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ABSTRACT

In recent years, peer-to-peer (P2P) and peer-assisted stream-
ing have emerged as promising models for low-cost multime-
dia distribution to large scale user communities. In this pa-
per, we study streaming of scalable video streams over these
systems. Scalable video streams are composed of multiple
layers and can easily be adapted according to the character-
istics and needs of receivers. Thus, they can efficiently sup-
port a wide spectrum of heterogeneous peers participating
in a P2P streaming system. We present an analytical model
for forecasting the long-term behavior of a P2P streaming
system with scalable video streams. Our analysis takes as in-
puts the characteristics of a dynamic P2P streaming system
and the video streams. It then analytically computes the ex-
pected throughput of the streaming system and the expected
video quality delivered to peers. The analysis also provides
an upper bound on the maximum number of peers that can
be admitted to the system at once (i.e., in flash crowd sce-
narios), while ensuring a certain video quality. We present
a general analysis framework that can be customized to var-
ious practical P2P streaming systems with different charac-
teristics. Then, we show the detailed analysis of a typical
P2P streaming system and we explain how other systems
can be analyzed using our model. We validate our analysis
by comparing its results to those obtained from simulations,
which confirm the accuracy of our analysis. Our analysis and
simulations enable administrators of P2P streaming systems
to predict the throughput and the video quality that can be
delivered to users.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [modeling techniques];
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—distributed applications

General Terms
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1. INTRODUCTION
The demand for multimedia services has seen a rapid

growth in the past few years, which is even expected to
accelerate in near future as confirmed by many market re-
search reports [4, 16]. To meet portions of this demand,
peer-assisted and peer-to-peer streaming systems have been
successfully designed and deployed for large-scale user com-
munities [1–3,5,19]. In these systems, peers contribute band-
width and storage to serve other peers. However, the con-
tributions from the peers are often less than the capacity
needed to serve high quality video streams. To make up for
the shortage in capacity, a number of dedicated servers are
usually used in these streaming systems, which we refer to
as seed servers. Because of the existence of seed servers,
these streaming systems are sometimes called peer-assisted
systems. We use the terms peer-assisted and P2P streaming
systems interchangeably in this paper.

In current P2P streaming systems, a video is encoded
at a certain bitrate, typically ranging from 300 kbps to 1
Mbps [6]. To support a wider range of receivers, a lower-
bitrate video is preferred, but it provides a low quality for
everyone. This problem may be solved by encoding and
distributing multiple versions of the video, which is called
simulcasting. However, a video has to be encoded many
times for different combinations of decoding capabilities,
connection bandwidths, and viewing resolutions. Moreover,
switching among versions is not easy, because: (i) for ev-
ery switching, a client has to wait for the next Intra-coded
frame (I-frame) of the new version, and (ii) streams of dif-
ferent versions could be asynchronous [9]. In addition, P2P
streaming with multiple video versions divides users to sep-
arate networks which may result in reduced connectivity
and less efficient utilization of peers’ resources. As an al-
ternative, Multiple Description Coding (MDC) can encode
a video into multiple descriptions, where the quality of the
video will be proportional to the number of descriptions re-
ceived. However, MDC techniques have considerable bitrate
overhead and are computationally complex [9].

In contrast, a scalable video stream can be encoded once
and a wide range of heterogenous clients can benefit from
the video. In addition, heterogeneous clients receiving dif-
ferent layers can still share common layers and participate
in the same overlay network, leading to a larger pool of re-
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sources. Moreover, scalable coding has a lower overhead
and is simpler than MDC [9]. Recent scalable video cod-
ing techniques, e.g., H.264/SVC [14], have further improved
this coding efficiency and significantly outperformed previ-
ous scalable videos [18]. Accordingly, they have received an
increasing adoption in practice [7, 13].

In this paper, we study streaming of scalable videos over
P2P networks. We develop an analytical model to forecast
the behavior of a given P2P system for streaming scalable
videos. Our analysis takes as input the characteristics of
the network, including the distribution of upload and down-
load bandwidths of peers, peer arrival and failure rates, and
video bitrates. In addition, the analysis takes into account
the serving capacity of auxiliary seed servers in the system,
which need to be deployed to complement the limited up-
load bandwidth of peers. For example, a home user with
DSL or cable connection typically has an upload bandwidth
of a few hundred kilobits per second, whereas an average-
to-good quality video stream requires 1–2 Mbps. Taking
the characteristics of the P2P network and the capacity of
auxiliary seed servers as inputs, our goal is to answer the
following questions:

Q1. What is the expected throughput of a given P2P
streaming system in the long term? The throughput
directly impacts the video quality delivered to peers.

Q2. To increase the throughput to a desired level, how
much capacity we need to provide in terms of auxil-
iary seed servers?

Q3. How many peers a system can support in case of a
flash crowd arrival of peers?

We present an analytical model to answer the above im-
portant questions. Our model is general and can be applied
to P2P streaming systems with different characteristics and
network conditions. We present numerical analysis of exam-
ple systems and derive various insights on their performance.
In addition, we validate our analytical results through ex-
tensive simulations. Our simulation results confirm the ac-
curacy and usefulness of our analytical model.

This paper is organized as follows. Related works are
summarized in Section 2. In Section 3, the considered P2P
streaming model is described. Our analytical model is pre-
sented in Section 4. In Section 5, we conduct an analysis
using this model for a sample network. Then, we validate
our analysis using simulations, and we use the analysis to
study the performance of a P2P streaming system in Sec-
tion 6. Finally, we conclude the paper in Section 7.

2. RELATED WORK
While the problem of peer-to-peer or peer-assisted video

streaming has been studied by numerous previous works
from various angles, such as overlay construction, distribu-
tion of data availability information, and piece scheduling
algorithms, the problem of theoretically analyzing the be-
havior of P2P streaming systems has received less attention.
Current analytical works addressing this problem assume
that the video streams are encoded in nonscalable manner.
Nonscalable video streams have fixed bitrates and cannot be
adapted easily. For example, Tu et al. [17] present an analyt-
ical framework for studying the performance of P2P stream-
ing systems. This framework mathematically analyzes the

pattern of capacity growth of a given dynamic P2P system
over time. It then estimates the time at which the capacity
of the peer population suffices for continuing the operation of
the network, which is actually the time at which the servers
can be turned off. A similar analysis is done in [8] based on a
stochastic fluid model, which finds the maximum streaming
bitrate that can be supported in a P2P system. However,
the works in [8, 17] only consider nonscalable streams with
a constant bitrate. They also divide peers into a number
of classes based on their bandwidth contributions. In ad-
dition, in [8] only live streaming scenarios are considered.
The work in [17] can analyze on-demand streaming scenar-
ios as well, but the time granularity of this analysis, i.e., the
length of the smallest time unit, is the length of a complete
streaming session. In our analytical model, we consider on-
demand streaming of scalable video streams with variable
bitrates, and we do not make any restrictive assumptions on
the bandwidth of peers. Moreover, we analyze the capacity
of the system over time with a fine granularity, which is the
length of a video segment of a few minutes at most. This
enables us to capture the dynamics of the network more ac-
curately. For example, the time a peer stays in the network
for seeding is often a fraction of the video length, which
cannot be captured when we analyze the system based on a
time unit equal to a complete video length.

Liu et al. [10] analyze peer-assisted streaming systems by
constructing an appropriate tree structure for the network
and provisioning resources for it. In contrast, we do not
assume any particular structure imposed on the network
formed by peers. That is, each peer can decide its neigh-
bor list, based on the information it receives from track-
ers and/or other peers. Thus, our approach can be used
to analyze mesh-based and receiver-driven systems, which
have been repeatedly reported to be more efficient and ro-
bust than tree-based approaches. Since mesh-based sys-
tems are employed by most of today’s P2P streaming sys-
tems [1–3,6, 19], our analytical model is more practical and
useful than previous ones. Another performance analysis on
P2P streaming systems is conducted by Small et al. in [15].
However, similar to [10], the authors consider constructing
a specific P2P topology for the overlay network, unlike our
analysis which does not make any particular assumption on
the network topology formed by peers.

Zhou et al. [20] and Parvez et al. [12] analyze the per-
formance of P2P streaming systems with nonscalable videos
when two different chunk selection strategies are employed
by peers. These analyses are motivated by the observation
that a poor streaming performance, particularly in terms of
startup delay, is experienced when we adopt BitTorrent-like
P2P downloads for streaming. In BitTorrent, a rarest-first
strategy is often employed by peers to select which data
chunks to download, which diversifies the chunks available at
peers. This practice improves the overall download through-
put by avoiding situations where many peers cannot find
or they compete for a rare chunk. However, it is not ap-
propriate for streaming, since streaming requires a peer to
have pieces sequentially from the beginning of the file. Se-
quential download of pieces, on the other hand, is appro-
priate for streaming, but is not efficient for BitTorrent-like
downloads. The authors of [20] analyze the performance of
P2P streaming systems when these two strategies, rarest-
first and sequential, are employed by peers. They then pro-
pose a hybrid strategy to be employed by peers for P2P live
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streaming, which reduces the significant startup delay—the
reduced delay can still be considerable when we are to en-
sure a high probability for continuous playback under this
download model. The authors of [12] present a similar analy-
sis, which is more general than [20] and consider on-demand
streaming as well. However, the work in [12] also assumes
that all peers have equal bandwidths and all peer-to-peer
connections have the same throughput, i.e., no peer hetero-
geneity. Nevertheless, the argument that sequential down-
load reduces the system throughput relies on the assumption
that peers select their partners randomly. However, this as-
sumption is no longer correct if peers request and serve data
to each other more carefully to balance the load between the
supply and the demand of peers. For example, each peer re-
quests data from other peers that are closer to it in terms of
playback time, and a sending peer always gives priority to
requests coming from closer peers. This example is consis-
tent with the P2P streaming models assumed in [12,20], but
it makes the rarest-first and the sequential strategy equal in
terms of the overall download throughput. In our analysis,
we assume a sequential download strategy for peers.

3. SYSTEM OVERVIEW AND NOTATIONS
The considered P2P streaming architecture consists of

trackers, seed servers, and peers. Peers join the system by
contacting one of the trackers. The tracker receives periodic
update reports from peers, informing it about their available
data and capacity. A number of seed servers exist to inject
the content into the network and to serve requests when
there is not enough capacity in the peer population. Peers
download the video in a streaming form, meaning that the
video is downloaded sequentially at a bitrate equal to the
bitrate of the video.

In the considered P2P system, peers are expected to use
their upload bandwidth for serving lower layers of the videos
first, in order to avoid the situation that some peers are
starving (for not receiving lower layers) while other peers
are receiving the highest quality. Moreover, peers serve as
many layers as they can upload. For example, if all layers
have a rate of 100 kbps and a peer has 250 kbps upload
bandwidth, it will upload the two lowest layers at rate 100
kbps and the third one at 50 kbps.

We divide the video file into S small segments. Let Ps

denote the set of peers that are currently watching the video
at segment s where 1 ≤ s ≤ S. A peer can only serve data to
peers that are at earlier segments. In other words, a peer in
Ps can be served by any peer in Ps′ , s < s′ ≤ S, given that
the requested layer is available at the sending peer. Peers in
Ps cannot be served by any peer in Ps′ where 1 ≤ s′ ≤ s.

In addition to receiving from other peers, a peer may re-
quest to receive the stream from seed servers. Seed servers
are often loaded with a volume of requests larger than their
serving capacity. Thus, it is important to efficiently manage
this capacity and carefully choose which requests to serve.
In our previous work [11], we analyzed two methods for serv-
ing peers by seed servers and matching them to other peers:
random and contribution-based. In the former case,
peers are matched together and/or served by seed servers
randomly. In the latter case, this task is done based on the
contribution of peers and the bitrates/qualities of video sub-
streams. We have shown how to use the contribution-based
method to gain an overall benefit approaching the optimal
benefit that can be gained in the system. In this paper, we

Table 1: List of symbols used in this paper.

Symbol Description
C Total capacity of seed servers.
L Number of layers of the video.
T Length of the video in number of segments.

Tseg Video segment length (in seconds).
Tseed The time each peer stays in the network for

seeding (after finished watching).
e[l] The capacity served for layer l to peers at a

given video segment.
f(e, l,
rl, n)

The capacity that can be served for layer l (at
rate rl) by n peers demanding this layer, when
an input capacity e is served to them.

o[l] The capacity served for layer l by peers at a
given video segment.

ql(t) Video quality (e.g., Y-PSNR) added by the
l-th layer of the video at segment t.

rl(t) Bitrate of the l-th layer (1 ≤ l ≤ L) of the
video at segment t.

γ(t) The probability that a peer that is at segment
t fails/leaves.

D,U Random variables representing the download
and upload bandwidth of peers. D and U are
not independent.

Λ Random variable representing the number of
arrivals in a time unit.

present our analysis for both random and contribution-based
methods.

The notations that we use in the analysis are summarized
in Table 1. Bold symbols represent random variables.

4. GENERAL ANALYTICAL MODEL
In this section, we present the proposed model for ana-

lyzing P2P streaming systems. We first present a high level
overview of the analysis, followed by step-by-step details.
We derive general formulas which can yield the through-
put of the P2P system as a function of the characteristics
of the network. These general formulas can be readily cus-
tomized for a given set of network characteristics, and allow
us to capture a wide range of network specifications. This
mainly consists of replacing the general variables used in this
section, e.g., random variables representing peer bandwidth
distributions, by values specific to the P2P system being an-
alyzed. In the next section we present an example of this
customization.

4.1 Overview
Our analysis takes the following variables as inputs, and

it outputs the throughput of the network in various forms,
such as the average video quality delivered to peers.

• The joint distribution of upload and download band-
width of peers. We define random variables D and
U as the download and upload bandwidth, which are
not independent; they should be considered jointly
when analyzing the capacity of peers for uploading
video layers. Let Pr(x1 ≤ D ≤ x2, y1 ≤ U ≤ y2)
where x1, x2, y1, y2 ∈ R denote the probability that a
peer’s download and upload bandwidth values are in
the range [x1, x2] and [y1, y2], respectively.
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• The expected peer seeding duration, Tseed.

• The seed servers capacity C, number of layers L, and
bitrate of each video layer rl(t) at each segment t.

• The distribution of peer arrivals. N is the random vari-
able representing the number of arrivals per segment
and Pr(N = n) denotes the probability of having n
arrivals in Tseg seconds.

• The peer failure rate, γ(t), denoting the probability
that a peer at segment t leaves the network; γ(t) is a
function of t to capture realistic peer behaviors, e.g.,
peers that have stayed longer are less likely to leave.

At a high level, the analysis proceeds as follows. Recall
that a peer in Ps can stream to peers in Ps′(s

′ < s) only.
Accordingly, starting from the last segment of the video to
the first (s = S, S − 1, . . . , 1), in each step of the analy-
sis we consider the set of peers that are watching the same
video segment s, i.e., peers in Ps. We estimate the output
capacity of these peers as a function of the capacity served
to them. Using this function, we can compute the capacity
that is going to be served to these peers and the capacity
that they will serve to peers in P1, . . . , Ps−1. We then pro-
ceed to segment s − 1 and so on. In our analysis, we treat
capacity values as arrays rather than single numbers, where
e[1], . . . , e[L] represent the capacity served for layers 1, . . . , L
to Ps, and o[1], . . . , o[L] represent the capacities served by
Ps. We will later see how to divide a single capacity value
C between e[l] values for the layers.

To analyze the set of peers at a given segment, we define
the function o = f(e, l, rl, n) as the output capacity of peers
for layer l when this layer is served to them, i.e., n peers
demanding the layer at the segment, with an input capacity
e. The bitrate of the video layer at that segment is rl.

In the remainder of this section, we will first obtain the
function f(·) in Section 4.2. This function, as just described,
captures the distribution of only one video segment to a
given number of peers. We employ this function in Sec-
tion 4.3 to analyze the distribution of the complete video in
a dynamic network.

4.2 Distribution of one Video Segment
We define function o = f(e, l, rl, n) as the output capacity

for layer l when serving this layer with a capacity e to n peers
demanding it at a segment. rl is the bitrate of the layer at
the segment. Clearly, if e is equal to or larger than the de-
mand of n peers, i.e., e ≥ r×n, all the n peers can be served
using e. On the other hand, if e < r × n, we can serve only
a subset of peers. The estimated output capacity o depends
on how these subsets are chosen. As discussed in Section 3,
we consider two cases for this purpose: (i) when the serving
is done by giving preference to peers with higher contribu-
tion, and (ii) when the serving is done randomly, as in many
current P2P streaming systems. We distinguish three differ-
ent f(e, l, r, n) functions: fopt(·) for case (i), frnd(·) for case
(ii), and fall(·) for the case where e ≥ rl×n, in which it does
not matter how to serve peers since the demand is smaller
than the input capacity.

Among these three forms, we first obtain o=fopt(e, l, rl, n).
For this case, peers are sorted based on the bitrate that they
can stream layer l to other peers, and are selected one by one
for being served with layer l. The bitrate up,l at which a peer

p streams layer l to other peers is estimated according the
system model in Section 3. This model describes how peers
are expected to share their upload bandwidth for serving
different layers, i.e., lower layers first, and as many layers as
possible. Thus, up,l can be calculated as follows:

up,l = min
{
up −

l−1∑

i=1

up,i, rl

}
1 ≤ l ≤ Lp, (1)

where Lp is the number of layers that peer p can download,
and up is its total upload bandwidth. If the upload band-
width of p is higher than the total bitrate of the demanded
layers, the bandwidth remained from Eq. (1) is equally di-
vided among layers:

up,l = min
{
up −

l−1∑

i=1

up,i, rl

}
+

up −
∑Lp

i=1 ri

Lp

(2)

Using Eqs. (1) and (2) and the distribution of upload
bandwidths (U), we can calculate the distribution of Ul:
the random variable representing the upload rate of peers
for layer l.

Peers with higher up,l values are selected for being served
with layer l. The number of peers that can be served using
capacity e is k = ⌊e/r⌋. Since for calculating fopt(·), we
know that k < n, the value to be calculated, o, consists
of “the total capacity that can be streamed by the k peers
that have the highest Ul-capacity values among the total n
peers”. We estimate this capacity by a probabilistic analysis
as follows. Assume that in a list of peers sorted according
to the serving capacity for layer l, the k + 1-st peer has a
up,l value equal to x. Thus, the first k peers all have a up,l

value of up,l ≥ x. Using this, we can obtain the expected
value for the total capacity of the first k peers for layer l as:

E[ k × Ul | Ul > x,D ≥ Rl ] =

k ×

∫∞

x
Pr(Ul = y,D ≥ Rl) y dy

Pr(Ul ≥ x,D ≥ Rl)
,

(3)

where Rl is the cumulative bitrate of the first l layers. The
two conditions considered in this expected value capture the
fact that the involved peers in this calculation already have
an upload bandwidth higher than the k + 1-st peer, and a
download bandwidth that can afford the first l layers; clearly,
peers that are not capable of downloading the first l layers
cannot be an uploader for that layer.

To obtain the expected capacity of the first k peers, we
need to integrate Eq. (3) with respect to x, and consider all
possible combinations of peers in an arbitrary sorted list of
peers. For the candidate k +1-st peer that we considered in
Eq. (3), there are

(
n

1

)
choices. Then, there are

(
n−1

k

)
choices

for selecting the first k peers among the remaining ones.
Hence, the expected value of fopt(e, l, rl, n) is calculated as:

fopt(e, l, rl, n) =

∫ ∞

0

(

n

1

)(

n−1

k

)

Pr(Ul = x | D ≥ Rl)
︸ ︷︷ ︸

I

×

Pr(Ul > x | D ≥ Rl)
k

︸ ︷︷ ︸

II

×Pr(Ul < x | D ≥ Rl)
n−k−1

︸ ︷︷ ︸

III

×

E[ k × Ul | Ul > x,D ≥ Rl ]
︸ ︷︷ ︸

Eq. (3)

dx, (4)

where term I is the probability that the candidate k + 1-st
peer has a capacity of x for serving layer l, term II is the
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probability that there are k peers with higher capacity than
x, and term III is the probability that there are n − k − 1
peers with lower such capacity. The product of these terms
indicates the probability that the peer we assumed as the
k + 1-st peer is actually the k + 1-st among a total of n.

Note that, rather than the expected value of o, one might
argue that we should target the complete distribution of o
since it could lead to more detailed results. For that distri-
bution, however, we need to calculate the sum of k distribu-
tions of Ul. In other words, Eq. (4) changes to:

Pr(o ≥ x0) =

∫ ∞

0

(

n

1

)(

n−1

k

)

Pr(Ul = x | D ≥ Rl)×

Pr(Ul > x | D ≥ Rl)
k × Pr(Ul < x | D ≥ Rl)

n−k−1×

Pr(k × Ul ≥ x0 | Ul > x,D ≥ Rl)
︸ ︷︷ ︸

I

dx, (5)

where term I denotes the sum of k independent values that
follow the distribution of Ul. Calculation of Eq. (5) requires
convolving the distribution of Ul with itself k times, which is
not feasible even for uniform distributions, the simplest ones.
Specifically, in Eq. (4) we took advantage of the interesting
property of additivity of expected values, i.e., E[X + Y] =
E[X]+E[Y], and in particular, E[k×X] = k×E[X], which
cannot be benefited from in Eq. (5).

We now consider the case where peers are served ran-
domly. In this case we have:

frnd(e, l, rl, n) = E[k × Ul | D ≥ Rl] = k × E[Ul | D ≥ Rl]

= k ×

∫∞

0
Pr(Ul = x,D ≥ Rl) x dx

Pr(D ≥ Rl)
, (6)

Finally, we note that if the number of requesting peers is
less than or equal to the number of peers that can be served,
i.e., k ≥ n, we have:

fall(e, l, rl, n) = n × E[ Ul | D ≥ Rl ], (7)

since we can simply serve all peers that are at the segment.

4.3 Distribution of the Complete Video
We now use the formulas obtained for fopt(·), frnd(·), and

fall(·) to calculate the capacity of the whole network. We
first extend these functions to capture the dynamics of the
network including arrivals and failures at one segment. We
then employ these functions to generalize our analysis from
the distribution of one segment to that of the whole video.

Peers dynamics. To accommodate peer arrivals and de-
partures (or failures) that may happen at different time in-

stances, we define o = f̂(e, l, rl,N, ǫ) as the output capacity
for serving a segment where the number of peers at the seg-
ment is represented by the random variable N and the failure
probability for peers at the segment is ǫ. f̂(e, l, rl,N, ǫ) is
calculated as follows. Let Nl be a random variable repre-
senting the number of peers at a segment demanding layer
l. The probability distribution of Nl, given that the number
of arrivals is N, is given as:

Pr(Nl = n | N) =
∞∑

i=n

Pr(there are i peers) × Pr(n of the i demand l) =

∞∑

i=n

Pr(N = i)

(

i

n

)

Pr(D ≥ Rl)
nPr(D < Rl)

i−n. (8)

Accordingly, we calculate f̂(e, l, rl,N, ǫ) as:

f̂(e, l, rl,N, ǫ) =

k∑

n=0

Pr(Nl = n) × fall(e, l, rl, n) × (1 − ǫ)+

∞∑

n=k+1

Pr(Nl = n) × fopt|rnd(e, l, rl, n) × (1 − ǫ). (9)

Distribution of video segments over time. Consider the
steady state of the network, where some peers are watching
the video at segments s = 1, . . . , S and some peers have fin-
ished watching and are seeding for up to Tseed time units.
We assume that the throughput of the network in the steady
state is smaller or equal to the demand of the peer popula-
tion. Otherwise, we reduce the bandwidth or even turn off
the seed servers; note that the peer population is usually not
capable of supporting its demand, since peers upload capac-
ities are typically far less than their demand. We estimate
the steady-state throughput of the network for both cases
of random and contribution-based peer serving.

If serving randomly, the expected capacity of k arbitrary
peers at segment t for serving layer l is k × E[ Ul | D ≥
∑l

i=1 ri(t) ], as addressed in Eq. (6). If this value is less than
k×rl(t), which is the bandwidth required to serve layer l to k
peers, then layer l of segment t will eventually vanish in the
network since a random peer receiving it cannot serve it com-
pletely, e.g., if two peers receive the complete layer at a given
time instance then only one peer can receive it at the next
time instance—partial layers are of no use as they cannot
be decoded. In other words, the number of peers that can
be served with layer l of segment t constantly decreases and
the steady-state capacity for serving that layer converges to
zero. On the other hand, if the aforementioned expected
value is greater or equal to k × rl(t), eventually all peers at
t that demand layer l can receive it, even if we initially seed
this layer to a few random peers only. Accordingly, using
Eq. (6) we can determine the video layers that survive and
continue being streamed between peers, and those that do
not. Using this, the video quality that is expected to be
served in the network can be readily obtained, as we do in
our sample analysis in Section 5.

On the other hand, if peers are served according to their
upload capacity, the fate of a particular layer is not neces-
sarily either vanishing or being served to everybody, as it
is with random peer serving. As an extreme example, if at
every segment we only have 1 peer capable of serving layer
l, and all other peers are incapable of that, we can still have
1 peer at each segment receiving layer l while the others re-
ceive only up to the l − 1-st layer. We can have more peers
receiving layer l by using seed servers. For instance, we can
have more than 2 peers receiving the layer if we seed only
one layer bitrate, since the peer we seed to will itself serve to
others a portion of the layer. We now determine the num-
ber of peers that can receive layer l in the steady state as a
function of the bitrate seeded.

Recall that the number of peer arrivals is represented by
the random variable Λ, and the failure probability at a seg-
ment t is γ(t). Considering peers that may have left/failed
at earlier segments than t, the number of peers at segment
t can be represented by the random variable Λt as:

Λt = Λ × ( 1 −

t−1∑

i=0

γ(i) ). (10)
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Once the distribution of layer l of segment t is started, at
each time instance i we have:

xi
t,l = f̂

(

xi−1
t,l ×

T + Tseed

T
+ Ct,l

︸ ︷︷ ︸

I

, l , rl(t) , Λt , γ(t)
)

,

(11)

where xi
t,l (i ≥ 1) is the layer-l throughput of peers at seg-

ment t at time instance i of the system; x0
t,l is defined as

zero. Term I in Eq. (11) represents the capacity served for
layer l to peers at segment t, which consists of Ct,l, the ca-
pacity served by seed servers for layer l of segment t, and
xi−1

t,l , the capacity served by other peers. The coefficient
T+Tseed

T
is to take into account the expected capacity shared

by seeding peers—this coefficient has a few subtle details
capturing the dynamics of the network and the probability
that a peer at segment t stays for seeding, which we do not
include here as they do not have a considerable effect. Note
that we are given a total seed server capacity C, not Ct,l

values. The way we divide C among Ct,l values depends on
the method used for allocation of seed servers. We first di-
vide C over all video segments according to the Λt value of
each segment t and the bitrate/quality of the video at that
segment (r(t), q(t)). Then, we divide the capacity given to
each segment t over different layers, based on the server al-
location method, the demand for the layers (according to
D), and the bitrate/quality of the layers. Since conducting
our analysis for a given network consists of several iterations
over Eq. (11) for different segments and layers, we perform
the above step in each iteration.

We first note that xi
t,l values converge over time, i.e., for

i = 1, 2, . . . , in either case of random or contribution-based
serving of peers. This is intuitively true, and is specifically
because xi

t,l values are monotonic with i, i.e., either con-
stantly non-increasing or constantly non-decreasing. Other-
wise, for instance, we could have the case that 5 peers, either
randomly selected or just the top 5 high-capacity peers, can
serve 8 peers, but 8 peers (selected the same way) can serve
only 7 peers, which is not possible. As xi

t,l is monotonic and
it is finite, it converges to a specific value. We illustrate a
sample of this convergence in the next section.

Denoting the converged value of xi
t,l simply by xt,l, we

can now determine the steady-state number of peers that
are expected to receive layer l of segment t. This number,
denoted by mt,l, can be obtained as:

mt,l =
xt,l

rl(t)
. (12)

Using the mt,l values we can estimate the steady-state
throughput of the system along a variety of metrics. For
example, the total video bitrate served in the network can
be calculated as:

Bitrate served =

T∑

t=1

L∑

l=1

mt,l × rl(t). (13)

Similarly, the average video quality served to peers is as:

Average quality =
1

∑T

t=1 Λt

T∑

t=1

(
Λt

L∑

l=1

mt,l×ql(t)
)
, (14)

in which the use of Λt captures the fact that the expected
number of peers at different video segments is not the same.

4.4 Analysis of Flash Crowd Scenarios
Using our estimate of the throughput of the system, we

can forecast the capacity of the system for supporting sud-
den extensive loads such as a flash crowd. In a flash crowd
event, a large number of peers arrive at the system at about
the same time. Taking advantage of the flexibility of scalable
streams, a system may sustain in these circumstances and
support the new peers by temporarily lowering the video
quality delivered in the network until the system recovers
from the shock and returns to a stable state. Our analysis
can determine the robustness of a P2P system against flash
crowds, which we define as the maximum number of peers
that can be admitted to the system at once. This maxi-
mum can be achieved when we serve only a minimum video
quality to all peers, i.e., the base layer. Thus, having esti-
mated the total throughput of the network, we can calculate
the number of minimal substreams that can be served us-
ing this throughput, i.e., an upper bound on the maximum
number of peers that can be served when a flash crowd ar-
rives. We assume that a peer keeps the video file in its buffer
until it finishes watching the video; this is realistic since the
peer is going to seed afterwards. Thus, all peers can serve
the base layer of the first few segments of the video. Hence,
the maximum flash crowd size NFC that can be supported
is calculated as:

NFC =
1

r1(1)

(
C +

T∑

t=1

L∑

l=1

mt,l × rl(t) −

T∑

t=1

Λt × r1(t)

︸ ︷︷ ︸

I

)
,

(15)
where term I represents the bitrate served for delivering
the base layer to peers that were already in the network.
Eq. (15) calculates the number of base layers that can be
served to newly arrived peers—the bitrate of the base layer
of the first few segments of the video is assumed to be nearly
equal to that of the first segment, r1(1). Note that it is the
serving of the first few segments that is most important for
sustaining a flash crowd. After the first few segments, peers
arrived in the flash crowd also contribute to uploading, and
the throughput of the system increases accordingly.

4.5 Summary
In this section, we have presented our general analyti-

cal model for studying the behavior of P2P streaming sys-
tems. We divide a video file into S segments, and analyze
the bandwidth consumed and the bandwidth contributed
by peers that are watching each video segment s for s =
S, S − 1, . . . , 1. This part of the analysis is done using
Eq. (9). The preliminary functions needed for calculation
of Eq. (9) are derived in its preceding equations. Then, we
plug the single-segment analysis function obtained in Eq. (9)
into Eq. (11), which analyzes the distribution of each video
segment/layer over time. Using Eqs. (11) and (12), we can
obtain the number of peers that are expected to receive
each video segment/layer of the video stream in the steady
state. These numbers are then used to predict the total bi-
trate that is going to be served in the system in the long
term (Eq. (13)), the average video quality delivered to peers
(Eq. (14)), the capability of the system for supporting flash
crowds of peers (Eq. (15)), or others user-defined metrics for
capturing the performance of the system.
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5. ANALYSIS OF AN EXAMPLE SYSTEM

In this section, we show the details of employing the pro-
posed analytical model for analyzing a sample P2P stream-
ing system. This is to demonstrate how our general analysis
in Section 4 can be used in practice. P2P streaming systems
with different characteristics than considered in this section
can be analyzed in a similar manner.

5.1 Analysis

Analysis Setup. The P2P streaming network we ana-
lyze is specified as follows. Suppose we are distributing a
video file consisting of L layers, each at a fixed rate of r
kbps. The video length is S segments. We consider both
random and contribution-based serving of peers. The down-
load bandwidth of peers is uniformly distributed in [0, M ]
kbps, and the upload bandwidth of each peer a constant
fraction α of its download bandwidth, which makes it uni-
formly distributed in [0, αM ] kbps. Peers arrive according
to a Poisson distribution with an average arrival rate of λ,
and stay after they finish watching the video for seeding for
up to Tseed time units. A fraction of peers leave the sys-
tem before watching the complete video and seeding. These
departures happen with probability γ̂t for peers at segment
t (1 ≤ t ≤ S). Note that the general analysis framework
presented in the previous section is not limited to any of the
above assumptions, e.g., the bitrate of video layers can be
different, and the bandwidth of peers can follow an arbitrary
distribution.

We customize the model and equations derived in the pre-
vious section for the network described above. First, we need
to calculate the functions fall(·), frnd(·), and fopt(·), which
take as input the bandwidth e kbps for serving the r-kbps
layer l to n peers. For this purpose, we need to obtain the
closed form expression for E[ Ul | D ≥ Rl ], the expected
value of the upload capacity for layer l by a peer that can
download layer l, since this value is repeatedly used in the
following equations. This is done using the distribution of
bandwidths as:

E[ Ul | D ≥ Rl ] = E[ Ul | U ≥ αrl ],

where E[ Ul | U ≥ z ] for any arbitrary z is calculated
according to the way a peer shares its upload bandwidth
among layers (Eqs. (1) and (2)) and the distribution of the
upload bandwidth of peers, which is uniform in our case.
More specifically, denoting by Ul(u) the layer-l upload band-
width of a peer whose total upload bandwidth is u, according
to Eqs. (1) and (2) we have:

Ul(u) =







u

L
rL ≤ u ≤ αM

r rl ≤ u < rL

u − r(l − 1) r(l − 1) ≤ u < rl

0 0 ≤ u < r(l − 1),

which leads to calculation of the desired expected value
E[Ul | U ≥ z ] as:

E[Ul | U ≥ z ] =

∫∞

z
Pr(U = u)Ul(u) du

Pr(U ≥ z)
=

∫ αM

z
Ul(u) du

αM − z

=







1
αM−z

∫ αM

z

u

L
du rL ≤ z ≤ αM

1
αM−z

∫ rL

z
r du +

E[ Ul | U ≥ rL ] rl ≤ z < rL

1
αM−z

∫ rl

z
(u − r(l − 1)) du +

E[ Ul | U ≥ rl ] r(l − 1) ≤ z < rl

1
αM−z

∫ r(l−1)

z
0 du +

E[ Ul | U ≥ r(l − 1) ] 0 ≤ z < r(l − 1).

(16)

The first row in Eq. (16) corresponds to the case where
the upload bandwidth of a peer is higher than the total
bitrate of video layers, in which a bandwidth u is evenly
divided among the L layers. The second row adds to this
case the possibility that the upload bandwidth is less than
the bitrate of all layers, but higher than rl, the bitrate of
the first l layers. In this case, the bitrate at which layer l
is streamed to other peers is just equal to r. The third row
adds the case that the peer’s upload bandwidth is less than
the bitrate of the first l layers, but higher than the first l−1
of them. In this case, it can upload layer l at a rate less
than r. Finally, the last row considers the case where the
peer cannot upload layer l at all.

Now that we obtained E[ Ul | U ≥ z ] for any arbitrary z,
we can calculate functions fall(·) and frnd(·) using Eqs. (6)
and (7):

fall(e, l, r, n) = n × E[ Ul | U ≥ αrl ]

frnd(e, l, r, n) = ⌊
e

r
⌋ × E[ Ul | U ≥ αrl ]

Next, we calculate fopt(·) using Eq. (4):

fopt(e, l, rl, n) =

∫ αM

0

Pr(U = u | U ≥ αrl) ×

Pr(U ≥ u | U ≥ αrl)k ×

Pr(U < u | U ≥ αrl)n−k−1 ×

E[Ul | U ≥ αrl,U ≥ u] du, (17)

in which all probabilities can be easily derived according to
the uniform distribution of U in [0, αM ].

The next function we need to calculate is Pr(Nl = n | ǫ),
the probability distribution of the number of peers at a seg-
ment which are demanding layer l, when the failure prob-
ability for peers at that segment is ǫ. This is done using
Eq. (8) as follows:

Pr(Nl = n | ǫ) =
∞∑

i=n

fPoisson(⌈
i

1 − ǫ
⌉; λ)

(

i

n

)

(
αM − rl

αM
)n (

rl

αM
)i−n (18)

We can now analyze the distribution of each video segment
through Eqs. (9) and (11), since we have already obtained
all its preliminaries in the above equations. Thus, we have:

xi
t,l = f̂( xi−1

t,l ×
T + Tseed

T
+Ct,l, l, r, λ(1 −

t−1∑

i=1

γ̂i)

︸ ︷︷ ︸

I

, γ̂t ), (19)

where term I denotes the expected number of peers (with
Poisson distribution) at segment t, i.e., peers whose expected
number was λ at the beginning of their joining, and left the

139



2 4 6 8 10 12 14 16 18 20

2

4

6

8

Time (minutes)

C
a
p
a
ci

ty
(n

u
m

p
ee

rs
se

rv
ed

)

(a) The streaming capacity when we only seed at the first
time step. The curves from bottom to top correspond to
initial seed values from 1 layer rate to 10 layer rates.
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(b) The streaming capacity when we seed for longer periods.
The bottom curve is for when we seed with 1 layer bitrate at
the first time step only, and the other 10 curves correspond to
longer seeding periods with capacities 1 to 10 layer bitrates.

Figure 1: The streaming capacity of peers at one segment for one layer.

system with probability γ̂i at each time instance i. Denot-
ing the value converged over time by xt,l, the steady-state
number of peers receiving layer l of segment t, i.e., mt,l, is
calculated using Eq. (12).

5.2 Numerical Results (Answering Q1 and Q2)
Since each video segment is analyzed individually, let us

first focus on the distribution of one segment. We would like
to see how many peers at a given segment can be served with
a particular layer l in the long term. We then use these re-
sults as a basis for analyzing the distribution of the complete
video. To carry out a numerical analysis, we fix the value
of some parameters introduced in the previous subsection as
follows. We suppose the distribution of a 1-hour video which
we divide into 60 1-minute segments. The video has L = 10
layers, each at rate r = 200 kbps. The maximum possible
download bandwidth of a peer is M = 10 Mbps and the
upload bandwidth is α = 20% of its download bandwidth.
Peers arrive at a rate of λ = 10 peers per minute with a Pois-
son distribution, and after watching the video, they stay for
seeding for up to Tseed = 30 minutes. 25% of peers leave
the system before they finish watching and seeding, which
happens with an exponential probability distribution with
most of the departures taking place in the first few minutes
of watching.

Step 1: Distribution of one video segment. We first note
that the number of peers served with layer l of a given seg-
ment t converges over time, as discussed in Section 4.3. This
can be observed in Figure 1(a), which shows a sample result.
In this figure, considering a window of peers at one segment
over time, the number of peers that are served with layer
5 in each time step is plotted. Each curve, from bottom to
top, corresponds to an initial seed capacity, starting from 1
layer bitrate and increasing to 10. The failure probability for
peers at the segment is assumed 20%. In Figure 1(a), inde-
pendent of the initial seed, the number of peers served with
layer 5 of the segment converges to 5.6 on average, though it
takes more time to boost the capacity when the initial seed

is small while larger initial seeds lead to faster convergence.
If we do not stop seeding after the first time step and keep
seeding over time, indeed a higher bitrate is served to the
peers. This increase in the throughput for streaming layer
5 of the segment is illustrated in Figure 1(b). In this figure,
the increase in the number of served peers when the seeding
capacity is increased is more significant for smaller capacity
values, which is particularly observable as the gap between
the three lowest curves. This is because in those cases, the
entire seeded bitrate is consumed by peers, and since peers
will also contribute to serving, the increase in the through-
put is more than the seeded bitrate. On the other hand, if
the seed is more than the demand of the peers, only part of
it is consumed, and the number of peers served will converge
to the expected number of peers demanding the layer. This
is observed in Figure 1(b) for seeding capacities of more than
3 layer bitrate. In particular, 7 out of the 11 curves gather
on top of the figure. Though Figure 1(b) corresponds to the
serving of layer 5 only, serving of other layers also demon-
strate similar behaviors. For lower layers (1 to 4), the most
bottom curve converges to higher values than 5.6, because
the total upload rate of lower layers by the peers is higher.
Moreover, because of the same reason, more curves gather
on top of the figure. For higher layers (6 to 10), the reverse
of these behaviors is observed: the most bottom curve con-
verges to a smaller value than 5.6, and less curves gather on
top of the figure.

In summary, using our analysis and given the seeding ca-
pacity, we can determine for each layer the value to which
the number of served peers at a segment converges, i.e., the
mt,l value introduced in Section 4.3, which is the steady-
state number of peers served with layer l of segment t. We
use these values for analyzing the distribution of the com-
plete video in the next step.

Step 2: Deriving the throughput for the complete video.
Using the previous step, we obtain mt,l for all valid t, l val-
ues. Consequently, we can calculate the throughput of the
network in terms of various metrics. For example, we es-
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Figure 2: Validation of the analytical model. Com-

paring the average video quality delivered to peers

for different seeding capacities.

timate the average video quality delivered to peers using
Eq. (14) for different values of seeding capacity C. This is
plotted in Figure 2 for both cases of contribution-based and
random serving. Figure 2 answers questions Q1 and

Q2 discussed in Section 1: it estimates the throughput
of the system in terms of video quality, and it computes the
capacity needed for providing a desired level of video quality.
For example, if we provide 25 Mbps seeding capacity, the av-
erage video quality delivered to peers will be 35.9 dB. If we
increase this capacity to 125 Mbps, the average quality will
increase to 37.3 dB. This increase continues as we provider
higher capacities, and it eventually approaches a value of ap-
proximately 38.5 dB, which is the maximum quality demand
of peers—note that although the video stream can provide
a quality of up to 40 dB, not all peers are demanding this
quality level.

6. EVALUATION AND VALIDATION OF

THE ANALYSIS
In this section, we first validate our analytical model by

comparing its results to those obtained from simulation.
Then, we show how we can use the analysis for studying
different performance aspects of P2P streaming systems.

6.1 Validation Using Simulation
We validate our analytical model by comparing its results

to those of running the considered P2P streaming network in
a simulator for P2P on-demand streaming of scalable videos.

Simulation setup. We simulate distribution of a 1-hour
video which consists of L = 10 layers, each at rate r = 200
kbps. The video segment length is Tseg = 1 minute. The
download bandwidth of peers is uniformly distributed in
[0, 10] Mbps and the upload bandwidth of a peer is α = 20%
of its download bandwidth. Peers arrive according to a Pois-
son distribution with an average arrival rate of λ = 10 peers
per minute, and may stay for seeding for up to Tseed = 30
minutes after they finished watching the video. 25% of
peers leave the system before they finish watching and seed-
ing, where most of the departures take place in the first
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Figure 3: Average video quality delivered to peers

for different seeding capacities.

few minutes of watching. According to the arrival and fail-
ure/departure rates, the video length, and the peer seeding
time, the number of peers in the network varies with time,
but on average there are 500–600 at any time. Each simu-
lation runs for 5 hours of simulation time. The simulation
follows an event-driven procedure that gathers events and
once every 10 seconds applies all of them. As a sender, each
peer disconnects its connection to a receiver according to a
Bernoulli probability distribution with an expected value of
2 minute. This is done so as to make enough dynamics in the
network and to simulate peer failures in addition to the con-
sidered arrivals and departures. Moreover, we make peers
disobey our assumption about the way they share their up-
load bandwidth among different layers in Eqs. (1) and (2),
by having each up,l value deviate by up to 50% from its
supposed value. This is used to capture peers and network
dynamics in real systems. Furthermore, a peer may receive
different number of layers from different segments, which, if
varies non-smoothly, results in a poor quality. Thus, to make
the simulation more realistic, we avoid quality fluctuations
at receiver side by having each peer take a simple heuristic
that does not allow more than 1 layer change in the number
of layers in two consecutive video segments, i.e., the heuris-
tic at each peer drops the enhancement layers that violate
this criterion. The video segment length and the simulation
time step are 10 seconds.

We run the simulation for different values of seed server
capacity, and compare the results with those of our analysis.
This comparison is illustrated in Figure 3, which shows the
average video quality in the steady state obtained by the an-
alytical and the simulation study for different values of seed-
ing capacity. Figure 3 shows that estimations of the analysis
are reasonably close to the results obtained by simulations,
except for small seeding capacities. The deviation observed
for these values in the case of random serving is because
the analytical model assumes a certain value as the upload
bandwidth of a peer for a particular layer in Eqs. (1) and (2).
This assumption becomes far from reality when the seeding
capacity is small and it is not carefully allocated, because
in this case only a few video layers are exchanged between
peers and the upload bandwidths of peers for higher layers
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Figure 4: Total video bitrate served in the net-

work for different methods of allocating the auxil-

iary seeding capacity.

become significantly smaller than expected; and those for
lower layers are larger than expected. Except for this par-
ticular case, the simulation explained in this section with
dynamic P2P streaming systems confirms the accuracy of
our analysis.

6.2 Analyzing Seed Server Allocation Meth-
ods

Using our analytical model, we compare the two meth-
ods of random and contribution-based serving of peers intro-
duced in Section 3. We first compare these two approaches
in terms of the video quality that they can deliver to peers.
We compute the average delivered quality in these two cases
using our analytical model, and plot the results in Figure 3.
The figure demonstrates the impact of the seed server and
peer matching policy. The contribution-based policy clearly
outperforms the random policy. In some cases, up to 50
Mbps higher seeding capacity is needed for the random pol-
icy to provide the same quality level as the contribution-
based policy. This difference is specially significant for lim-
ited seed server capacities, which is the typical case in prac-
tice. The difference diminishes for very large seeding capaci-
ties, as the capacity approaches a value that suffices for fully
serving all peers with their demanded substreams.

Next, we compare the total video bitrate served in the net-
work. This value is the sum of the bitrates of all substreams
that the peers receive in the steady state. Figure 4 illus-
trates this value for the two cases of contribution-based and
random serving. Similar to the average video quality, the
gap between the bitrate served in these two cases is more
significant (up to 300 Mbps) for smaller seeding capacity
values. That is, careful serving with limited seeding capac-
ity leads to a much stronger boost in the capacity of the
network. Most notably, when there is no seeding, e.g., seed
servers are turned off in the steady state, the total bitrate
that peers can serve to each other in case of contribution-
based serving is nearly twice its value with random serving.
As another example, the random approach can boost a 50
Mbps seeding capacity to a throughput of 540 Mbps in the
P2P system, whereas this value is 660 Mbps (22% higher)
with careful serving.
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Figure 5: Maximum number of peers that the sys-

tem can admit when a flash crowd of peers arrives.

Therefore, our analysis can be used to analyze the im-
pact of different methods for allocating seed servers and/or
matching peers on the throughput of P2P systems. We
presented two sample methods, serving randomly and serv-
ing towards maximizing the overall video quality delivered.
Nevertheless, other methods and heuristics for prioritizing
peers and their requests can as well be accommodated in
the analytical model. For example, in Eq. (4) one might
take into account not only the upload capacity of the re-
questing peer, but also the demanded substreams in order
to minimize the gap between peers’ received layers and their
demanded layers.

6.3 Analyzing Flash Crowd Scenarios
(Answering Q3)

One of the important concerns for administrators of multi-
media streaming systems is the flash crowd event, in which a
large volume of peers arrive in the system at approximately
the same time. This imposes an extensive load on the sys-
tem and may significantly impact its performance. In such
events, the system may not be able to serve all the newly
arrived peers, and may have to reject many peers. In these
scenarios, an important question is how many peers the sys-
tem can admit in case of a flash crowd of peers.

Using the flash crowd analysis in Section 4.4, we obtain the
maximum number of peers (arriving together) that can be
served by the system for different values of seeding capacity.
The results of this test are plotted in Figure 5, which

answer question Q3 discussed in Section 1. In this fig-
ure, curves labeled “Analysis” show the upper bound on the
flash crowd size that can be supported by the system, using
the total serving capacity of peers and seed servers. Curves
labeled “Simulation” depict the number of peers supported
in a flash crowd in a simulated P2P system. To obtain these
numbers, we make a set of 10,000 peers arrive in the system
at the same time. Shortly after the arrivals, we measure
the number of peers out of these 10,000 that could receive a
video stream (the base layer). Note that the analytical re-
sults for the flash crowd test only provide an upper bound on
the number of peers that can be served. Accordingly, there
is a gap between simulation results and analysis results for
this test. Moreover, although with a smaller domain, the
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results of simulation also do not exhibit a smooth behav-
ior. This can be attributed to the high degree of dynamics
and instability introduced to the simulated system by the
large crowd of peers. Nevertheless, Figure 5 shows that for
smaller seed server capacities, the two serving methods make
a significant difference in terms of the flash crowd size that
can be supported. For example, to support 3,500 peers we
need approximately 70 Mbps capacity for seed server in case
of random serving, whereas we can support this number of
peers with almost no extra seeding if the serving has been
done carefully until the flash crowd arrives.

7. CONCLUSIONS
We have presented an analytical model to forecast the per-

formance of P2P streaming systems with scalable videos.
Given the characteristics of a P2P streaming system, our
model computes the long-term throughput of the network
in terms of the delivered video quality and the total served
bitrate. Our analysis can also asses the benefit of deploying
a given amount of seeding resources, and help determining
the cost-benefit tradeoff for provisioning a higher seeding
capacity to sustain a desired level of video quality. This
is an important benefit of the proposed analytical model,
since most current P2P streaming systems need to deploy
auxiliary seed servers in order to offset the capacity short-
age created by the asymmetry between peers’ upload and
download bandwidths. In addition, the proposed analysis
can estimate an upper bound on the capability of a P2P
network for supporting a flash crowd of peers, which is the
maximum number of peers that can be admitted to the sys-
tem at once. We have validated our analytical model using
extensive simulations with realistic parameters of dynamic
P2P streaming systems. The results of our simulations con-
firm the accuracy of the proposed model.
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