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Colony  formation was the first step  towards evolution of multicellularity in 

many  macroscopic organisms. Dictyostelid social amoebas have used this 

strategy for over 600 Myr to form fruiting  structures of increasing complexity. 

To understand in which order multicellular complexity evolved, we measured 

24 phenotypic characters over 99 dictyostelid species. Using phylogenetic 

comparative methods, we show  that the last common ancestor  (LCA) of 

Dictyostelia probably erected  small  fruiting  structures directly  from  aggre- 

gates.  It  secreted   cAMP  to  coordinate fruiting   body  morphogenesis, and 

another compound to mediate aggregation. This phenotype persisted up  to 

the LCAs of three of the four major groups of Dictyostelia. The group 4 LCA 

co-opted cAMP for aggregation and  evolved much  larger  fruiting  structures. 

However, it lost encystation, the survival strategy of solitary  amoebas that  is 

retained by many  species in groups 1 – 3. Large structures, phototropism and 

a migrating intermediate ‘slug’ stage coevolved as evolutionary novelties 

within   most  groups. Overall,  dictyostelids show  considerable plasticity in 

the  size  and  shape   of  multicellular structures,  both  within   and  between 

species. This probably reflects constraints placed  by colonial life on develop- 

mental  control  mechanisms, which,  depending on local cell density, need  to 

direct from 10 to a million cells into forming  a functional fructification. 

 
 
 

1. Introduction 
A central  problem in biology  is to understand how  complex  multicellular life 

forms evolved from unicellular ancestors. In many  and  perhaps all cases, colony 

formation may  have  been  the  first  step  towards multicellularity [1]. Although 

higher  plants  and  animals  have converted to zygotic  multicellularity, colonial or 

aggregative multicellularity still occurs  in many  eukaryote kingdoms, such  as 

Chromalveolata [2], Excavata  [3], Amoebozoa [4,5] and Opisthokonta [6]. 

We  investigate  molecular  changes   that   allowed  colonial   organisms  to 

achieve  greater  levels of multicellular complexity. Dictyostelid social amoebas 

offer  unique  opportunities to  resolve   this  problem.  They  are  a  genetically 

diverse   group [7], which  contains   species  that  form  structures of  less  than 

100 cells and  one or two  cell types  to species that  can organize up to a million 

amoebas in a fruiting  body  consisting of five different  cell types  [4,8 – 10]. Over 

a  100 species  have  been  isolated,  which  can  be  subdivided into  four  major 
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groups based  on small subunit (SSU) rRNA  and  a-tubulin 

sequence  data  [11,12]. The  genomes of species  representing 

the  major  groups are  now  sequenced ([7,13,14]; P. Schaap  & 

G. Glö ckner  2013, unpublished data),  providing information 

of  genotypic  evolution  in  Dictyostelia.  To  link  this  infor- 

mation  to evolution of multicellularity, phylogeny-wide 

phenotypic analysis  of Dictyostelia is required. Phenotypic 

characters were  previously collated  from original  species 

diagnosis [11]. However, these diagnoses span  a period of 150 

years  and  are not consistent in the range,  depth and  accuracy 

of character evaluation. 

In this work, we have measured 21 traits that were partially 

covered  by the original  diagnoses and we investigated deeper 

traits,  such  as the alternative survival strategy of encystation, 

the ability to form motile ‘slugs’ and the identity of the signals 

that  coordinate cell movement during aggregation and  mor- 

phogenesis. The dataset of phenotypic traits  was  submitted 

to  phylogenetic  comparative  analysis   to  retrace   character 

history  and  identify  correlated evolution of characters. 

 

 

2. Material and methods 

(a) Analysis of phenotypic  characters 
(i) Culture 
For analysis  of morphology, species were  cultured on non-nutri- 

ent  (NN)  agar  with  pregrown Klebsiella aerogenes [15]. For other 

experiments, species  were  co-cultured with  K. aerogenes on one- 

fifth standard medium or one-third lactose-peptone agar  with 

charcoal  for robust  and  delicate  species,  respectively (EXCEL file 

‘Trait_Analysis’,  sheet  8). 
 

 

(ii) Morphological characters 
The  shape   and   dimensions  of  multicellular  structures  were 

mostly  assessed or  measured in situ  from  agar  plates,  using  a 

Leica  MZ16  stereo  microscope, equipped  with   graticule.  The 

morphological   characteristics  of   amoebas  and    stalks    were 

assessed by transferring cells and  structures to a droplet of phos- 

phate  buffer  (PB) (10 mM  Na/K-phosphate, pH  6.5) on  a slide 

glass.  Spore  dimensions were  measured from  printed  images. 

Each feature  was measured in 25 – 50 individuals of each species. 

 
(iii)  Phototaxis and phototropism 
Amoebas were  deposited as 10 ml streaks,  containing 3 × 107  or 

10
8
cells ml

21   
on  agar  and  incubated under unilateral illumina- 

tion.  After  1 – 8 days,  the  developing structures were  scored  for 

phototaxis or phototropism. 

 
(iv)  Effects of putative  chemoattractants on development 
Amoebas were  resuspended at 10

7  
or 3 × 10

7
cells ml

21  
in PB and 

incubated for up to 36 h as 10 ml droplets on NN  agar  containing 

Sp-cAMPS (Biolog, Bremen, Germany), glorin (Phoenix Pharmaceu- 

ticals, Burlingame, CA), folate (Sigma) or neopterin (Fluka, Buchs, 

Switzerland) with the solvents  of either compound as controls. 
 

 

(b) Phylogenetic comparative analyses 
(i) Phylogenetic inference 
The sequences of 32 orthologous proteins were retrieved from six 

dictyostelid and  three  amoebozoan genomes and  aligned  using 

M-COFFEE [16]. The concatenated alignment was used  to construct 

a rooted  Dictyostelid core  phylogeny with  MRBAYES v. 3.2 [17] 

and  RAXML in TOPALi [18]. A rooted  phylogeny for all Dictyos- 

telia was  prepared by Bayesian  inference  after concatenating the 

SSU rDNA  alignment for all species [12] to the 32 protein align-       

2ent.  See the electronic  supplementary material, figures  S4 and 

S5 for details. 

 
(ii)  Ancestral state reconstruction 
The SSU rDNA_32  protein phylogeny (see the electronic  supple- 

mentary material, figure  S5) was  combined with  the matrices  of 

continuous or  coded  categorical   characters (sheets  2 and  3 of 

‘Trait_Analysis’).  For continuous traits, ancestral states were 

estimated  by  a  maximum-likelihood-based method  under  a 

Brownian  motion   model   of  evolution  [19].  All  traits   showed 

high   lambda  values   (range   0.65 – 0.94),  indicating  that   this 

model  provides an adequate fit to the data  (see the electronic 

supplementary material, table S1). For categorical  traits, marginal 

ancestral states  were  estimated using  a Markov  continuous time 

model  [20] in  phytools [19]. For  each  trait,  the  fit  of a  model 

where  all transitions were  set to equal  values  (equal  probability 

of gain  or loss of the  trait)  was  compared with  a model  where 

each   transition  parameter  could   take   a  distinct   value.   The 

model  that  provided a better  fit to the  data  was  selected  using 

a likelihood ratio  test. 

 

(iii) Correlation analyses 
Correlated evolution of quantitative characters was  determined 

using  phylogenetic generalized least squares (PGLS; [21]), as 

implemented in  the  package CAIC  [22]. Correlations between 

all  characters  (continuous  and   categorical)   were   determined 

using  the ‘Discrete’ test [20], implemented in MESQUITE [23]. ‘Dis- 

crete’ compares a model  in which  transitions among  character 

states  are  independent, with  a model  in which  transition rates 

depend on the state of the other  character (correlated evolution). 

The fit of the  models  is evaluated using  a likelihood ratio  test. 

Significance ( p-values) of the log likelihood differences  were esti- 

mated with  100 simulations. To correct for wrongly rejected null 

hypotheses in multiple comparisons, the threshold p-value for 

rejecting  the  null  hypothesis (no  correlation between datasets) 

was  adjusted by a false discovery rate-based method [24]. 

 

 

3. Results 

(a) Phenotype analysis 
(i)  The cellular level 
Growing amoebas are morphologically similar  in all dictyos- 

telids,    and    show    filose   pseudopodia,   prominent   food 

vacuoles   and   contractile   vacuoles   [9].  Spores,   which   are 

formed  in fruiting  structures, range  from  round to narrowly 

elliptical   and   often  contain   conspicuous  granules  at  their 

poles,  which   are  either   grouped  tightly   (consolidated) or 

loosely (unconsolidated). Continuous (quantitative) charac- 

ters, such as cross-section area, length  and  diameter were 

measured for amoebas and  spores,  and  recalculated to yield 

average diameter and  eccentricity  (length  divided by diam- 

eter).  The descriptive statistics  of these  and  all other 

quantitative traits  are summarized in EXCEL  file ‘Trait_Analy- 

sis’, sheet 2. The range  of averaged values  per species was 

subdivided into  four  intervals, such  that  each  interval con- 

tained   an  equal   number  of  species.   These  intervals, the 

character states,  are plotted onto  the  previously constructed 

SSU rDNA  phylogeny [12] in the  electronic  supplementary 

material, figure S1. The states of categorical  (qualitative) char- 

acters  were  also plotted onto  the phylogeny in the electronic 

supplementary material, figure  S1. To assess  group-specific 

trends in  character evolution, proportional  representations 

of character states  in each  group were  calculated ( figure  1). 
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Figure 1. (a – y) Fractions of character states in each major group or clade. Qualitative and quantitative features that define  species phenotype  were measured  or inves- 

tigated  over 99 species. For quantitative characters, the range of measured values was divided  into  four  intervals,  representing the character states. For qualitative 
characters, the  states represent the observed different  versions of the feature. The number  of states for each character was counted for each major taxon group or 

clade of the Dictyostelid phylogeny [11] and divided by the number of species per group/clade.  For polymorphic  characters, the dominant  state was counted  as 2/3 

and the less dominant  state as 1/3. The resulting  fractions were plotted  as stacked bar graphs in which  the colours denote the different  character states as indicated. 
 

 
Group 2 was subdivided in clade 2A, which  contains  only 

acytostelids and  clade  2B, which  contains  a mixture of poly- 

sphondylids and  dictyostelids. Across  most  characters, clade 

2A was more different from clade 2B than from any other group. 

Amoeba  diameters  range   from   4  to   17 mm  between 

species, but there are no marked differences  in amoeba 

dimensions between groups ( figure  1a,b). Spores were  mark- 

edly  smaller  in  group 1 ( figure  1c) and  usually harboured 

consolidated granules in groups 1 and  3, and  unconsolidated 

granules in  clade  2B ( figure  1l ). Most  species  in  clade  2A 

have  round spores,  whereas the  oblong  spores  of group 4 

species  mostly  lack prominent polar  granules. 

 
 

(ii)  Multicellular  structures 
Cells can either aggregate as individuals forming  a mound, or 

join  up  to  form  inflowing streams,   which  sometimes frag- 

ment  into  accessory  aggregates. Intermediate  forms,  where 

cells first  aggregate individually and  then  form  streams,  or 

do both,  also occur. In group 4, species  always  aggregate in 

streams,  whereas species in the other  groups show  a mixture 

of aggregation types  ( figure  1m). Aggregates are on average 

larger  in groups 4 and  clade  2B than  in groups 1, clade  2A 

and  3 ( figure  1e). Aggregates transform  into  one  or  more 

fruiting  body  precursors, the sorogens or slugs. Slugs are also 

relatively large in groups 4 and  clade 2B, and  this trend  con- 

tinues  in the dimensions of the stalk  and  spore  head  (sorus) 

of the fruiting  body  ( figure  1f–k). Despite  these  trends, there 

is large size variation between multicellular structures within 

species (see the electronic  supplementary material, figure S2), 

illustrating that species can accommodate greatly  varying 

amounts of cells within  a single structure. 

Sorogens either form fruiting bodies directly or migrate 

horizontally,  often   leaving   the  stalk   behind.  Migration  is 

mostly  absent  or weak  in groups 1 – 3 and  common in group 

4 ( figure  1n). Fruiting body  habit  and  branching pattern also 

show group-specific trends, with group 4 species mainly form- 

ing solitary,  unbranched fruiting  structures, while multiple 

loosely  (gregarious) to tightly  (coremiform) grouped fruiting 

bodies emerge from group 1 – 3 aggregates ( figure 1o; electronic 

supplementary material, figure  S1). Lateral  branching is 

common in groups 1 and  3, while  most  clade 2B species and 

two species that are intermediate to groups 3 and 4 form regu- 

lar  whorls of branches ( figure  1p; electronic  supplementary 

material, figure S1). 

In most  Dictyostelia, the  stalk  consists  of highly  vacuo- 

lated  cells with  a cellulose  wall,  except  for clade  2A, where 

the stalk is a cellulose tube  (see the electronic  supplementary 

material, figure S1). The stalk tip is commonly broadened 

(clavate  or capitate)  in groups 1 and  4, pointed (acuminate 

or piliform)  in clades  2A and  2B, and  a mixture of those  in 

group 3 ( figure 1q). The stalk base is usually round to conical, 

but a small clade of group 3 species split the stalk in sections 

to  form   a  crampon  ( figure   1r;  electronic   supplementary 

material, figure  S1). Several  group 4 species  form  a cellular 

basal  disc or supporter to buttress the stalk  ( figure  1s). 
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Figure  2. Disruption of aggregation and morphogenesis by putative attractants. Cells were spotted as 10 ml  droplets on NN agar containing  1, 10 or 100 mM  of 

either  Sp-cAMPS, glorin,  folate  or neopterin.  The progression  of aggregation  and fructification   were  recorded at 2 h intervals. The types of deviations (T) from the 

control treatment (no additives or solvent) that occurred during  aggregation (aggr.) and fructification  ( fru.)  are separately shown in the figure by colour-coded 

boxes. The concentrations  where  deviations  were  first observable  (C) are shown  in  shades of  grey.  Eight  delicate  species that  only develop on charcoal agar 
could not  be tested,  because the  charcoal adsorbs the  attractants.  For those species and for chemoattractants  that were not tested on all species, boxes  retain 

the  beige background  colour. The colour-coding  of species names reflects group/clade  affiliation  as in  the  electronic supplementary  material,  figure  S5. 

 

(iii) Encystation 
Similar  to  their  amoebozoan ancestors, several  dictyostelids 

can  still  encyst  individually under  conditions that   do  not 

favour  aggregation [9]. To investigate encystation systemati- 

cally,  we   exposed  species   to  stress   conditions  known  to 

trigger  encystation. Because cells also died  and  disintegrated 

in response to stress, encystation could not be quantitated pre- 

cisely and  we distinguish between sparse  (0.1 – 1%), moderate 

(1 – 20%)  and  abundant  (20 – 100%)  encystation.  In  general, 

most group 2 polysphondylids and acytostelids encysted abun- 

dantly ( figure 1t; electronic supplementary material, figure S3). 

One-third of group 1 and half of group 3 species showed sparse 

to moderate encystation. Remarkably, no group 4 species could 

be induced to encyst. 

 
 

(iv)  Phototaxis and phototropism 
Both  the  migration of slugs  and  the  outgrowth of fruiting 

bodies  are often oriented towards light. These behaviours, 

termed  phototaxis  and   phototropism,  respectively,  direct 

the structures to the soil surface, where  spores  are readily  dis- 

persed [25]. We analysed phototaxis and  phototropism by 

developing species  under unilateral light.  Phototropism was 

not  observed for acytostelids in clade  2A, but  about  half of 

clade  2B species  were  strongly phototropic ( figure  1u; elec- 

tronic   supplementary  material,  figure   S1).  About   25  per 

cent of group 1 and  40 per  cent  of group 3 species  showed 

strong  phototropism and  over 60 per cent of group 4 species. 

Phototaxis requires the  ability  of slugs  to migrate. 

Migration was  also  scored  during development under inci- 

dent   light   ( figure   1n),   but   was   sometimes  worse   and 

sometimes better  under unilateral light. In group 4, approxi- 

mately   70  per  cent  of  species  migrate  strongly and   these 

species  are all phototactic. All migrating group 3 species  are 

phototactic and  most  of the  clade  2B species,  but  in groups 

1 and  clade  2A, both  migration and  phototaxis are weak  or 

absent  ( figure  1v,w). 

 
 

(v)  Use of chemoattractant 
The  chemoattractants for  aggregation are  only  known for  a 

few species. Dictyostelium discoideum and some group 4 species 

use  cAMP;  the  Polysphondylium violaceum chemoattractant  is 

glorin, a modified dipeptide [26], and the Dictyostelium minutum 

and  Dictyostelium lacteum chemoattractants were  identified as 

folate and neopterin, respectively [27,28]. Folate is also secreted 

by bacteria, and attracts many dictyostelids to their food. cAMP 

additionally coordinates cell movement during fruiting  body 

morphogenesis in  D.  discoideum [29].  Chemoattractants  are 

secreted  at nanomolar concentrations, which  renders their 

identification  a  major  challenge.   However,  a  less  stringent 

method can be performed to assess whether known molecules 

might  be used  as attractants. When incorporated in the agar at 

high concentrations, they usually delay or prevent aggregation, 

by disrupting the natural chemoattractant gradients. 

All species were spotted on agar containing increasing con- 

centrations of glorin, folate, neopterin or Sp-cAMPS. The latter 

was  used  instead of cAMP to prevent hydrolysis by secreted 

phosphodiesterases [30]. Developmental progression was 

scored  for deviations from normal aggregation and  fructifica- 

tion.  Effects on aggregation ranged from  time  delays,  less or 

smaller  aggregates formed, loss of streaming and  movement 

of cells out  of the  drop.  The  latter  occurs  because  the  cells 

degrade  the   chemoattractant  inside   the   drop   and   move 

towards  the   higher   concentration  outside.  If  compounds 

affect aggregation, subsequent multicellular development 

usually suffers  accordingly with  less, smaller  or  no  fruiting 

bodies  formed. 

Sp-cAMPS inhibits  aggregation of all group 4 species, but 

none  of the  species  in  groups 1 and  2 ( figures  1x and  2). 



  

 
 

 

Aggregation  of  a  single  group  3  species  is  inhibited  and 

of another promoted by Sp-cAMPS. Strikingly, Sp-cAMPS dis- 

rupts  or blocks fructification in almost  all group 1 – 3 species 

( figures  1y and  2). The  other  attractants exert  less  specific 

effects on individual species and were, owing  to the time-con- 

suming nature of the assays, only tested on four to eight species 

per taxon group ( figure 2). Folate and neopterin affected about 

half of the species on which they were tested in groups 1, 2 and 

4, but mostly only at 100 mM. Folate was particularly effective 

in disrupting aggregation of over half of group 3 species. None 

of the  tested  group 4 species  responded to glorin.  However, 

aggregation of P. violaceum and  its two relatives,  Dictyostelium 

laterosorum and  Polysphondylium patagonicum, which  occupy  a 

small  clade  between groups 3 and  4, was  disrupted by 1 or 

10 mM glorin, as was aggregation of several  species in groups 

1 – 3. There was no effect of folate, glorin and neopterin on cul- 

mination that  could  not  be attributed to an  earlier  effect on 

aggregation.  Asghar   et  al.  [31]  recently   reported that   four 

group 1  and  nine  clade  2B species  showed  chemotaxis to 

glorin,  but  none  of three  tested  group 4 species.  Their choice 

of species partially overlaps with  ours,  and  both  studies  con- 

firm each others  results. 
 

 

(b) Evolutionary analysis 
(i)  Phylogeny reconstruction from 32 proteins 
A reliable phylogeny is of primary importance to retrace pheno- 

typic evolution. The earlier SSU rDNA  and  b-tubulin-based 

phylogenies subdivided dictyostelids into the same grouping, 

but did not agree about the root of the tree, with rDNA pointing 

to group 1 and  a-tubulin to group 2 as the earliest  diverging 

group [11]. A phylogeny inferred from 33 proteins from species 

with  sequenced genomes, indicated that  the  root  was  placed 

between groups 2 and  4, but this analysis  lacked  group 3 

sequences and  used  very  distant taxa as outgroup [7]. Mean- 

while, three  more  dictyostelid genomes have  been sequenced: 

Dictyostelium purpureum  (Dpur) from  group 4 [14], D. lacteum 

(Dlac) from  group 3 (http://sacgb.fli-leibniz.de/cgi/index.pl) 

and  Acytostelium subglobosum (Asub) from  clade  2A (http:// 

acytodb.biol.tsu kuba.ac.jp/). Additionally, Amoebozoan gen- 

omes became available  that provide less distant outgroup 

sequences,  such   as   the   genomes  of  Entamoeba  histolytica 

[32], Acanthamoeba castellani [33] and  Physarum  polycephalum 

http://genome.wustl.edu/geno mes/view/physarum_poly- 

cephalum. We retrieved orthologues for all or most  of the 32 

genes of the previous set of 33 genes from the six dictyostelid 

and  three amoebozoan genomes and  prepared a concatenated 

alignment of about  18 180 amino  acids,  which  was  subjected 

to different  methods for phylogenetic inference. All methods 

robustly placed  the  root  between two  branches that  contain 

groups 1 and 2, and groups 3 and 4, respectively (figure 3a; elec- 

tronic  supplementary material, figure  S4a–e,o). This topology 

was also produced using  three out of four concatenated sets of 

seven of the shorter proteins (see the electronic  supplementary 

material, figure  S4f,h,i), but by only two of the four remaining 

larger   proteins  (see  the  electronic   supplementary  material, 

figure S4j,m), while SSU rDNA yielded  the same topology (see 

the electronic supplementary material, figure S4n) as previously 

[11]. The E. histolytica sequences diverged strongly from the other 

amoebozoan sequences, possibly  owing  to its anaerobic, para- 

sitic  lifestyle.   Deleting   these   sequences  did   not   affect  the 

rooting  (see the electronic  supplementary material, figure  S4e) 

and   they   were   omitted  from   subsequent  inference   of  a 

phylogeny for  all  Dictyostelia. This  phylogeny was  inferred      5 
from  the  earlier  alignment of the  SSU rDNAs  of all  species 

[11,12], concatenated to the 32 protein alignment of the group- 

representative and outgroup species (see the electronic sup- 

plementary  material, figure  S5). It  retains   almost   the  same 

ordering of species within  the four major groups as the earlier 

SSU rDNA  phylogenies [11,12], but the root is now  placed 

between two  branches that  contain   groups 1,2  and  groups 

3,4.  One   of  two   group-intermediate  species,   Dictyostelium 

polycarpum, which  was  previously located  between groups  2  

and  3, is now  a  sister  species  to  group 2. This  is probably 

not artefactual, since D. polycarpum displays morphological fea- 

tures, such as unconsolidated spore granules and pointed stalk 

tips that are characteristic features of group 2 (see the electronic 

supplementary material, figure S1). 

 
 

(ii)  Ancestral state reconstruction 
The newly inferred phylogeny was combined with the charac- 

ters  measured in  this  work  to  infer  the  phenotypes of the 

last common ancestors (LCAs) of major  groupings. Ancestral 

states   for   continuous  traits   were   reconstructed  using   a 

method based  on maximum likelihood [19] and  are listed  in 

‘Trait_Analysis’,  sheet  6. The ancestral state  values  for spore, 

sorogen  and  fruiting  body  dimensions at major  nodes  of the 

phylogeny are graphically represented in figure 3c. The infer- 

ence shows  that  the LCA to all Dictyostelia formed relatively 

small sorogens and  fruiting  bodies.  The LCAs to groups 1 – 3 

retained their small size, but the group 4 LCA increased fruit- 

ing body size about  2.5-fold ( figure 3c). However, within  each 

group, except for clade 2A, larger forms emerged, as illustrated 

for sorus diameter in figure 3b. 

For categorical  characters, we estimated ancestral states 

using  a Markov  continuous time model  [20]. For each charac- 

ter, the proportional likelihoods of ancestral states are plotted 

as pie sections  onto the phylogeny (see the electronic  supple- 

mentary material, figure S6a–p). For several  labile characters, 

such as aggregate and  stalk base shape  (see the electronic 

supplementary material, figure  S6b,h), the  ancestral states  at 

many  major nodes  are equivocal,  presenting roughly equal 

likelihoods for all different states. Characters for which ancestral 

states  at major  nodes  could  be inferred with  60 – 100% proba- 

bility are summarized in figure 3c. The LCA to all Dictyostelia 

formed  unbranched grouped fruiting  bodies (see the electronic 

supplementary material, figure S6d,e), with a cellular stalk and 

broadened stalk tip (see the electronic supplementary material, 

figure S6g,i). Its spores were elliptical and contained polar gran- 

ules  (see  the  electronic  supplementary  material, figure  S6a). 

It  used   cAMP  to  coordinate  fruiting   body   morphogenesis 

(see  the  electronic  supplementary  material, figure  S6p), but 

not aggregation (see the electronic supplementary material, 

figure S6o), which  may have  been mediated by glorin  (see the 

electronic supplementary material, figure S6n; [31]). 

Except for the broadened stalk  tip, these  character states 

persisted into major  branches I and  II, and  into the LCAs of 

groups 1 – 3. The LCA to group 2 gained  pointed stalk  tips, 

while  the  LCA  to  clade  2A  also  gained   an  acellular  stalk. 

The LCA of clade 2B adorned its fruiting  bodies  with regular 

whorls  of side branches, while the LCA of clade 2A lost polar 

spore  granules. The group 4 LCA also lost polar  spore  gran- 

ules, while its sorogens acquired migratory behaviour and  its 

amoebas used  cAMP for aggregation. It should be noted  that 

all inference  of ancestral states reflects probable trends in trait 

http://sacgb.fli-leibniz.de/cgi/index.pl
http://acytodb.biol.tsukuba.ac.jp/
http://acytodb.biol.tsukuba.ac.jp/
http://acytodb.biol.tsukuba.ac.jp/
http://genome.wustl.edu/genomes/view/physarum_polycephalum
http://genome.wustl.edu/genomes/view/physarum_polycephalum
http://genome.wustl.edu/genomes/view/physarum_polycephalum
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Figure 3. Phylogeny  correction  and ancestral state reconstruction.  (a) Genome-based core phylogeny. The sequences of 32 orthologous  proteins  in six group-  or clade- 
representative Dictyostelid taxa (Ddis/Dpur—group 4, Dlac—group 3, Ppal—clade  2B, Asub—clade 2A, Dfas—group 1) and three outgroup  taxa Ehis, Acas and PhyP 

were retrieved  from genome sequencing projects, aligned  and concatenated. The full alignment  and subsets thereof (see the electronic supplementary  material,  figure S4) 

were subjected to Bayesian inference for phylogeny  reconstruction  [17].  Bayesian posterior probabilities of nodes are indicated.   Scale bar: number  of substitutions per site. 

(b) Character evolution.  All measured characters were combined  with the newly inferred phylogeny for all Dictyostelia  (see the electronic supplementary material, figure S5) 

and subjected to inference of character history and ancestral state reconstruction using maximum-likelihood-based  methods. The analysis of quantitative characters is listed 
in EXCEL  file ‘Trait_Analysis’,  sheet 6 and of categorical characters in the electronic supplementary  material,  figure S6a– p. For graphical representation of the evolutionary 

history of the character ‘sorus diameter’,  the range of calculated values was subdivided  into  four intervals,  which,  represented by shades of blue, were plotted onto the 

phylogeny.  (c) Ancestral states at major nodes. For quantitative characters, the state values at nodes that connect major branches (highlighted  in colour in ‘Trait_Analysis’, 

sheet 6) were used to draw fruiting body, slug and spore dimensions at the correct relative  sizes onto  a schematic  of the deep topology  of the Dictyostelid  phylogeny.   Only 

stalks are presented at one-third  of their  length,  relative  to diameter.  For all categorical characters that showed a well-defined  character history, character states at major 

nodes were retrieved from the electronic supplementary  material,  figure S6 and plotted as cartoons onto the phylogeny. 
 

 
evolution, which  inevitably involves  uncertainty, and  not  a 

definitive  trait  history. 

 

 

(iii) Correlated character evolution 
To gain initial insight  into possible common causes for charac- 

ter evolution and  causal  relationships between characters, we 

investigated to what  extent  changes  in individual characters 

are  correlated. Standard  statistical   correlation methods  are 

not  appropriate,  because   species  have   varying  degrees   of 

shared ancestry and  cannot  be considered as independent 

samples [34 – 36]. To assess  correlations between continuous 

characters, we used  PGLS [21], which  estimates an evolution- 

ary parameter, lambda, simultaneously with  the regression 

parameters that provides the necessary correction of trait 

covariance based on the phylogenetic signal of the data [35,36]. 

The most obvious set of positively correlated traits  are the 

dimensions  of  aggregates,  sorogens  and   various  parts   of 

the  fruiting  body  as the  sorus,  stalk  and  stalk  base  (see the 

electronic supplementary material, table S2). This is not surpris- 

ing  since  large  aggregates will  normally give  rise  to  large 

fruiting   structures,  unless   they   split   up   to  form   multiple 

sorogens. There is a weak positive  correlation between the size 

of spores  and  the  size  of amoebas, and  between the  size  of 

either amoebas or spores and the size of multicellular structures. 

The variance in amoeba size explains 12 per cent of the variance 

in spore  size and  4 – 13% of the size variance  in multicellular 

structures. This suggests that  amoeba size  contributes to the 

size of spores and structures, but is not the major determinant. 

The categorical  characters form a much larger dataset and 

to correlate  these characters with each other and with the con- 

tinuous characters, we used  Pagel’s ‘Discrete’ test [20], which 

compares  the  difference   between  the  log  likelihoods  of  a 

model  where  the rates  of change  in each  character are inde- 

pendent of the  state  of the  other  and  a model  where  rates 

of change  depend on  the  state  of the  other  character.  The 

method is only applicable to binary  characters, and  we there- 

fore transformed multiple and  continuous states  into  binary 
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Figure 4. Correlated character evolution.  To assess which  characters evolved together,  the dictyostelid  phylogeny  was combined  with  a character matrix that was 

reconfigured  to express all characters in binary form  (‘Trait_Analysis’,  sheet 4). The ‘Discrete’ correlation  test [20] was run with  10 iterations to estimate the log 

likelihood difference (Likdif ) between alternative models of correlated and uncorrelated evolution, and 100 simulations to estimate p-values, when appropriate (see 
the electronic supplementary material, figure S7). Strong positive and negative correlations ( p ¼ 0; Likdif . 10) are highlighted  in amber and dark blue, respect- 

ively.  Weak positive  and negative  correlations ( p , 0.03; Likdif , 10) are highlighted in light  yellow and light  blue, respectively. 

 
expressions.  In  essence,  this  subdivides  continuous charac- 

ters into two  states:  small  (0) and  large  (1), while  categorical 

character  states    become    separate   characters  with    states 

absent  (0) and  present (1). The correlation matrix  is listed  in 

‘Trait_Analysis’,  sheet 7 and  is summarized in figure 4. 

The strong  positive  correlations between the  dimensions 

of multicellular structures that  were  detected with  PGLS are 

also   found   with   ‘Discrete’,  indicating  that   the   reduction 

from  continuous to binary  character states  has  no profound 

effect on the outcome of the analysis.  Large size of structures 

is negatively correlated with a clustered habit, consolidated 

spore  granules and  encystation. Mostly,  size is not  or nega- 

tively correlated with dominant branching. However, stalk 

length  is positively correlated with the formation of regular 

whorls  of branches. Interestingly, the size of structures is 

positively correlated with  cAMP-mediated streaming aggre- 

gation  and  with  the cellular  stalk,  slug  migration, phototaxis 

and  phototropism, with  the latter  two  features  very  strongly 

correlated with each other. 
 

 
 

4. Discussion 

(a) Robust sporulation from  loosely controlled 

morphogenesis 
The  traitmap of all  measured characters (see the  electronic 

supplementary material, figure  S1) shows  a fairly  scattered 

distribution  of  character  states   over   the   tree  with   many 

states  reappearing multiple times  in different  clades.  This is 

particularly the  case  for  features  that  describe  the  size  and 

shape  of aggregates, slugs  and  fruiting  bodies.  Most species 

are  also  individually polymorphic for  these  characters  (see 

‘Trait_Analysis’,   sheet   3,  columns  Q – X).  Depending  on 

local conditions of cell density, individual species  can make 

aggregates  and   fruiting   bodies   in  a  wide   range   of  sizes. 

Even  when  developed under standardized conditions, indi- 

vidual   structures  from   the   same   species   easily   show   a 

fourfold difference in size (see the electronic supplementary 

material, figure  S2). At  low  food  availability, even  a fairly 

large  species,  such  as  Polysphondylium  pallidum,  can  form 

fruiting  bodies  from as few as seven  cells [8]. 

The morphology of structures also varies  depending on 

cell density. Species, which  normally have  clustered or 

branched fruiting  bodies  show  solitary  and  unbranched 

phenotypes when  developing from small numbers of cells, 

while  normally solitary  and  unbranched species  show  some 

clustering and  branching at high  cell density. 

There is good  evidence  that fruiting  body  morphogenesis 

in D. discoideum, and  representative taxa from all four groups 

is coordinated by cAMP pulses  that are emitted by the tips of 

sorogens and  propagate through the structure as standing or 

spiral  waves  [29,37 – 40]. This is likely to be case for all Dic- 

tyostelia, since we show in this work that Sp-cAMPS, which 

desensitizes cells to cAMP pulses,  disrupts fruiting  body 

morphogenesis in almost  all investigated species  ( figure  2). 



 

cAMP pulses are produced by positive  and negative feedback ammonia in small sorogens would be limited  due  to dissipa- 

 

 
 

 of cAMP on its own  synthesis [41,42]. The output dynamics 

of this network, such as wave  form and  suppression of com- 

peting  oscillators,  which  govern  the size and shape  of fruiting 

structures, are easily affected  by genetic  variation in the com- 

ponent proteins and  naturally occurring physico-chemical 

factors [43 – 45]. Such variables can account  both  for morpho- 

logical variation between species and  within  species upon 

exposure to different  conditions. This environmentally adap- 

tive system for morphogenetic control and the consequent 

plasticity of forms that  it generates is eminently suited  for 

organizing variable  numbers of cells into functional units. 

However, it contrasts strongly with  the superimposed layers 

of genetic control  that shape  the body  plan of higher  animals, 

where,  for  obvious   reasons,   extensive   plasticity in  the  size 

and shape  of organs  and appendages is mostly  detrimental. 

 

(b)  Trends in the evolution of phenotype 
Despite  morphological plasticity, there  are trends in dictyos- 

telid phenotypic evolution. Ancestral  state reconstruction 

showed that  the LCA to all Dictyostelia as well as the LCAs 

of  the  two  major  branches and  groups 1 – 3 probably had 

small, unbranched fruiting  structures, containing elliptical 

spores with polar granules. cAMP was probably used to 

coordinate fruiting   body  morphogenesis, but  not  aggrega- 

tion,  which  could  have  been  mediated by  glorin  ( figure  2; 

[31]). The LCA to clade  2B evolved fruiting  structures with 

regular whorls  of side  branches, whereas the  group 4 LCA 

formed  large  unbranched fruiting  bodies.  It lost spore  gran- 

ules, but gained  cAMP as attractant for aggregation. Slug 

migration,  phototaxis  and   phototropism  evolved  several 

times  independently within  most  major  groups. 

Correlation   analysis    highlights   coevolution   of   large, 

solitary, unbranched multicellular structures, streaming aggre- 

gation,  slug migration, phototaxis and  phototropism, and  use 

of cAMP as attractant ( figure 4). The analysis can identify char- 

acters  that  evolved together, but  not  why  this  is the  case. 

However,  occasionally correlated  features   can  reveal   hints 

into  underlying causes.  This is, for example,  the case for the 

strong  positive  correlation between fruiting  bodies  size  and 

phototropism. This correlation does not only exist between 

species,  but  also within  phototropic species;  smaller  fruiting 

bodies  are  less  phototropic [46]. If phototropism depended 

on a specialized sensor, there is no reason why small structures 

should lack phototropism. Bonner et al. [47] proposed that 

ammonia, produced in response to light focused  by the tip at 

the  distal  side  of the  slug,  locally  speeds  up  cell movement 

and  causes  the tip to veer towards the light. This can explain 

the   size   dependency  of  phototropism,  since   build-up   of 

tion  into  the  atmosphere. Slug migration and  phototaxis are 

also strongly correlated with  size between species, and  this is 

also the case within  species  [48]. Lack of slug  migration and 

light  responsiveness could  therefore be a consequence of the 

small size of species. 

A more  enigmatic relationship that  was  already noted  in 

the 1970s [49] is the correlation between gain of cAMP as attrac- 

tant and loss of polar spore granules and encystation. The early 

workers also associated polar granules with smaller, branched 

or clustered fruiting  structures, as substantiated in this work 

( figure  4). It  can  be  envisaged that  more  robust   fructifica- 

tion made  encystation superfluous, but why this should be 

connected  with  spore  granules and  cAMP  is  unclear.   The 

answers may  come from  the function  and  ontogeny of spore 

granules and  more  importantly from  the  ecological  factors 

that acted on the gain and  loss of all these features.  These fac- 

tors, contained in the habitat, geographical origin and local 

climate conditions of species and  their interactions with  other 

organisms in the  rhizosphere provide the  ultimate cause  for 

phenotypic innovation. However, their influence  is at present 

difficult to address, owing  to sparse  sampling of most species 

and limited  information on their lifestyles in nature. 

The future  aim of our  work  is to identify  causal  relation- 

ships  between the evolution of multicellularity and  the 

evolution of genes and  genomes. Bioinformatic and  exper- 

imental   approaches  are  being  used   to  analyse   changes   in 

content,   regulation and  function   of  developmental  control 

genes between the recently  sequenced genomes of species 

representing  all  major   groups  of  Dictyostelia.  Combined 

with  the opportunity to replace  genes  in both  late and  early 

diverging species with more ancestral or derived alleles, 

respectively, such  approaches have  already yielded   insight 

into  the  evolutionary history  of  cAMP  signalling [50] and 

can ultimately identify  the critical genetic  modifications that 

caused  the emergence of multicellular life forms. 
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