
Analysis of Pathogenic Pseudoexons
Reveals Novel Mechanisms Driving
Cryptic Splicing
Niall P. Keegan1,2*, Steve D. Wilton1,2 and Sue Fletcher1,2

1Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia,
2Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University
of Western Australia, Perth, WA, Australia

Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic
diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the
known types of splicing mutations, perhaps the rarest and most difficult to predict are
those that activate pseudoexons, sometimes also called cryptic exons. Unlike other
splicing mutations that either destroy or redirect existing splice events, pseudoexon
mutations appear to create entirely new exons within introns. Since exon definition in
vertebrates requires coordinated arrangements of numerous RNA motifs, one might
expect that pseudoexons would only arise when rearrangements of intronic DNA
create novel exons by chance. Surprisingly, although such mutations do occur, a far
more common cause of pseudoexons is deep-intronic single nucleotide variants, raising
the question of why these latent exon-like tracts near the mutation sites have not already
been purged from the genome by the evolutionary advantage of more efficient splicing.
Possible answers may lie in deep intronic splicing processes such as recursive splicing or
poison exon splicing. Because these processes utilize intronic motifs that benignly engage
with the spliceosome, the regions involved may be more susceptible to exonization than
other intronic regions would be. We speculated that a comprehensive study of reported
pseudoexons might detect alignments with known deep intronic splice sites and could
also permit the characterisation of novel pseudoexon categories. In this report, we present
and analyse a catalogue of over 400 published pseudoexon splice events. In addition to
confirming prior observations of themost common pseudoexonmutation types, the size of
this catalogue also enabled us to suggest new categories for some of the rarer types of
pseudoexon mutation. By comparing our catalogue against published datasets of non-
canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing
activity at one or both of their splice sites in non-mutant cells. Importantly, this included
seven examples of experimentally confirmed recursive splice sites, confirming for the first
time a long-suspected link between these two splicing phenomena. These findings have
the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-
modulating therapies.
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1 INTRODUCTION

According to the current release of Ensembl (104.38), the 3.1
gigabases of the human genome are estimated to contain over
44,000 genes, just over 20,000 of which encode proteins (Howe
et al., 2021). Based on statistics provided by Piovesan et al. (2019),
protein-coding genes account for 41% of the total human
genome, although exons, the transcribed segments that are
retained in the mature mRNA, comprise only 4.65% of this
fraction, or 1.91% of the total genome.

During and after transcription pre-mRNAs undergo splicing,
a process whereby introns are excised from the pre-mRNA
molecule and the ends of the flanking exons are ligated
together by a multi-molecular assembly called the spliceosome.
This splicing process needs to be both consistent and accurate,
since an error of even a single nucleotide could render an entire
transcript functionless or cause it to encode a toxic product.
However, this does not mean that splicing must be perfect.
Occasional splicing errors are inevitable even in healthy cells
(Alexieva et al., 2021), and these aberrant transcripts are generally
well-managed by error-detecting systems such as nonsense-
mediated decay (NMD) (Hug et al., 2016)—but never without
some energy cost to the cell.

There is, therefore, an ancient and relentless evolutionary
pressure on all eukaryotes to splice pre-mRNAs as efficiently
as possible. This raises the question of why evolution allows
introns to persist in the first place. Much effort has been devoted
to investigating this question, and there appears to be no single
answer (Chorev and Carmel, 2012; Jo and Choi, 2015). Stated
briefly, introns contain numerous regulatory elements that enable
alternative splicing and fine control of gene expression, and the
presence of these elements may have indirectly modulated the
efficiency of natural selection for eukaryotic life on Earth. Recent
research also reveals a regulatory role for conserved exon-like
sequence elements within some introns, such as poison exons,
decoy exons and recursive splice sites (Conboy, 2021). However,
this does not imply that every nucleotide of every intron is of
equal importance as a nucleotide of coding sequence. Pathogenic
mutations are discovered within known coding regions at a rate of
at least 25% (Sawyer et al., 2016), much higher than the exonic
proportion of genes (4.65%), indicating that mutations in introns
are generally better tolerated.

Pathogenic mutations within introns are frequently found to
affect splicing. Splicing mutations account for about 9% of all
identified pathogenic mutations, though this figure also includes
exonic mutations with splicing impact (Stenson et al., 2017). Most
pathogenic splicing mutations weaken the definition of conserved
branch point, acceptor site or donor site motifs of canonical
exons, resulting in skipping of whole or partial exons, or inclusion
of partial or whole introns (Abramowicz and Gos 2018). In some
cases, however, a mutation will cause part of an intron to be
erroneously spliced into mature transcripts as if it were an exon.
These inclusions, when they occur, are called pseudoexons (PEs)
or cryptic exons.

Mutations that cause pathogenic PEs in germline cells could
accurately be described as ‘rare but ubiquitous.’ They are rare in
that they appear to account for very few unique splicing events,

yet they are also ubiquitous in the sense that they can potentially
arise in any gene with at least one intron, and do not exhibit any
noticeable bias towards particular genes or cell types.
Consequently, any new insights into how and why pathogenic
PEs arise may have implications for numerous genetic diseases.

Surprisingly, there have been very few focused studies on the
general characteristics of pseudoexons. Královičová and
Vořechovský (2007) examined the exonic splice enhancer and
silencer (ESE and ESS) content of pathogenic PEs and found that
they were intermediate between introns and canonical exons. A
2010 study by Vořechovský investigated the correlation of PEs
with transposable elements and found that MIRs (Mammalian-
wide interspersed repeats) and antisense Alu elements were
statistically overrepresented in pseudoexon sequences, which
they attributed to exon-like characteristics that these elements
naturally possess. Dhir and Buratti (2010) directly examined the
mutations that activate PEs and proposed that they could be
divided into five distinct categories: splice site or branch point
creation, ESE gain or ESS loss, internal deletion, intragenic
inversion, and loss of a flanking canonical splice site.
Subsequent observations by Romano et al. (2013) of PEs in
cancer-associated genes implicitly supported Dhir and Buratti’s
categories, although Romano et al., additionally noted the
possibility of PEs arising through other, as-yet uncharacterised
mechanisms. More recently, Vaz-Drago et al. (2017) collated
additional examples of PEs fitting Dhir and Buratti’s first two
categories and observed a distribution of PE sizes similar to that
of internal canonical exons. Lastly, our own review of
pseudoexons in the DMD gene (Keegan 2020) examined the
coincidence of PEs with reported recursive splicing, and
suggested mutation-driven exonization of recursive splice sites
as an explanatory mechanism for some PEs.

Although this handful of reviews provided many useful
insights into the mechanisms of PE pathogenesis, all of them
(including our own) were limited by their small sample sizes. For
the older reviews in particular, this impediment was largely
attributable to the scarcity of pseudoexon reports available at
the time they were written, although a lack of clarity in how some
primary reports presented their pseudoexon data may also have
contributed. In recent years, the rate of reports of new
pseudoexons has continued to accelerate as new technologies
make RNA analysis faster, cheaper and more accurate. Therefore,
it is timely to undertake a new and comprehensive analysis of
pseudoexons and their instigating mutations.

In this report, we present a catalogue of 413 germline
pseudoexon variants, which were as many as we could find
through a thorough search of the literature. To our
knowledge, this is the first time a PE dataset of this size has
been assembled. Our analysis of this data discovered that 15.7% of
PEs exhibit splicing activity at one or both of their splice sites in
non-mutant cells, suggesting that many reported PEs might be
more accurately reclassified as mutant variants of intronic splice
regulating elements within introns, such as poison exons or decoy
exons. Importantly, these shared intronic splice sites include
seven empirically-verified recursive splice sites, confirming for
the first time a long-suspected link between these two splicing
phenomena.
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Additionally, while our examination of the mutations that
cause PEs largely supported the observations of Dhir and Buratti
(2010), the expanded sample size of our catalogue allowed us to
suggest refinements and additions to their original five categories.

2 MATERIALS AND METHODS

Although PEs have been observed in a highly diverse range of
genes and cell types, they remain a relatively rare splicing
phenomenon, and it was therefore unavoidable that any
analysis of their characteristics would require some degree of
compromise between specificity and sample size. In this section
we will outline the criteria we adopted for determining what data
to include in our analyses, what data to exclude, and why.

2.1 Working Definition of “Pseudoexon”
Our intention for this report was not to analyse all forms of
cryptic splicing, but specifically those instances where splicing of
non-canonical exons in a gene increased as the result of
pathogenic mutations in that gene.

In a previous report on DMD gene PEs (Keegan, 2020) we
suggested the following definition for PEs:

“[A pseudoexon is] any continuous tract of a transcribed
gene that: 1) does not overlap, adjoin or duplicate any
sense-strand sequence of that gene’s canonical exons; 2)
bears an acceptor splice site motif at its 5′ end and a
donor splice site motif at its 3′ end; and, 3) via both these
motifs, is spliced into a measurable proportion of the
mature transcripts of that gene in at least one proband.”

We adopted a streamlined version of that definition for this
report:

A germline pseudoexon is any continuous tract of a
transcribed gene that: 1) does not overlap, adjoin, or
duplicate any sense-strand sequence of a canonical exon;
and 2) is spliced into mature transcripts of that gene in
non-cancer cells of at least one proband 3) partly or
wholly due to mutation in that gene.

This modified definition allowed for the inclusion of PEs
spliced via non-canonical motifs and PEs spliced in first-exon
or last-exon orientations. It also enforces the exclusion of
canonical exons introduced into other genes via gene fusions,
which could technically have been classed as PEs under the
previous phrasing.

2.1.1 Exclusion of Cancer Pseudoexons
While many reports have detailed the correlation of PEs and
various forms of cancer, we chose to limit our analysis to only
those PEs that arose from germline mutations. This was because
cancer cells often exhibit idiosyncratic changes in splice factor
expression, and a general relaxation of splicing stringency, in
comparison to non-cancer cells (Zhang et al., 2021). As such, we
judged it would not be valid to make like-for-like comparisons

between PEs in cancers and those in germline cells. However, we
did include PEs arising from germline mutations in cancer-
associated genes, such as NF1 and ATM, as in these cases
carcinogenesis appeared to be a result of PE inclusion rather
than the cause of it.

2.1.2 Exclusion of Pseudoexons in Non-Humans
Although PEs have been observed in other animal species (e.g.,
Smith et al., 2007; Gómez-Grau et al., 2017), such observations
are even rarer than they are in humans, a disparity that probably
stems from the lower level of interest in mutation analysis in non-
human species. We determined that the inclusion of PEs from
non-human species would only offer a modest increase to our
study’s sample size at the cost of greatly generalising its
conclusions, and therefore limited its scope to human PEs only.

2.1.3 Inclusion of Pseudoexons Identified via
Transfected Minigene/Midigene Constructs
Wherever possible, it is ideal for investigations of splicing
mutations to use RNA from patient cells that natively express
the gene of interest. Unfortunately, this is not a practical option
for many genes. For example, the Stargardt disease geneABCA4 is
primarily expressed in kidney and retinal cells, and it is rare that a
biopsy of either of these internal tissues can be justified. Instead,
many researchers utilise HEK293T cells (immortalized human
embryonic kidney cells), which they transform with minigene
constructs of the ABCA4 region of interest to model the effects of
the mutation. In other cases, transformed COS cells
(immortalised simian kidney fibroblast-like cells) or
transformed HeLa cells (immortalised cervical cancer cell line)
are used for similar purposes.

We elected to include in our dataset most of the PEs identified
via minigene constructs, provided that the minigene constructs
contained, at minimum, the entire intron surrounding the PE and
both the flanking canonical exons. This minimised the chance of
including a PE produced by construct-specific changes to its
proximal sequence elements instead of the patient’s mutation. For
the same reason, we also decided that if the effects of a splicing
mutation were observed in both modified and unmodified cells,
only the observations from the unmodified cells would be
considered.

2.1.4 Inclusion of ‘Terminal-Pseudoexons’
Virtually all of the reports surveyed in this analysis described
internal PEs, i.e., PEs that were spliced into a gene transcript
somewhere between its canonical first and last exons. However,
there were some reports that appeared to detail “terminal-
pseudoexons” (tPEs) arising from mutations that caused non-
canonical sequence inclusions at the 3′ ends of largely canonical
transcripts. We determined that these putative tPEs would only
be classed as such, and included in our catalogue, if they could
meet three criteria:

(1) They possessed a novel acceptor site.
(2) They did not overlap or adjoin any sense-oriented canonical

exon sequence.
(3) They possessed a functional polyadenylation site.
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This third criteria is perhaps the most important, as it
distinguishes “true” tPEs from more common events such as
incomplete splicing and/or partial intron inclusion, which
typically result in rapid nonsense-mediated decay of the
affected transcript. We therefore only included tPEs if the
supporting RNA analysis directly confirmed a de novo
polyadenylation site, either via 3′ RACE or through whole
transcript sequencing.

2.2 Quality and Method of RNA Sequencing
The primary sources collated in this report span nearly 40 years of
genetics research. As such, the RNA sequencing methods used by
these sources run the full gamut of technologies, from S1 nuclease
mapping toNanopore.With few exceptions, wewere agnostic towards
the RNA sequencing technology used, provided that the PE sequence
and splice sites could be mapped to the genomic reference sequence
with a high degree of certainty. The level of detail provided in most
reports made this a straightforward process, especially for those that
had included Sanger sequence traces of the PE splice site junctions or
Varnomen-format descriptions matched to specific reference
sequences. In other cases, it was necessary to deduce PE sequences
from precise but indirect details, such as the stated length of the PE
relative to its instigating mutation.

In some reports, the stated boundaries of one or more PEs
appeared to be exceptions to the U2-type GY-AG splicing that
predominates in the dataset and did not fit the established motifs
of U12-type splice sites either (Turunen et al., 2013). Given the
rarity of such non-canonical exon boundaries in the human
transcriptome (Parada et al., 2014), we judged that it was
appropriate to exercise additional scrutiny, and we only
included non-canonically spliced PEs if their supporting
sequence data was unequivocal.

In cases where the published detail of a PE report was insufficient
to determine the PE sequence, we contacted the corresponding
authors with requests for further detail and have cited those that
graciously responded as “Pers Comms” where appropriate.

2.3 Quantity of Pseudoexon Inclusion in
Mature Transcripts
Our dataset does not incorporate quantitative data for the frequency
of inclusion of each PE. While it could be argued that this weakens
the analyses in some respects—since PEs with 10% inclusion are
treated identically to PEs with 100% inclusion—we reasoned that
avoiding quantitative analysis would be the “lesser of two evils.”
Collectively, this study’s source reports show enormous variation in
the genes studied, the types of cells used, and the methods of RNA
analysis, with many producing sequence data that was non-
quantitative or at best semi-quantitative. Accurate and objective
standardisation of these data would have been all but impossible and
risked generating misleading conclusions.

2.4 Search Criteria
Literature search was performed using Google Scholar and the
Murdoch University academic research portal FindIt. Individual
searches of the following terms were conducted through both
portals: “pseudoexon,” “pseudo exon,” “cryptic exon,” and “deep

intronic.”The first three of these terms comprise themost common
descriptors for PEs, while the fourth term served as a “safety net” to
return any publications of deep intronic splicing mutations that
may have reported on PEs using unexpected terminology.

In addition to scrutinising each paper for useful data, we also
performed searches within each paper for the key terms
mentioned above and investigated any references that were
cited against these mentions. This allowed us to discover
additional PE reports that, for various reasons, had escaped
capture by our direct searches.

Similarly, we are indebted to the authors of several previous
reviews of PEs, whose works led us to additional primary sources
that had eluded discovery through the above methods
(Královičová and Vořechovský, 2007; Dhir and Buratti 2010;
Vořechovský 2010; Romano et al., 2013; Vaz-Drago et al., 2017).
We have also incorporated data for DMD PEs that was originally
collated for a previous report (Keegan 2020).

2.5 Construction of Pseudoexon Catalogue
2.5.1 Transcribed Pseudoexon Features
The rarity of PEs, coupled with broad variability in how they were
reported, made it unfeasible to automate their annotation.
Therefore, all annotation of PE data was performed manually
by the authors. This approach was further justified post hoc by
discoveries of minor inconsistencies in numerous PE reports (e.g.,
stated splice sites or lengths that differed from those shown in the
published figures), errors that would have escaped detection by
any automated process and led to inclusion of inaccurate data.

For each PE, annotated data fields included the name of the
affected gene using current nomenclature, as listed on the Genecards
Human Gene Database (Stelzer et al., 2016); the sequence of the PE;
the sequences of the flanking exons to which it was spliced; the cell or
tissue type(s) in which its splicing was observed; the Varnomen
cDNA code for the instigating mutation(s) if present and known
(den Dunnen et al., 2016); additional notes if relevant; and citations
for the primary sources of the data.

While transcript reference sequences are included for the
encompassing gene of each PE, in many cases a specific refseq
ID was not explicitly declared in the source. The listed reference
sequences instead correspond to the lowest-numbered transcript
variant (usually TV1) that matched the splicing patterns observed
and have been included to allow the use of cDNA-type Varnomen
mutation codes, which are more human-readable than genomic
codes. Chromosomal coordinates and all other genomic features
refer to the most recent human genome assembly, GRCh38.p13.

2.5.2 Intron Numbering
Historically, unique identifiers have been employed when
referring to the introns of certain genes, such as NF1 and
CLRN. For consistency, we have ignored these in favour of
simple 1-to-n numbering for all transcript variants, but
caution the reader that this may create the appearance of
discrepancies when referring to some cited reports.

2.5.3 Assignment of Unique Pseudoexon IDs
Each pseudoexon was assigned a unique ID according to the name
of its gene, the number of the encompassing intron, and an
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alphanumeric identifier according to its similarity to other
pseudoexons in that intron. For example, two pseudoexons with
completely distinct sequence were reported in the 17th intron of
the ATM gene and were IDed as ATM-17-1 and ATM-17-2, while
the two PEs reported in ATM intron 27 were IDed as ATM-27-1a
and ATM-27-1b due to sharing an acceptor site.

2.5.4 Citations
While descriptions of most PEs were limited to a single report,
some were reported multiple times by different research groups
and to varying levels of detail. An extreme example of this is
CFTR-7-1, a prevalent disease allele for cystic fibrosis that has
been studied extensively. In the interest of clarity, we limited our
citations for each PE to its earliest known report, including later
reports only if they substantially added to the characterisation or
were already cited for unique observations of other PEs.

2.5.5 Derived Features
Maximum entropy (MaxEnt) splice site scores were calculated via the
Burge Laboratory’sMaxEntScanweb-tool (Yeo and Burge, 2004). Sizes
and distances were directly calculated using spreadsheet formulae.

3 PSEUDOEXON MUTATION
CHARACTERISTICS

3.1 Pseudoexon Splice Motif Mutations
3.1.1 Pseudoexon Donor Motif Mutations
Donor splice site mutations are the most frequently observed
cause of PE pathogenesis, comprising 210 of the 359 catalogued
distinct mutations. Of these 210, 202 are single nucleotide
variants (SNVs), and the frequency of mutation for each

nucleotide position relative to the donor site (Figure 1, right)
approximates the degree of nucleotide conservation observed for
that position in canonical sites (Ma et al., 2015). This may be a
logical consequence of how the spliceosome binds to candidate
donor sites: because the effect of nucleotide identity on
spliceosome binding varies greatly across the motif, changes at
the most essential positions will have the greatest effect and the
best chance of “breaking through” the silencing mechanisms that
would otherwise prevent detectable levels of splicing. This is
corroborated by our observation that no PE in our dataset was
instigated by an SNV at the donor site −3 position, despite this
nucleotide falling inside the donor site motif. Because the −3
position is not highly conserved, any change in this nucleotide is
unlikely to cause a noticeably pathogenic increase in PE inclusion.

However, we did note a single PE with a C>A SNV 7 nt 3′ of
the donor splice site (MMUT-11-1b). Although the donor site
motif is traditionally considered to end at the 6th 3′ nucleotide, a
comprehensive analysis of human splice sites (Ma et al., 2015)
reveals a substantial bias towards purines at the +7 position (59%
A/G). As this MMUT SNV is a pyrimidine-to-purine transition,
the simplest explanation of it is as a donor site mutation.

3.1.2 Pseudoexon Acceptor Motif Mutations
Acceptor splice-site mutations account for 53 of the catalogued
PE mutations, and all but one of those (DMD-30-1) were SNVs.
Despite the greater size of the acceptor motif compared to the
donor, pathogenic acceptor site SNVs were limited almost
entirely to positions −2 and −1, with only an additional eight
at −3 (Figure 1, left). As with the distribution of donor site
mutations, this appears to be a result of low conservation at
positions +1 to +3 and the low impact of individual nucleotides in
the −20 to −4 range, with pathogenic mutations in this latter

FIGURE 1 | Positional frequencies of 255 pseudoexon splice-motif SNVs. Stacked columns are categorised by the identity of the reference nucleotides, which in
249 of the 255 cases were mutated to the most frequently observed nucleotide at that position of the motifs, as shown on the X-axis. Exceptions (6) are categorised as
“Other.”
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region apparently impacting branch point definition more than
they did acceptor site definition. We also noted a single case of an
SNV at the PE acceptor +3 position, (ABRAXAS1-5-1) but chose
to analyse this as an internal mutation since its effect on the
acceptor splice score was negligible.

Our observations of position frequency in PE donor and
acceptor splice motif SNVs generally accorded with those of
Krawczak et al. (2007), who examined a much larger set of gain-
of-function splice mutations; and with those of Sakaguchi and
Suyama (2021), who examined a smaller dataset consisting
entirely of novel PEs. We also noted that the number of
transition SNVs—purine-to-purine or pyrimidine-to-
pyrimidine nucleotide changes—was approximately double
that of transversion mutations, at 165 and 92, respectively.
This accords with prior observations of how often each
mutation type is generally observed in the human genome
(Jiang and Zhao 2006).

3.2 Pseudoexon Internal Mutations
We catalogued 37 examples of PEs caused by sequence changes
between the PE splice site motifs. In five of these examples
(COL4A5-37-1, DMD-11-2, DMD-34-1, DMD-48-1 and
GNAS-AS1-4-1—see Supplementary Table S1) the mutation
was a >10 kb deletion that brought a latent acceptor-donor
motif pair into conjunction. In these cases, we assumed that
sheer distance between the splice sites was the chief silencing
element that had been lost and did not analyse these further. Of
the remaining 32 cases, there was one PE (GLA-4-1) caused by a
113 nt insertion, three PEs caused by 2–4 nt deletions, and 28 PEs
caused by SNVs (Supplementary Table S2).

The positions and predicted effects of the 31 unique mutations
showed much greater variability than the mutations affecting PE
splice motifs. Although we could not distinguish any obvious
patterns in their locations within the PEs, we noted that the
primary reports consistently described these mutations as gains of
ESE motifs and/or losses of ESS motifs within the PEs. Most of
these assessments were made via an assortment of RNA motif
analysis utilities, some of which are no longer available. We
therefore standardised our re-analysis to a single utility,
HExoSplice, which was designed specifically for analysing this
type of mutation (Ke et al., 2011; Tubeuf et al., 2020). Because
HExoSplice only calculates scores for SNVs, we derived scores for
the deletion and insertion mutations manually by subtracting the
total score for the wild-type exon from the total score of the
mutant. Impressively, HExoSplice correctly predicted the
directionality of 29 out of the 31 mutations with a net increase
in the score (ΔHx). There were no obvious similarities between
the two SNVs with negative ΔHx scores (ABCA4-30-1c and
DMD-32-1b). We suggest that in both these cases, the
mutations may have altered binding of splicing factors specific
to those genes or cells, as this kind of specific effect cannot be
accurately predicted by a generalised tool such as HExoSplice.

3.3 Pseudoexon Branch Point Mutations
Just 14 of the 359 PE mutations were ultimately classified as
altering pseudoexon branch point definition, and these mutations
showed considerable variation in their nature and location

relative to the PE acceptor site (Figure 2). Historically, branch
point mutations have been poorly understood and have proven
more challenging to predict than other splicing mutations
(Canson et al., 2020). Despite this variability we observed that
the mutations we had catalogued were remarkably consistent in
their effects on branch point characteristics (Table 1).

Branch point definition requires two elements: a functional
branch point site (the motif for which is weakly conserved in U2
introns) and a continuous AG-exclusion zone (AGEZ)
connecting the branch point to a downstream acceptor splice
site. In 12 out of the 14 cases shown here, the effect of the
mutation was to “close the circuit” between an acceptor site and a
branch point, through some combination of improving an in-
range branch site motif (as predicted by SVM-BPfinder with
“AGEZ only” selected—see Corvelo et al., 2010), increasing the
size of the AGEZ, or moving an existing branch point closer to an
AGEZ (Gooding et al., 2006).

Two exceptions to this rule were ABCA4-6-1 and CCN6-2-1,
both instigated by SNVs that modestly increased their acceptor
site scores (6.63 -> 7.12 and 3.12 -> 5.43, respectively) but did not
affect their AGEZ size or branch point scores. Although we could
defensibly have classified these as acceptor-motif mutations, we
noted that every other acceptor-motif mutation fell within three
nucleotides 5′ of the PE (Figure 1, left) and would therefore
directly affect binding of the U2AF35 spliceosome component
(Voith von Voithenberg et al., 2016). We reasoned that the
positioning of the ABCA4-6-1 and CCN6-2-1 mutations within
their respective polypyrimidine tracts suggested at least some
interaction with other spliceosome components. A third
mutation similar to these (c.639+861C>T) was reported in
GLA (Filoni et al., 2008), although the affected exon in this
case was subsequently classified as a canonical exon of
transcript variant NR_164783 (Supplementary Table S3). A
causative mechanism was not empirically confirmed for any of
these three mutations. However, a fourth mutation, similar in
type but opposite in effect, was reported by van der Wal et al.
(2017). This mutation (c.-32-13T >G) occurred 13 nt 5′ of exon 2
in the gene GAA and caused skipping of all or part of exon 2. In
this case, Van der Wal et al., were able to empirically demonstrate
that the splicing disruption arose from a loss of U2AF65 binding
at the mutation site.

The U2AF65 protein is a U2 spliceosome component that
binds pyrimidine tracts 5′ of exon acceptor sites, interacting with
the U2 snRNP to facilitate branch point recognition (Valcárcel
et al., 1996). It has multiple known pyrimidine-rich binding
motifs (Paz et al., 2014; Drewe-Boss et al., 2018). Since the
ABCA4-6-1 and CCN6-2-1 mutations are both SNVs that
create new thymine nucleotides, we theorised that the true
pathogenic effect of these mutations is creation or
enhancement of a U2AF65 binding site. Unfortunately, we
could not test this prediction as there is at present no in silico
tool for predicting U2AF65 binding that incorporates all known
motifs. We therefore added “new pyrimidine nucleotide” as a
crude predictor of U2AF65 binding.

We also noted that these three mutations are predicted by
Splice Aid 2 (Piva et al., 2012) to create new PTBP1 (hnRNP I)
binding sites. Although PTBP1 plays a complex role in splicing
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(Lou et al., 1999; Han et al., 2014) it is generally observed to
silence nearby exons. However, in some cases PTBP1 has been
shown to indirectly enhance 3′ exon inclusion by antagonising
splicing repressors (Paradis et al., 2007) or preventing erroneous
binding of U2AF65 (Sutandy et al., 2018), so we cannot rule out a
possible mechanistic role for PTBP1 in these three mutations.
There is clearly a need for an accurate and comprehensive in silico
tool that can predict the effects of all types of branch point
mutations, as they remain something of a blind spot in splice
mutation research.

3.4 Distal Mutations
All the pathogenic mutations discussed thus far have entailed
some form of direct improvement to the exon-like characteristics
of the PE, be it the splice sites, branch point or local enhancer/
silencer balance. However, we have also catalogued 35 cases of
PEs being instigated by intragenic mutations outside the span of

the PE’s branch point and donor site motif, sometimes multiple
canonical exons and tens of kilobases away. When viewed
individually, the aetiology of these PEs may appear baffling,
but examining them en masse reveals many important
common features.

3.4.1 Decreased Definition in Adjacent Canonical
Exons
In their 2010 report, Dhir and Buratti proposed that loss of a
canonical splice site “facing” a pseudoexon—i.e., a 5′ donor site or
a 3′ acceptor site–may be a general mechanism of pseudoexon
pathogenesis. Impressively, although their prediction was based
on just five supporting examples (BRCA2-20-1a, CFTR-3-1, IDS-
3-1a, IDS-3-1d andMMUT-11-1d) we found that it was generally
supported by the characteristics of 13 of the additional mutations
we collated (Supplementary Figure S1), albeit with refinements
to the original terms of their category.

FIGURE 2 | Relative locations of 14 mutations that instigate pseudoexons via enhancement or creation of branch point motifs.

TABLE 1 | Pseudoexon mutations that enhance pseudoexon branch point motifs.

Gene Intron # Mutation AGEZ Max BPS Pyr
SNV?

References

ABCA4 (NM_000350.3) 6 1 c.769-784C>T 17 0.22 Yes Sangermano et al. (2019)
CCN6 (NM_003880.4) 2 1 c.49-763G>T 24 −0.15 Yes Garcia-Segarra et al. (2012)
COL4A5 (NM_000495.5) 29 1 c.2395+1275C>G;

c.2395+1292G>T
13 -> 59 −1.28 -> −0.03 Yes Wang et al. (2021)

DMD (NM_004006.3) 26 2 c.3603+820G>T 16 -> 42 0.57 -> 1.00 Yes Waddell et al. (2021)
37 2 c.5325+1740_5325+1757del 17 −1.33 ->

−0.06 (MC)
— Bovolenta et al. (2008)

F8 (NM_000132.4) 13 2a c.2113+461_2113+473del 74 -> 61 0.83 (MC) — Jourdy et al. (2018)
18 2b c.5999-798G>A 8 -> 65 0.23 No Pezeshkpoor et al. (2013)

KRIT1 (NM_194456.1) 6 1 c.262+132_262+133del 9 -> 88 0.14 — Riant et al. (2014)
NF1 (NM_001042492.3) 8 3 c.889-941G>T 8 -> 21 −0.73 Yes Pros et al. (2008)
NF2 (NM_000268.4) 5 1 c.516+232G>A 15 -> 40 0.06 -> 3.37 No De Klein et al. (1998)
PAH (NM_000277.3) 11 1 c.1199+502A>T 34 −1.64 -> −0.16 Yes Jin et al. (2021)
PKHD1 (NM_138694.4) 56 1 c.8798-459C>A 46 −1.42 -> 1.95 No Chen et al. (2019)
PTS (NM_000317.3) 2 1b c.163+696del55 17 -> 28 −1.83 -> 1.01 (MC) — Meili et al. (2009)
RPGRIP1
(NM_020366.4)

12 1a c.1468-263G>C 10 -> 24 −0.56 Yes Jamshidi et al. (2019), Zou et al. (2021)

“AGEZ,” “MaxBPS,” and “Pyr SNV?” changes that are predicted to enhance branch point definition are in bold text. Caseswhere deletionmutationsmoved a branch point site closer to the
AGEZ/acceptor site are noted in the “Max BPS” column as “(MC).”
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The ten examples shown in Supplementary Figure S1A most
closely fit the terms of Dhir and Buratti’s original category, as all
entailed loss or weakening of a 5′ donor or 3′ acceptor site. This
includes one mutation that appeared to weaken a 3′ branch point
(GAA-1-1), thereby indirectly weakening definition of the
acceptor site, and one case (DGKE-5-1) where a mutation
created a cryptic upstream donor site but left the original
intact, indirectly weakening its definition via competitive
effects. In addition, we also observed three examples of
mutations that induced skipping of a whole exon
(Supplementary Figure S1B)—including an alternative
transcript variant caused by the same GAA-1-1 branch point
mutation shown in Supplementary Figure S1A—and three
examples of mutations that caused a net loss of enhancers
within a flanking canonical exon (Supplementary Figure
S1C), as indicated by their negative ΔHx scores. We were also
interested to note that in every case where a PE was spliced to an
alternative flanking splice site—whether through cryptic splice
site activation or whole exon skipping - the new site always had a
lower MaxEnt score than the unmutated original.

However, this pattern is further complicated by three cases of
PEs instigated by mutations in “next-but-one” neighbour exons
that were not directly spliced to the PE (Supplementary Figure
S1D). These cases may be a consequence of the exons near these
PEs having tightly linked splicing fates, e.g., a loss of definition in
MMUT exon 4 exerts a similar effect as a hypothetical loss of
definition in exon 5 would. An analogous example of this kind of
splicing effect can be seen in cases where a mutation within a
single canonical exon caused skipping of both that exon and
adjacent, unmutated exons (Fisher et al., 1993; Suzuki et al.,
2016). We also note that there is substantial evidence of exons in
many genes being consistently spliced out of transcription order
(Takahara et al., 2002; Attanasio et al., 2003; Kim et al., 2017) and
speculate that this, too, may contribute to the aetiology of some
highly distal pseudoexon mutations. In general, exon-like tracts
in late-spliced introns could be more vulnerable to the knock-on
effects of splicing changes elsewhere in the maturing transcript,
while those in early-spliced introns remain insulated by sheer
distance.

We also observed that one of the three mutations shown in
Supplementary Figure S1D (DMD-3-1a) was an intra-exon
mutation with a positive ΔHx score, indicating an increase in
the definition strength of that exon. Although this may represent
a valid counterexample to the prevailing trend of pathogenically
decreased exon definition, we tentatively dismissed it as another
of the inevitable minority of incorrect predictions made by the
HExoSplice algorithm and note that one of the two other such
examples we observed also occurred in the DMD gene (DMD-32-
1b—see Supplementary Table S2).

Considered in aggregate, these observations suggest the
common mechanism underlying these PEs is a comparative
weakening of definition in the successfully spliced
neighbouring exons; and vice versa, that the definition strength
of exons flanking an intron can be an important mechanism for
silencing latent PEs within. This hypothesis is supported by prior
observations of stronger splice motifs in exons flanking large
introns (Farlow et al., 2012), since larger introns could generally

be assumed to have a higher chance of containing at least one
latent PE. The infrequency with which these types of PEs arise,
compared to PEs generated by direct enhancement of their donor
or acceptor splice sites, may be a result of general selective
pressure against splice-competent elements within intron
tracts. We also speculate that pseudoexons of the kind seen in
Supplementary Figure S1C may be more common than
suspected and could account for the pathogenic nature of
some synonymous variants (Shi et al., 2019), perhaps having
escaped detection in prior experiments due to nonsense-mediated
decay (NMD) of the affected transcripts.

3.4.2 Novel Pseudoexon Mutation Categories
We observed 17 examples of PE mutations that bore no
resemblance to Dhir and Buratti’s five categories, some of
which bore sufficient similarities to each other to justify new
categories (Supplementary Figure S2).

Proximity to a Directly Mutated Pseudoexon in the Same
Intron
The first of these categories comprises four cases where PEs were
apparently instigated by the activation of a second PE in the same
intron (Supplementary Figure S2A). In all four cases the
mutation in the ‘primary’ PE created or enhanced a donor
site, and all occurred in introns of similar sizes, ranging from
1,212 nt (MYBPC3 intron 20) to 2,582 nt (MYBPC3 intron 12). It
is also notable that in each of these cases, the primary PE
introduces a flanking splice site as strong or stronger than that
of the nearby canonical exon. For example, the primary PE in F8-
12-2a introduces a downstream acceptor site stronger (MaxEnt �
8.80) than that of exon 19 (MaxEnt � 6.91). This would appear to
contradict the pattern of PEs arising from weakening of flanking
exon definition. However, it may be that in these cases the intron
subdivision caused by splicing of the primary PEs leads to a
disruption of splicing co-ordination (Drexler et al., 2020), and a
consequent loss of silencing of the secondary PE that exceeds the
expected gain of silencing from the primary PEs’ strong flanking
splice sites. An assay of intron splicing order in cells carrying
these mutations, or other similar mutations, may shed much light
on the processes involved.

Loss of Upstream Polyadenylation Motifs
There was a single case of a PE arising from an intragenic region
due to an upstream deletion (EPCAM-7-1, Supplementary
Figure S2B). While we would otherwise hesitate to define an
entire category by a single exemplar, in this case the causative
mechanism is straightforward enough to justify it: Genomic
deletion of the latter two exons of EPCAM, which necessarily
entailed deletion of that gene’s polyadenylation signals, permitted
transcription to continue through the intergenic region and into
the 3′ gene MSH2, which shares EPCAM’s sense-strand
orientation. By chance, this novel “intergenic intron”
contained a 111 nt tract that was sufficiently exon-like to be
spliced to the neighbouring canonical internal exons, namely
EPCAM exon 7 and MSH2 exon 2 (Ligtenberg et al., 2009).

Although this is the only example of this type of PE that we
catalogued, similar PEs could occur in other cases where a
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genomic polyadenylation site deletion is followed by a 3′ gene
with the same strand orientation and at least one intron, and
where the splice sites involved are in sufficient proximity.

Change to Proximal Intronic Splice Motifs
We catalogued six cases where PEs were instigated by mutations
within the same intron but beyond the PE splice motifs and
branch points (Supplementary Figure S2C). Three of these
mutations were 3′ of the PE (FBOX38-9-1, MFGE8-6-1, and
NPHP3-3-1) and three were 5′ of the PE (DMD-56-1,NR2E3-7-2,
and RPGR-9-1). Here we must clarify that although DMD-56-1
bore deletions both 5′ and 3′ of the PE, the reporting authors
empirically demonstrated that only the 5′ deletion caused PE
inclusion (Khelifi et al., 2011).

The MFGE8-6 and NPHP3-3 mutations were both SNVs
similar distances from the PE donor sites (43 and 50 nt,
respectively) that created new predicted FUS (hnRNP P2)
binding motifs (Piva et al., 2012). Studies in mouse cells
(Ishigaki et al., 2012) have shown that FUS binding along
flanking introns can regulate alternative exon splicing in
neuronal cells, so it is possible that a perturbation of normal
FUS binding is responsible for these PEs escaping silencing.

A similarly positioned SNV in FBXO38-9-1 destroyed a
predicted binding site for hnRNP K (Piva et al., 2012). This is
consistent with a recent report demonstrating that hnRNP K
depletion can lead to a widespread increase in cryptic exon
inclusion, and that at least some of these cryptic exons are
ordinarily silenced by hnRNP K binding within 100 nt of the
3′ intron (Bampton et al., 2021).

Unfortunately, there are few such similarities to connect the
three PEs with 5´ distal mutations. The first, DMD-56-1, is caused
by a 592nt deletion ending 26 nt 5´ of the PE acceptor site. The
authors experimentally excluded modified branch point
definition as a causative factor for this PE, but despite
thorough experimentation with minigene assays they could
not positively identify which components of the deleted region
were responsible for the PE’s inclusion or what their mode of
action was. The second PE with a distal 5´ mutation, NR2E3-7-2,
was instigated by an SNV 581 nt upstream that altered multiple
splice factor binding sites, making it difficult to predict which, if
any, are mechanistically responsible. Incidentally, this was the
same mutation that created an acceptor motif AG dinucleotide in
NR2E3-7-1, though unlike the examples discussed in the first
category of Novel Pseudoexon Mutation Categories, these two PEs
exhibit mutually exclusive splicing.

In the third PE with a distal 5′mutation, RPGR-9-1, a TTAAA
motif is created 53 nt from the acceptor site. This motif is
predicted to bind KHDRBS1 (Sam68) and/or KHDRBS3
(SLM-2), two splicing factors with high homology and similar
effects on pre-mRNA splicing (Danilenko et al., 2017). In
particular, KHDRBS1 has been shown to aid in the splicing of
introns bearing Alu retrotransposon sequences (Pagliarini et al.,
2020). Two such Alu elements occur within RPGR intron 9
(Supplementary Figure S3). Although the true pathology of
this mutation is yet to be empirically determined, it may be
that a disruption to KHDRBS1-mediated splicing is responsible
for the RPGR-9-1 pathogenesis.

Unknown Mechanisms
In six cases, the connection between the identified mutation and
the PE was unclear (Supplementary Figure S2D) and these cases
bore no similarities to other catalogued examples. However, we
note thatDYSF-51-1b is an identical sequence inclusion toDYSF-
51-1a (which arose from a PE donor site mutation), and has been
observed at low levels in cells from healthy donors (Gonorazky
et al., 2019); and similarly, that DMD-3-1a is also instigated by a
1 nt deletion in exon 5 (Supplementary Figure S1D).

3.5 Summary of Pseudoexon Mutation
Analysis
Our pseudoexon catalogue, which is to date the most
comprehensive ever assembled, confirms that PEs are most
frequently instigated by direct mutation of their local splicing
motifs; that the most frequently mutated components are the PE
donor and acceptor splice motifs; and that the predominant type
of instigating mutation is single nucleotide substitution. These
findings support previously published observations of smaller
pseudoexon datasets, which we gratefully acknowledge as
secondary data sources for this catalogue. We add to this
several novel classifications for rarer types of PE-instigating
mutation, the most well-supported of these being mutations
that weaken definition of adjacent canonical exons.

4 LATENT FACTORS CONTRIBUTING TO
PSEUDOEXON SPLICING

Considering the complexity and stringency of vertebrate exon
definition, in conjunction with the observation that single-
nucleotide substitutions are the most frequent cause of PE
pathogenesis, we are forced to question why these exon-like
intron tracts exist in the first place. Even if the reference allele
of a given PE is ultimately excluded from mature transcripts by
the lack of one crucial splice motif, the presence of all the other
exonic motifs might still encourage abortive “false start” activity
by the spliceosome, wasting energy and unnecessarily prolonging
mRNA maturation.

It may be that the latent elements of some PEs are mildly
deleterious in this way but persist in the genome simply as
another of evolution’s myriad compromises and works-in-
progress. However, we must also examine the alternative
explanation that these latent elements persist due to their
spliceosome interactions being benign or even beneficial, and
consider the various forms these interactions may take.

4.1 Canonical Exon Splice Variants
The earliest reported PE to meet the criteria of this catalogue
(Dobkin et al., 1983) predates the completion of the first rough
draft of the human genome project by nearly 18 years (Lander
et al., 2001), and the years that intervened and followed these
milestones have seen numerous revisions to the official coding
sequences and transcript variants of thousands of genes. An
inevitable side-effect of this progress is that many splicing
phenomena initially reported as PEs have subsequently been
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reclassified as either canonical exons or mutant splice variants
thereof. In the course of assembling and curating this catalogue,
we separately collated 35 such examples (Supplementary Table S3).
These examples could not be included in any of our PE analyses
since there is no meaningful distinction between them and other
canonical exon splice mutations. However, they serve as a useful
reminder of the difficulty in distinguishing PEs frommutant variants
of as-yet-unannotated canonical exons, especially if the canonical
exons are expressed at low frequencies or in unexamined cell types
(Ray et al., 2020). We expect that progress in transcriptomics will
eventually necessitate similar reclassification for at least some of the
PEs in this catalogue.

4.2 Novel or Unannotated Canonical Exons
Having excluded from of our catalogue those PEs that coincided
with known canonical exons, we attempted to annotate additional
examples of PEs that might undergo this reclassification in future.
Our criteria for inclusion were 1) the PE must show evidence of
splicing in normal cells for at least one of its splice sites, either in
the original report, in non-cancer cell spliced expressed sequence
tags (ESTs) from the UCSC Genome Browser’s “Spliced ESTs”
track (Kent et al., 2002) or in paired-end RNAseq data (Sibley
et al., 2015); and 2) inclusion of the PE in the mature transcript
must be predicted not to trigger NMD.

A total of six PEsmet these criteria (Supplementary Table S4). In
all six cases, NMD avoidance was predicted due to preservation of
the open reading frame and absence of any novel stop codons. We
also allowed for cases where a transcript variant with a premature
stop codon may have escaped NMD due the stop codon being
introduced less than 55 nt from the final splice junction of the

transcript (Zhang et al., 1998) but did not find any examples thatmet
this criterion.

4.3 Poison Exons and Decoy Exons
In recent years the term “poison exons” has been steadily gaining
prominence in literature related to cryptic splicing phenomena.
Carvill and Mefford (2020) characterised poison exons as
conserved, alternatively spliced exons containing one or more
premature termination codons that are spliced into unneeded
transcripts to prevent their translation and target them for
nonsense-mediated decay. “Decoy” exons behave similarly but
are characterised by their additional capacity to non-productively
interact with adjacent canonical splice sites, thereby promoting
whole intron retention (Conboy, 2021).

There is a clear overlap between the definitions of poison/
decoy exons and PEs, although the phenomena are not identical.
Both describe non-canonical exon inclusions that generally
impair the translation of full-length, functional protein from
the affected transcript; but while PEs arise due to intragenic
mutations and are often deleterious to the health of the patient,
poison exons are a normal component of splicing that may
contribute to fine-control of gene expression and are
presumably beneficial, or at the very least benign.

Given the similarities between PEs and poison exons, and the
relative novelty of the latter term, the intriguing possibility
emerges that some of the splicing phenomena historically
reported as PEs might be better re-classified as poison exons,
or splice variants thereof.

Having already determined the concurring splice site reads
between our PE catalogue, and ESTs and RNAseq data (see

TABLE 2 | Pseudoexons associated with seven confirmed intronic recursive splice sites.

Gene Intron # Start End Size Pseudoexon
mutation(s)

ME-
A

ME-
D

PE RNA
source

PE
references

RSS RNA
source

RSS
references

ATM
(NM_001351834.2)

27 1b 108287410 108287521 112 c.3994-
159A>G (A+32)

7.71
->
8.12

8.49 LCLs Coutinho
et al. (2005)

HBECs Wan et al.
(2021)

1a 108287438 29 c.3994-
193C>T (A−3)

6.38 LCLs;
peripheral
blood

Coutinho
et al. (2005),
Královičová
et al. (2016),
Landrith
et al. (2020)

COL4A5
(NM_000495.5)

6 1 108570649 108570795 147 c.385-
719G>A (A+46)

5.25 7.51 Hair bulb King et al.
(2002)

HBECs Wan et al.
(2021)

FBOX38
(NM_030793.5)

9 1 148411080 148411238 159 c.1093+532C>G
(D+59)

9.11 6.57 Whole
blood, lung
tissue

Saferali
et al. (2019)

HBECs Wan et al.
(2021)

GLA
(NM_000169.3)

3 1 101401233 101401347 115 c.547+395G>C
(D−5)

5.10 7.82 Whole
blood

Higuchi
et al. (2016)

Cerebellum,
K562 cells

Blázquez
et al. (2018)

MCCC2
(NM_022132.5)

10 1 71636104 71636167 64 c.1054G>A (e11
D-19)

5.72 3.24 Emetine-
treated
fibroblasts

Stucki et al.
(2009)

HBECs Wan et al.
(2021)

NPHP3
(NM_153240.5)

3 1 132717955 132718117 163 c.671-
996C>G (D+50)

6.50 0.56 Leukocytes Larrue et al.
(2020)

HBECs Wan et al.
(2021)

OCRL
(NM_000276.4)

4 1 129553236 129553301 66 c.239-
4023A>G (D+1)

8.18 2.68
->

10.86

Skin
fibroblasts

Rendu et al.
(2017)

PA1 cells Zhang et al.
(2018)

Genomic coordinates of the recursive splice sites and their maximum entropy scores are in bold text. “ME-A” and “ME-D” refer to the Maximum Entropy scores for the acceptor and donor
splice sites, respectively.
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Section 4.1) we separately tabulated all those examples where
evidence supported their splicing in normal cells, but which did
not preserve the transcript open reading frame (Supplementary
Table S5).

A possible reason for the high number of candidate poison
exons seen in NF1 and DMD is the exceptional size and high
intron count of these genes. These features unavoidably entail a
long transcription and maturation time, which must be
reconciled with the fact that the quantity of any encoded
protein that the cell needs can change dramatically in a matter
of seconds. The more poison exons a transcript contains, the
more possible time-points there are for interrupting the reading
frame and preventing an unneeded transcript from reaching
functional maturation.

Of the 413 catalogued PEs, for 65 (15.7%) we found evidence
of splicing of at least one splice site in normal cells. This is a
remarkably high concordance when one considers that, for the
most part, splicing of putative PEs in normal cells is not
something that has been systematically investigated; as such,
what supporting evidence there is exists largely by chance. As
RNAseq becomes more commonplace and is applied with greater
sensitivity and read depth to a broader range of cell types, it may
emerge that many more PEs—perhaps even a
majority—originated as benign rare exons or functional exon-
like intronic sites.

4.4 Recursive Splice Sites
In a previous report focused on PEs in the DMD gene (Keegan
2020), we examined the possibility that some PEs may arise from
the errant splicing of predicted recursive splice sites (RSSes). Here
we sought to examine this possibility as it applies to our total set
of PEs. This task was complicated by the fact that there is as yet no
consensus on the precise definition of RSSes and how best to
experimentally verify their presence. For example, the criteria
employed by Zhang et al. (2018) required that a putative RS-exon
should bear an agGT tetranucleotide at the acceptor site and that
the nucleotides around the acceptor site should be highly
conserved, while the approach of Wan et al. (2021) was
agnostic to sequence conservation.

We searched the splice site coordinates of our PE dataset
against five published datasets of recursive splice sets (Kelly
et al., 2015; Sibley et al., 2015; Blázquez et al., 2018; Zhang
et al., 2018; Wan et al., 2021). We did not find any matches in
Kelly et al. (2015) or in the filtered results of Sibley et al. (2015),
but we did discover seven matches in the filtered results of the
other three reports—five in Wan et al. (2021) and one in each
of Blázquez et al. (2018) and Zhang et al. (2018) (Table 2). To
our knowledge, this is the first conclusive evidence supporting
our earlier hypothesis that pathogenic PEs can arise from
mutations near recursive splice sites (Keegan 2020).
Additionally, we were interested to note that six of the
seven recursive splice sites were also spliced as components
of putative poison exons in normal cells (Supplementary
Table S5), with COL4A5-6-1 being the exception. This may
indicate that these sites serve a dual purpose in splicing
regulation, though this remains to be confirmed through
functional studies.

5 Unique Cases and Additional
Observations
5.1 No Known Pseudoexons are Processed by the U12
Spliceosome
Theminor spliceosome, or U12 spliceosome, processes just 0.37%
of all human introns (Olthof et al., 2019). Type-U12 introns can
most easily be recognised by their highly conserved donor-site
(UTATCCT) and branch point (CCTTUAY) motifs, and their
tolerance for AT-AC terminal dinucleotides—although the latter
feature is not present in all U12 introns and GT-AC, AT-AG or
GT-AG terminal dinucleotide pairs are also observed (Turunen
et al., 2013).

A search of the donor sites of all catalogued PEs and their 5′
spliced exons discovered a single example of a UTATCCT donor
site motif, at the donor site of LHCGR-6-1b. Although this
donor site scores low as a U2 splice site (MaxEnt � 0.48), there
was no type-U12 CCTTUAY branch-point motif near the
acceptor site of the 3′ exon 7, and the canonical 5′ exon 6
did not have a type-U12 donor site. This indicates that the
termini of LHCGR intron 6 have evolved to be removed via the
predominant mode of U2 splicing. It therefore appears that this
PE is spliced via the U2-spliceosome and not the U12.
Therefore, we concluded that no U12-spliced PEs are
reported in this dataset, although we did note that STK11-1-1
occurs in a U2 intron that is 5′ adjacent to a known U12 intron
(Hastings et al., 2005).

While a type-U12 PE may yet be reported, it is unsurprising
that none have been discovered thus far. The great majority of
reported PEs have been observed as singletons that are directly
spliced to canonical upstream and downstream exons in the
mature transcript. This means that each of the two PE splicing
reactions involves one neighbouring canonical splice motif that
has evolved for optimal interaction with a particular spliceosome.
From this we can infer that the mode of a PE’s splicing will largely
be determined by the splicing mode of its encompassing intron,
i.e., a U2-spliced PE cannot arise within a U12 intron or vice
versa. A similar hypothesis was suggested by Qu et al. (2017) in
their analysis of U12 splice mutations. Because only 0.37% of
human introns are type-U12 (Olthof et al., 2019) the genomic
range within which a U12 PE could plausibly arise is vanishingly
small. However, exceptions may occur if a mutation that prevents
proper recognition of the splice motifs of a U12 intron results in
cryptic U2 splicing. Madan et al. (2015) observed such cryptic U2
splicing of a U12 intron of WDR41, though this was the result of
knockdown of the splice factor ZRSR2, rather than mutations in
WDR41 itself.

5.2 Pseudoexons With Non-AG Acceptor Sites Occur
Rarely but Unpredictably
We catalogued four examples of PE variants with non-AG
acceptor site dinucleotides. Three of these (RB1-14-1b, RB1-
14-1c, and RB1-14-1d) arose from the 5′ junction of a single
LINE-1 retrotransposon insertion in RB1 intron 14 (Rodríguez-
Martín et al., 2016). These three variants share a common U2-
type donor site, but each have unique non-canonical acceptor
sites that were confirmed through Sanger sequencing. This LINE-
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1 insertion also induced an additional PE variant with a canonical
acceptor site (RB1-14-1a).

The fourth non-canonical PE (NF1-39-1a) was observed in
NF1 as the result of a donor-site-creating SNV. Like the RB1 PEs,
NF1-39-1a bears a canonical donor site and a non-canonical
acceptor site and shares its donor site with a wholly canonical
variant, NF1-39-1b.

A report by Parada et al. (2014), examined common features of
184 non-canonical splice sites, and the authors observed therein
that the terminal dinucleotides of most non-canonical splice sites
differ from the canonical AG or GY pairs by only a single
nucleotide. This holds true for the RB1 non-canonical PEs,
which have CG, AT and AT respectively as their acceptor-site
terminal dinucleotides, and for NF1-39-1a, which has a TG
dinucleotide. We speculate that this one-nucleotide rule is
observed because varying only a single nucleotide minimises
the amount of resistance that must be overcome to “persuade”
the spliceosome to cleave at a non-AG/GY dinucleotide.

Unfortunately, there are few other established hallmarks for
human non-canonical exons that these PEs can be compared
against. Burset et al. (2000) suggested that non-canonical splice
sites may parasitically exploit the presence of nearby canonical
splice motifs to recruit the spliceosome, an hypothesis supported
by the alternative canonical acceptor sites observed in RB1-14-1a
and NF1-39-1b. However, even if this “parasite” model accounts
for spliceosome recruitment, it still begs the question of why the
non-canonical splice sites are used at all when workable canonical
sites are available. Similarly, although Parada et al. (2014)
detected a higher density of ESEs and intronic splice
enhancers around non-canonical sites, it is not valid to apply
their statistical analysis to just four additional sites. Deriving a
complete explanation for why these two mutations in RB1 and
NF1 created PEs with non-canonical splice sites, when so many
other similar mutations in these and other genes did not,
therefore remains as a challenge for future researchers.

5.3 Terminal Pseudoexons are Both Rare and Difficult
to Detect Without Third-Generation Sequencing
Technologies
We catalogued two examples of terminal pseudoexons (tPEs),
each arising from unique mutations in ARHGEF9 (Figure 3A)
and F8 (Figure 3B). Although it is difficult to generalise from just
two observations, there are obvious similarities between these
cases that are worth noting. Both the ARGHEF9 and F8 genes are
carried on the q arm of the X-chromosome, albeit at opposite
ends (Figure 3C), and in both cases the instigating mutations
entail large sequence rearrangements that moved the canonical 3′
end of the gene out of splicing range of the upstream exons. In the
case of ARHGEF-6-2, this mutation is a balanced crossover with
chromosome 18, while the F8 gene of the second patient bears a
3.8 Mb insertion of chromosome X intergenic sequence. Notably,
the region inserted into F8 in F8-25-1 encompasses ARHGEF9
along with 11 other protein-coding genes (not shown).
Interestingly, although the ARHGEF9 mutation was originally
described as creating two tPEs—one 5′ of the breakpoint in the
normal intron 6 sequence, and one in the translocated
chromosome 18 sequence—we found that the first of these

terminal exons shares its polyadenylation site with ARHGEF-
IT1, a noncoding and largely uncharacterised two-exon transcript
nested within ARHGEF intron 6. Because it shares sequence with
a canonical exon, this mutant terminal exon therefore does not
meet the criteria for classification as a tPE.

The fact that tPEs are so rare in comparison to internal PEs is
surprising when one considers that the defining hallmarks of a
last exon are comparably well-defined to those of an internal
exon, and therefore they should be expected to arise from random
mutation at roughly the same frequency. The requirement for a
functional acceptor site is similar in both exon types, and the
requirements for polyadenylation site definition (Kaida, 2016) do
not appear very much stricter than those for donor site definition.
Furthermore, last exons usually contain a stop codon, a
requirement that most PEs meet by default, and last exons
also exhibit a much broader range of sizes than internal exons
(Movassat et al., 2019).

We suggest that there are at least three compounding causes
for the low discovery rate of tPEs. The first is that the laboratory
techniques required to confirm a tPE make them considerably
more difficult to discover than internal PEs. Many internal PEs
were detected serendipitously when researchers noticed
unusually large products from their RT-PCRs of flanking
canonical exons, but this method of discovery is only possible
if the RT-PCR primer target sites are present on both sides of the
mRNA insertion, and this is not the case for tPEs as they are not
spliced to any 3′ exon. Any RT-PCR of the canonical exons
flanking a tPCR would produce either low abundance products
of the expected size (if some level of normal splicing is still present)
or no products at all. Even if the researcher eventually discovers the
acceptor splice site of the tPE, their subsequent failure to detect an
active donor site may lead them to conclude that the effect of the
mutation is partial intron inclusion and arrest of splicing.

A third possible contributing factor is that terminal exon
definition may be a stricter process than it appears. At the very
least, the similarity of the twomutations described here suggests that
the absence of competition from downstream canonical exons is a
contributing factor, which is something that can only occur after
large-scale sequence rearrangements such as these. Conversely, the
effect of an EPCAM terminal exon deletion mutation
(Supplementary Figure S2B) was to induce a fusion transcript
withMSH2 but no novel polyadenylation site, as in this case a latent
intergenic pseudoexon combined with the chromosomal proximity
of MSH2 provided viable splicing partners.

Regardless of the true frequency of tPEs, it is worth noting that
the aforementioned barriers to their detection do not apply to
third generation sequencing technologies like Nanopore, which
are largely agnostic in their detection of polyadenylated
transcripts. As the uptake of Nanopore and other third-
generation RNA sequencing technologies continues to
increase, there may be a corresponding increase in the
discovery rate of tPEs.

6 Conclusion
Pathogenic pseudoexons primarily arise from mutations that
directly enhance their donor or acceptor site motifs. However,
other types of instigating mutation are also observed less
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frequently, but with consistent features, many of which are
characterised for the first time in this report. In rare cases, the
splicing pathology of a PE was highly idiosyncratic and could not
be properly categorised due to a lack of similar supporting
examples. These findings advance our understanding of how
mutations give rise to pathogenic pseudoexons, but also
highlight that our understanding is still far from complete.

We also discovered seven examples of pseudoexons that
coincide with recently confirmed recursive splice sites,
conclusively demonstrating that functional exon-like intron
elements can be converted to pseudoexons when favourable
mutations arise nearby. Although it remains to be determined
how many pseudoexons arise in this way, we found that 15.7% of
pseudoexons showed evidence of splicing at one or both of their
splice sites in cells from healthy donors, a figure that is likely to
increase further as the fidelity and quantity of RNAseq data
continues to improve.
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FIGURE 3 | Shared features of two terminal pseudoexons (tPEs). (A) ARHGEF9 tPE (ARHGEF9-6-2) and internal PE (ARHGEF9-6-1) arising from within a
translocated region of chromosome 18. (B) F8 tPE (F8-25-1) arising within intragenic sequence of a transposed 3.8 Mb tract of the X chromosome. (C) Relative
locations, to scale, of the affected genes on the X chromosome q-arm, and genomic origin of transposition in patient B. Arrows indicate reading directions of each gene.
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The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.806946/
full#supplementary-material

Supplementary Figure 1 | Pseudoexons instigated by weakened definition of
nearby canonical exons. Pseudoexons are shown as medium grey dash-line boxes,
with flanking canonical exons in light grey and intervening introns as solid black lines.
Sizes are not to scale. Dash-lines elsewhere indicate altered splicing of canonical
exons. Roman numerals within pseudoexons (I–IV) indicate identical sequence
inclusions (see also Supplementary Figure S2). Selected relevant features for
each mutation are indicated where appropriate, with full details and references
provided in Supplementary Table S1. Numbers above exon ends indicate
acceptor and donor Maximum Entropy splice site scores, with “NF” indicating a
site that is non-functional in the reference (NF -> score) or mutant (score -> NF) allele
due to lacking an essential AG-GY dinucleotide. Changes to exon HExoSplice
scores are shown above the affected exons as “ΔHx,” other motif changes are
indicated with vertical lines and labelled as “± name-of-motif.” Vertical brackets
indicate common features of enclosed splice events. Note that GAA-1-1 is shown
twice due to the splicing effects of its mutation fitting both the (A,B) sub-categories.

Supplementary Figure 2 | Pseudoexons instigated by novel or unknown
mechanisms. Pseudoexons are shown as medium grey dash-line boxes, with

flanking canonical exons in light grey and intervening introns as solid black lines.
Sizes are not to scale. Dash-lines elsewhere indicate altered splicing of canonical
exons. Roman numeral “IV” indicates an identical sequence inclusion to one shown
in Supplementary Figure S1. Selected relevant features for each mutation are
indicated where appropriate, with full details and references provided in
Supplementary Table S1. Numbers above exon ends indicate acceptor and
donor Maximum Entropy splice site scores, with “NF” indicating a site that is non-
functional in the reference (NF -> score) or mutant (score -> NF) allele due to lacking
an essential AG-GY dinucleotide. “+D” indicates one or more gain-of-donor-motif
mutations. Other motif changes are indicated with vertical lines and labelled as “±
name-of-motif.” Vertical brackets indicate common features of enclosed splice
events. *Variant-induced increase in splicing of FBXO38-9-1 was low (from 8 to
13% of FBXO38 transcripts) but statistically significant (Saferali et al., 2019).

Supplementary Figure 3 | A G>A substitution within RPGR intron 9 creates a
binding motif for KHDRSB1 (Sam68), potentially altering the splicing of an adjacent
pseudoexon (RPGR-9-1) that originates within an AluSx element. Image captured
from UCSC Genome Browser, GRCh38/hg38. Location of TTAAA motif indicated
with a thick vertical red line, and additional annotations are written in red text. Scale
at top shows chromosome X coordinates. “GENCODE V36” track shows aligned
transcripts, with gene names on the left, solid bars indicating exons and horizontal
lines indicating introns. Arrows (< and >) on introns indicate transcript reading
direction relative to chromosome + strand. “Repeating Elements” track shows
alignments of SINE or LINE elements as solid rectangles, with darker shading
indicating higher homology to the reference sequence for that element.
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