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A binary diffraction model is introduced to study the sensitivity of the wavefront phase of binary
computer-generated holograms on groove depth and duty-cycle variations. Analytical solutions to dif-
fraction efficiency, diffracted wavefront phase functions, and wavefront sensitivity functions are derived.
The derivation of these relationships is obtained by using the Fourier method. Results from experimental
data confirm the analysis. Several phase anomalies were discovered, and a simple graphical model of the
complex fields is applied to explain these phenomena. © 2006 Optical Society of America
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1. Introduction

Computer-generated holograms (CGHs) are diffractive
optical elements synthesized with the aid of comput-
ers. CGHs use diffraction to create wavefronts of light
with desired amplitudes and phases. As a null correc-
tor, CGH is widely used in aspheric surface testing.1,2

A common type of CGH is a binary hologram, which
consists of patterns of curved lines drawn onto or
etched into glass substrates. The patterns in a binary
CGH may be interpreted as bright and dark interfer-
ence fringes. A binary CGH can store both the ampli-
tude and phase information of the complex wavefronts
by controlling positions, widths, and groove depths of
the recorded patterns. The design of a CGH is sepa-
rated into two parts that allow the independent deter-
mination of amplitude and phase of the diffracted
light. The structure of the lines, such as the groove
depth, or duty cycle, is set to give the appropriate
diffraction efficiency. The overall pattern of lines is
chosen to give the correct shape of the wavefront. For
precise measurement, the error influence must be well
known and characterized. The CGH pattern errors and
surface figure errors of the substrate have been spec-
ified and separated by the absolute testing method.3,4

Nevertheless, the sensitivity of phase to the duty cycle

and groove depth, which is also very important for
optical testing, is less known.

We investigate the effects of duty-cycle and phase
depth variations of CGHs on the diffracted wavefront
phase. A binary diffraction model, which is assumed to
be in the scalar regime, is used for analysis. Diffraction
of the wavefront phase is expressed mathematically as
a function of the duty cycle and phase depth. Analyt-
ical solutions of wavefront phase sensitivity to duty-
cycle and phase depth deviations are derived. The data
from the experiments confirm the analysis results of
the model. Also, a graphical representation of diffrac-
tion fields is introduced, which provides an intuitive
method of diffraction wavefront analysis. Both ampli-
tude and phase values of the diffracted wavefront can
be easily obtained from this graphical representation.

2. Diffraction Model

The simplest form of a hologram is a linear diffraction
grating, where the spatial frequency of the grating
pattern is constant over the entire hologram. A CGH
with variable fringe spacing may be viewed as a col-
lection of linear gratings with variable spatial fre-
quencies. By controlling the spatial frequencies of
these linear gratings across the CGH, the incident
light can be deflected into any desired form. The per-
formance of a CGH may therefore be directly related
to the diffraction characteristics of a linear grating.5
Linear gratings are often used for studies on CGH
properties in order to avoid mathematical difficulties
in modeling complicated holograms. They are also
chosen as the model for our work.

The linear grating model used in this study is as-
sumed to have binary amplitude and phase distribu-
tions. A binary linear grating has a surface relief
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profile that may be described as an infinite train of
rectangular pulses with a uniform width. The wave-
length of the incident light is assumed to be much
smaller than the grating period (S), so the scalar
diffraction approximations can be applied.6 For a pla-
nar wavefront at normal incidence, the output wave-
front immediately past the grating, either reflected or
transmitted, can be expressed as a simple product of
the incident wavefront function and the grating sur-
face profile function. The complex amplitude of the

field, immediately after the grating, can be written as

u�x� � A0 � �A1 exp�i�� � A0�rect�x
b�1

S comb�x
S�, (1)

where A0 and A1 correspond to the amplitudes of the
output wavefronts from the peaks and valleys of the
grating, respectively. The values of A0 and A1 are
determined by the amplitude functions of the reflec-
tance or the transmittance coefficients at the grating
interface, using Fresnel equations.7 The phase func-
tion � represents the phase difference between light
from the peaks and that from the valleys of the grat-
ing. The form of the output wavefront function,
shown in Fig. 1, resembles the shape of the grating
profile.

Based on Fraunhofer diffraction theory, the far-
field diffraction wavefront may be related to the orig-
inal wavefront by a simple Fourier transform
relationship. Hence the far-field wavefront function

of a normally incident planar wavefront upon the
grating described in Eq. (1) is

U��� � ��u�x�	
� A0���� � �A1 exp�i��

� A0�b sinc�b�� comb�S��

�
A0���� � �A1 cos���

� A0�D sinc�DS�� �
m���

�

��� �
m
S ��

� i
A1 sin���D sinc�DS�� �
m���

�

��� �
m
S ��;

(2)

looking at one order at a time,

where � gives the component of the diffracted light in
the direction of � � m��S; the duty-cycle D of the
linear grating is defined as D � b�S; and m is the
diffraction order. Equation (2) shows that the diffrac-
tion wavefront function U��� has nonzero values only
when � has a value that is an integer multiple of 1�S.
This behavior describes the existence of multiple dif-
fractive orders. This equation also serves as a foun-
dation for the rest of this study.

A. Diffraction Efficiency

The diffraction efficiency of a specific diffraction order
describes the efficiency of the hologram in deflecting
light into a particular direction. Diffraction efficiency
� is defined as the ratio of the intensity of the dif-

�
�A0 � �A1 cos��� � A0�D	 � i�A1 sin���D	, m � 0
��A1 cos��� � A0�D sinc�mD�	 � i�A1 sin���D sinc�mD�	, m � 	 1, 	 2, . . .,

Fig. 1. Output complex wavefront immediately after the diffrac-
tion grating.

Fig. 2. Diffraction efficiency of a phase grating as a function of the
duty cycle and phase depth for the zero-order diffraction beam.

Fig. 3. Diffraction efficiency of phase grating as a function of the
duty cycle for the non-zero-order diffraction beams with 0.5� phase
depth.
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fracted wavefront to that of the incident wavefront:


 �
�U����2

�U0����2. (3)

Assume the intensity of the incident wavefront
|U0���|2 is unit. Then, for the zero diffraction order
�m � 0�,


�m�0 � A0
2�1 � D�2 � A1

2D2 � 2A0A1D�1 � D�cos���.
(4)

For nonzero diffraction orders �m � 0�,


�m�0 � �A0
2 � A1

2 � 2A0A1 cos����D2 sinc2�mD�.
(5)

B. Wavefront Phase

The diffracted wavefront phase function may also be
achieved from Eq. (2). The phase function � is de-
fined as the ratio of the imaginary part to the real

part of the complex wavefront U���:

tan�� �
Im�U���	
Re�U���	

. (6)

For any single order of diffraction, the phase � can
be interpreted as the phase of the plane wave at the
grating.

Substituting Eq. (2) into Eq. (6) leads to

m � 0 : tan��m�0

�
DA1 sin���

A0�1 � D� � A1D cos���
, (7)

m � 	1, 	2, . . . : tan��m�0

�
A1 sin���sinc�mD�

��A0 � A1 cos����sinc�mD�
. (8)

The phase can be obtained by taking the arctan-
gent of these equations, and the unit of � is radians.
The wavefront phase W in waves can be obtained by

W �


2�
. (9)

Notice that the sinc�mD� functions are left in both
the numerator and denominator of Eq. (8). They need
to preserve the sign information for the phase un-
wrapping process. The phase unwrapping process
uses the sign information of the real and imaginary
parts of the complex wavefront U���, which allows
calculation of phase from the 0 to 2� period. The new
phase values are then evaluated point by point. Any
integer multiple of 2� can be added or subtracted
from the phase value to make the phase function
continuous.

Fig. 4. Diffraction wavefront phase of phase grating as a function of
the phase depth and duty cycle for the zero-order diffraction beam.

Fig. 5. Wavefront phases versus phase depth for first- and second-order diffraction beams for the phase grating.
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Fig. 6. Wavefront phase versus duty cycle for nonzero diffraction orders at 0.5� phase depth from phase grating.

Fig. 7. Analytical result for the wavefront phase sensitivity of
phase grating to phase depth variation for the zero-order beam.

Fig. 8. Analytical result for the wavefront phase sensitivity of
phase grating to the duty cycle for the zero-order beam.
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C. Phase Sensitivity to the Duty Cycle

We have shown that the diffracted wavefront phase
can be expressed as a function of the duty cycle and
phase depth. By taking the first derivative of Eq. (7)
and Eq. (8) with respect to either the duty cycle or
phase depth, the phase deviations due to the varia-
tions of these two parameters can be determined.
These deviations are defined as the wavefront sensi-
tivity functions. Equations (10) and (11) show the
wavefront sensitivity functions with respect to the
grating duty cycle:

m � 0 :
�m�0

�D

�
1

1 � �tan��m�0�2

� tan��m�0

�D

�
A0A1 sin �

A1
2D2 � A0

2�1 � D�2 � 2A0A1D�1 � D�cos �
,

(10)

m � 	1, 	2, . . . :
�m�0

�D

�
1

1 � �tan��m�0�2

� tan��m�0

�D

�
�, for sinc�mD� � 0,
0, otherwise. (11)

Notice that duty-cycle errors produce wavefront
phase errors only in the zero-order diffraction. The
diffraction wavefront phase is not sensitive to CGH
duty-cycle errors at nonzero diffraction orders. For
the nonzero orders, diffraction efficiency is zero when
sinc�mD� equals to zero, and the sensitivities to the
duty cycle go to infinity at those points. Otherwise, in
Eq. (8), sinc�mD� in both numerator and denominator
can be cancelled, and the wavefront phase is not sen-
sitive to the duty cycle.

D. Phase Sensitivity to Phase Depth

Similarly, wavefront phase sensitivities to phase
depth at different diffraction orders are given as

m � 0 :
�m�0

��

�
1

1 � �tan��m�0�2

� tan��m�0

��

�
A1

2D2 � A0A1D�1 � D�cos �

A1
2D2 � A0

2�1 � D�2 � 2A0A1D�1 � D�cos �
,

(12)

m � 	1, 	2, . . . :
�m�0

��

�
1

1 � �tan��m�0�2

� tan��m�0

��

�
A1

2 � A0A1 cos �

A1
2 � A0

2 � 2A0A1 cos �
. (13)

The wavefront sensitivity functions [Eqs. (10)–(13)]
provide a means of calculating the phase changes in
the wavefront that result from duty-cycle or phase
depth variations. They can be used to identify holo-
gram structures that are the most or the least sensi-
tive to duty-cycle and groove depth fabrication
uncertainties. The information may also be used to
estimate error budgets for the applications of CGHs.8

The sensitivity functions can be evaluated directly
to give the wavefront error due to variations in the
duty cycle or phase depth:

�WD �
1

2�

�

�D �D �
1

2�

�

�D��D
D �D, (14)

�W� �
�

��
�� �

�

�����

� ��, (15)

where �D is the duty-cycle variation across the grat-
ing; �WD is the phase variation in waves due to duty-
cycle variation, �� is the phase depth variation in
radians across the grating, and �W� is the phase
variation in waves due to phase depth variation.

As long as the duty-cycle and phase depth varia-
tions vary over spatial scales that are large compared
to the grating spacing, we can use the functions above
to determine the coupling between fabrication errors
and system performance.

3. Numerical Simulations

A linear phase grating with an index of refraction of
1.5 is analyzed with the diffraction model derived in
the Section 2. Phase gratings are typically made by
etching the grating patterns onto a bare glass sub-
strate, and modulate only the phase function of the
incident wavefront. For this analysis, the grating is
used in reflection, so the groove depth is half of the
phase depth �. If the grating works in transmission,
then the groove depth is equal to the phase depth �.
An ideal reflection is assumed in our study, so
A0 � A1 � 1.

Fig. 9. Experimental setup for diffraction wavefronts measure-
ments of phase grating.
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Fig. 10. Design layout of the sample phase grating.

Fig. 11. Diffraction wavefront phase sensitivities to phase depth for the zero-order beam. Experimental data (vertical bar) versus
theoretical results (solid line).
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A. Diffraction Efficiency

Diffraction efficiencies for the phase grating are calcu-
lated using Eqs. (4) and (5). Figure 2 shows the diffraction
efficiency as a function of both the duty cycle and phase
depth for the zero-order beam. The minimum value of
diffraction efficiency occurs at the point where the phase
depth is ��2 and the duty cycle is 50%. The distribu-
tion is symmetric about this point.

Diffraction efficiencies for non-zero-order diffrac-
tion fields �m � 0� vary periodically with changes in
the grating duty cycle. Figure 3 shows the diffraction
efficiencies of different orders with the phase depth of
��2. Moreover, the number of times that maximum
efficiency values reach for each diffraction beam is
equal to the order number of that beam.

B. Wavefront Phase

Wavefront phase distributions are obtained from
Eqs. (7) and (8). Figure 4 shows the diffracted wave-

front phase as a function of the phase depth and the
duty cycle for the zero-order beam. The phase curves
at all duty cycles are continuous as a function of
phase depth, with the exception of the 50% duty cycle.
An anomalous phase discontinuity is observed along
the 50% duty-cycle line at the ��2 phase depth point.
It implies a phase reversal in the diffracted wavefront
when the phase depth reaches the ��2 point. The
discontinuity also indicates a high sensitivity of the
wavefront phase function in the zero diffraction order
to groove depth fabrication errors for gratings with a
50% duty cycle and ��2 phase depth. Further discus-
sions of this discontinuity are given in Section 5,
using the graphical complex field representation.

Phase functions for non-zero-order beams �m � 0� are
shown in both Figs. 5 and 6. Figure 5 gives the rela-
tionship between the wavefront phase and the phase
depth for all non zero orders. It is shown that the
wavefront phase varies linearly with the phase

Fig. 12. Diffraction wavefront phase deviations per 1% duty-cycle variation for the zero-order beam. Experimental data (vertical bar)
versus theoretical results (solid curve).
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depth. It is also obvious that the dependence of wave-
front phase on variations in phase depth errors is
constant.

Figure 6 shows the relationship between the wave-
front phase and duty cycle for non-zero-order beams.
Notice that the phase functions exhibit ��2 disconti-
nuities for diffraction orders higher than 1. A ��2
phase discontinuity occurs at a 50% duty-cycle point
for the second-order diffraction beam. Two ��2 phase
steps occur for the third-order diffraction, at 33.3%
and 66.6% duty-cycle points. These phase jumps are
the direct results of the sign changes of the sinc�mD�
function in Eq. (8). The alteration between positive
and negative values of the sinc function causes the
calculated phase values to change by 	� rad. The
number of discontinuities that occur when the grat-
ing duty cycle varies from 0% to 100% is equal to the
diffraction order number minus one. Figure 6 also
implies that deviations in the grating duty cycle have

no effect on the wavefront phase for non-zero-order
beams.

C. Wavefront Phase Sensitivity

In Subsections 2.C and 2.D, the analytical solutions
of diffraction wavefront phase sensitivities to duty-
cycle and phase depth variations are derived. Based
on these equations, the diffracted wavefront phase
sensitivities can be represented in a graphical
format.

Figure 7 shows the wavefront phase sensitivity to
the phase depth for the zero-order beam. Gratings
with various duty cycles are shown. A 0.1� phase
depth error will produce a �0.075� wavefront phase
error for the phase grating with a 30% duty cycle and
a nominal phase depth of 0.5�. The same phase depth
error produces a �0.03� wavefront phase error for
the phase grating with a 30% duty cycle and a nom-
inal phase depth of 0.1�. It is also realized that phase

Fig. 13. Wavefront phase sensitivity functions per phase depth variations for the first-order diffraction wavefront. Experimental data
(vertical bars) versus theoretical data (solid curve).

Fig. 14. Wavefront phase sensitivity functions per 1% duty-cycle variations for the first-order diffraction wavefront of phase grating.
Experimental data (vertical bars) versus theoretical data (solid curve).
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Fig. 15. Interferogram indicating diffraction efficiency distribution and wavefront phase as a function of the duty cycle at different
diffraction orders. The top chart shows the corresponding theoretical values.
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gratings with a 50% duty cycle are extremely sensi-
tive to the phase depth variations at a 0.5� nominal
phase depth.

Figure 8 illustrates the wavefront phase changes
that result from 1% deviations in the duty cycle. For
instance, a 1% variation will result in �0.004 waves
of phase error in the zero-order beam for phase grat-
ing with 30% duty cycle and 0.6 waves nominal phase
depth.

Using the wavefront sensitivity functions, wave-
front phase and efficiency errors can be estimated
with knowledge of the uncertainties from the CGH
fabrication processes. The wavefront sensitivity func-
tions can also be used for guidance for the design of
CGHs to reduce or eliminate wavefront errors pro-
duced by fabrication uncertainties.

4. Validation of Model

To verify the wavefront prediction by the model, two
sample phase gratings were fabricated. A phase-
shifting Fizeau interferometer was used to measure
the diffraction wavefronts produced by the sample
gratings, as shown in Fig. 9. The sample grating was
treated as a flat test plate, and a transmission flat

with ��20 accuracy �� � 632.8 nm� was used as the
reference. The distance between the test grating and
reference flat was minimized during the experiments
in order to reduce air turbulence in the test beam
path.

The first sample phase grating was designed for a
reference wavelength of 0.633 �m. The sample grat-
ing is divided into a 5 � 11 array, where each cell in
the array contains a linear grating with the specific
duty cycle and phase depth, as shown in Fig. 10.
Along the rows of the grating array, the duty cycle
varies in 2% increments from 44% to 60%. Duty-cycle
gratings of 0% and 100% are placed at the first and
the last cell of each row in the grating array. Groove
depths or half-phase depths of the columns are 0.22�,
0.24�, 0.25�, 0.27�, and 0.29�.

For the zero-order measurement, the sample
grating was aligned parallel to the reference surface.
Optical interferometric measurements provide infor-
mation on the wavefront phase of the test beam rel-
ative to the reference wavefront. In order to avoid
unnecessary complications or confusion when com-
paring the experimental results with the theoretical
data, phase deviations between adjacent grating cells
were used in our analysis instead of the absolute
phase values. The phase deviation functions in Sec-
tion 5 represent wavefront phase changes as a result
of variations in the grating duty cycle or the phase
depth.

Linear gratings with the same duty cycle on the
sample grating array were measured together to de-
termine wavefront phase sensitivities as a function of
phase depth variations. Measured wavefront phase
sensitivities to the phase depth for gratings with var-
ious duty cycles are shown in Fig. 11. Theoretical
wavefront phase sensitivities are overlaid on the
experimental results. The error bars of the experi-
mental data provide information on the noise and
confidence level of our results. A large standard de-
viation of the data implies a high noise level or a large
amount of random errors in our measurements. For
the phase sensitivities to phase depth analysis, the
experimental results agree well with the theoretical
data in most cases.

Gratings with the same groove depth were mea-

Fig. 16. Graphical representation of the complex diffraction
wavefront produced by a phase grating with 40% duty cycle for the
zero-order beam.

Fig. 17. Graphical representation of the complex
diffraction fields at five different diffraction orders for
a phase grating with a 40% duty cycle.
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sured together in order to determine wavefront phase
sensitivities as a function of grating duty-cycle vari-
ations. Wavefront phase deviations per 1% duty-cycle
variations for gratings with various phase depths are
given in Fig. 12. Although the measured data did not
agree perfectly with the theoretical predication, gen-
eral behaviors hypothesized by our analytical models
were clearly observed. And the measured wavefront
sensitivities to the duty cycle are within the theoret-
ical scale. Random errors, such as the substrate non-
flatness and measurement errors, may result in the
deviations of the measured data from the theoretical
calculations.

To measure the first diffraction order wavefront,
the sample grating was tilted with respect to the
reference flat, so that the first-order beam was

seen by the interferometer [Fig. 9(b)]. Our analytical
model predicts constant sensitivity to phase depth
variations for all non-zero-order diffraction beams.
This agrees with the measured data, shown in
Fig. 13.

The measured wavefront sensitivities to grating
duty-cycle variations are shown in Fig. 14. According
to our analytical model, the diffracted wavefront
phases are not sensitive to grating duty-cycle varia-
tions. The measured data agree well with this theo-
retical predication.

The second grating sample was fabricated with
duty cycles ranging from 0% to 100%, in 10% incre-
ments and with a constant groove depth. As shown in
Fig. 3, the diffraction efficiency for nonzero beams
varies periodically with changes in the grating duty
cycle, and the number of times that maximum effi-
ciencies can be obtained for each diffraction order is
equal to the order number. Also recall Fig. 6 shows
that phase discontinuity occurs when sinc�mD� � 0.
These predictions can be verified directly with the
help of interferograms obtained from the sample
grating, as shown in Fig. 15. Parallel fringes seen
across the vertical direction (y direction) of all inter-
ferograms indicate the tilt of the sample grating
in the vertical direction. The tilt of the sample grating
in the horizontal direction was eliminated. Observed
intensity levels along the x direction of the inter-
ferograms correspond directly to the diffraction effi-
ciencies of gratings with various duty cycles at each
diffraction order. A normalized intensity distribution
plot based on the theoretical diffraction efficiency is
above each interferogram. The phase reversal effects
between different grating duty cycles are also in-
cluded in the intensity plots. Discontinuities of the
fringes in the interferograms correspond to the dis-
continuities of the phase function, or phase reversal.
As seen from Fig. 15, observed intensity distribution
functions agree perfectly with the theoretical predic-
tions. Periodicity of the diffraction efficiency func-
tions for the non-zero-order beams produced by the
sample gratings can be clearly identified. Phase re-
versals, or ��2 phase discontinuities, are also ob-
served in the interferograms.

5. Graphical Representation of Diffraction Fields

A. Representation of Diffraction in the Complex Plane

Diffraction fields may be represented by plotting
the real and the imaginary parts of the diffraction
wavefronts in a complex coordinates. This graphical
representation provides an intuitive view of the dif-
fracted wavefront phase function. Both diffraction ef-
ficiency and wavefront phase values may be easily
obtained from the plot. Figure 16 gives a demonstra-
tion of this graphical representation. The circle in the
plot contains the complete solutions of a phase grat-
ing with a 40% duty cycle at the zero-order diffrac-
tion. Each point in the circle corresponds to different
values of phase depth. A vector �r� pointing from the
origin of the complex coordinate to a point on the
circle corresponds to a solution of the diffraction fields

Fig. 18. Graphical representation of the complex diffraction fields
in zero diffraction order produced by a phase grating with a 50%
duty cycle.

Fig. 19. Graphical representation of the complex diffraction fields
in zero diffraction order produced by a phase grating with 45% and
55% duty cycles.
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produced by the grating at a specific phase depth. As
the grating phase depth increases, the tip of vector
travels along the circle in the counterclockwise direc-
tion that is indicated by the arrow in the figure. The
magnitude of the vector �r� gives the amplitude of the
diffraction field, while the angle between the vector
�r� and the real axis gives the phase value �� of the
diffraction field.

As an example, in Fig. 16 the vector r is pointing to
the � � 0.2� point on the circle. This point corre-
sponds to the zero-order diffraction beam of a phase
grating with a 40% duty cycle and 0.2 waves of
phase depth. The magnitude of the vector is 0.82 and
the corresponding efficiency is 
 � 0.822 � 67%. The
angle between the vector r and the real axis is
approximately 28°, which gives a wavefront phase
 � 28°�360° � 0.077. Figure 17 illustrates the
graphical representations of the complex diffraction
fields for both zero and nonzero diffraction orders.
Those graphical representations can be directly de-
rived from Eq. (2).

B. Graphical Explanation of Phase Anomaly

One advantage of the complex field plot is that anom-
alous phase discontinuities can be explained easily.
Recall Fig. 4 where a phase discontinuity was ob-
served for the zero-order diffraction beam along the
50% duty-cycle line at a ��2 phase depth. The expla-
nation of the phase discontinuity was not obvious
from the derived equations. However, it may be ex-
plained directly using the complex field representa-
tion.

Figure 18 gives the graphical representation of the
zero-order diffraction field at 50% duty cycle with the
phase depth varied from zero to one wave. The zero
phase depth point is located on the real axis one unit
away from the origin. As the phase depth increases,
the solution point travels counterclockwise along
the circle. For the phase depth of 0.45� and 0.55�, the
wavefront phases are 81° and �81°, respectively. The
phase change is about 162°. When the vector �r�
passes the origin, where the phase depth equals to
��2, the angle of the vector varies abruptly from �90°
to �90°, or the wavefront displays a � phase change.
At this point, the diffraction efficiency of the grating
is zero. Therefore, the apparent discontinuity in
phase is actually a continuous transition in the com-
plex field.

Figure 19 shows how the wavefront phase changes
with respect to the duty cycle at the 0.5� phase depth.
For the duty cycles of 45% and 55%, the wavefront
phases are 0° and 180°, respectively. For duty cycles
of less than 50%, the wavefront phases at the 0.5�
phase depth are 0°. Likewise, the wavefront phases
are 180° for duty cycles greater than 50%. It means
there is a discontinuity at the point where the duty
cycle is 50%.

6. Conclusion

We have shown that the method of Fourier analysis
can be applied to determine wavefront phase as well
as amplitude and diffraction efficiency. The validity
of this analysis is demonstrated by direct measure-
ment of wavefront phase using an interferometer. We
noted two interesting cases where the phase can
jump abruptly by a half-wave. These jumps are pre-
dicted by the Fourier model and they can be readily
explained using a graphical depiction of how the dif-
fracted wavefront behaves in the complex plane.

This work has been supported in part by the East-
man Kodak Company. Special thanks go to Steve
Arnold at Diffraction International for making the
grating samples.
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