 0.001 Rural residence 0.25 (0.10, 0.58) 0.001

Sex (female vs. male) 0.92 (0.79, 1.07) 0.259 -

Distance fromhealth centre

(≥5 km vs. < 5 km) 0.92 (0.78, 1.08) 0.321 -

Thatched roof 1.11 (0.93, 1.32) 0.25 Thatched roof 1.27 (0.51, 3.16) 0.612

SES SES

Least poor - Least poor -

Less poor 1.51 (1.01, 2.24) 0.044 Less poor 0.59 (0.23, 1.53) 0.276

Poor 1.71 (1.18, 2.49) 0.005 Poor 0.38 (0.14, 1.05) 0.063

More poor 1.68 (1.15, 2.46) 0.008 More poor 0.34 (0.11, 1.05) 0.062

Most poor 1.65 (1.14, 2.41) 0.009 Most poor 0.07 (0, 1.67) 0.101

Sibling antibody response category Sibling antibody response category

Low Low

Medium 1.03 (0.84, 1.26) 0.77 Medium 1.28 (0.57, 2.87) 0.549

High 1.13 (0.92, 1.38) 0.241 High 1.02 (0.43, 2.44) 0.964

Bed net use Bed net use

Low Low

Medium 1.07 (0.87, 1.32) 0.526 Medium 0.86 (0.37, 1.98) 0.723

High 1.17 (0.95, 1.45) 0.138 High 0.54 (0.19, 1.52) 0.244

Table shows output from the zero-inflated negative binomial regression model. Incidence rate ratios are from the count component and odds ratios are from the

logistic component.

CI = confidence interval; SES = socio-economic status.
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negative binomial regression model, i e, that urban resi-

dence decreases malaria incidence. Other studies to inves-

tigate malaria incidence, or other diseases with similar

biology, could employ these models to better understand

how risk factors affect clinical outcomes. Given the known

features of malaria epidemiology, the use of zero-inflated

models should be considered more widely than they are at

present.

These findings are consistent with existing knowledge

and emphasize the importance of targeted malaria con-

trol. Delivery strategies that reach only easily accessed

urban populations will have less impact than if targeted

successfully at rural areas. Furthermore, these results

show that protecting some urban residents may have no

impact at all on the overall malaria burden, because

some urban residents are essentially at no risk even if

not protected. These results therefore have implications

for malaria burden estimates, and underline the import-

ance of delivery strategies that reach the most disadvan-

taged, and achieve high coverage in rural areas.
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Additional details of the cohort studies analysed in the manuscripts, and
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