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Abstract 
 

An experiment was conducted in a Cave-like environment to explore the relationship between 

physiological responses and each of breaks in presence, and utterances by virtual characters 

towards the participants. Twenty people explored a virtual environment (VE) that depicted a 

virtual bar scenario. The experiment was divided into a training and an experimental phase. 

During the experimental phase breaks in presence (BIPs) in form of whiteouts of the VE 

scenario were induced for 2 seconds at four equally spaced times during the approximate 5 

minutes in the bar scenario. Additionally 5 virtual characters addressed remarks at the 

subjects.  Physiological measures including ECG and GSR were recorded throughout the 

whole experiment. The heart rate, the heart rate variability and the event-related heart rate 

changes were calculated from the acquired ECG data. The frequency response of the GSR 

signal was calculated with a wavelet analysis. The study shows that the heart rate and heart 

rate variability parameters vary significantly between the training and experimental phase. 

GSR parameters and event-related heart rate changes show the occurrence of breaks in 

presence. Event-related heart rate changes also signified the virtual character utterances. 

There were also differences in response observed between more and less social phobic 

participants. 

 

Keywords: virtual environment, presence, breaks in presence, galvanic skin response, ECG, 

heart rate variability 
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1. Introduction 

1.1 Measuring Presence 
 
There are several strategies for the evaluation of the effectiveness of an immersive virtual 

environment (VE).  A VE may be designed for a certain task, and performance measures 

specific to that task used for evaluation. The idea of ‘presence’ may also be used – this is 

more ubiquitous in the sense that it applies across many different applications, rather than 

being task specific. Often defined as the ‘sense of being there’ in the place depicted by the VE  

(Held and Durlach, 1992) it can be considered operationally as the extent to which observed 

behavior is similar to what it would be in a similar real-world situation (Meehan et al., 2002; 

Slater, 2004; Slater and Wilbur, 1997). In this approach ‘behavior’ should be considered as 

ranging from non-conscious low level physiological responses, through to high level 

volitional and conscious actions, including what people might say in interviews or in response 

to questionnaires. A critical discussion of the concept of presence can be found in (Draper et 

al., 1998). 

 

Although people who experience immersive VEs such as head-mounted, head-tracked, stereo 

display systems, and Cave-like systems (Cruz-Neira et al., 1993) invariably and anecdotally 

report such a sense of presence, it is notoriously difficult to construct an accepted measure. 

The overwhelming response by researchers to this difficulty has been to develop presence 

questionnaires, for example (Singer and Witmer, 1999; Slater, 1999; Witmer and Singer, 

1998). These are typically administered after participants have had a VE experience, and are 

scored on a series of Likert scales. Some method of combining (usually by averaging) the 

responses into an overall measure is then carried out, and this measure may then be related to 

other aspects of the environment. For example, a study that adopted this technique was by 

(Usoh et al., 1999). 

 

It has been pointed out several times that questionnaires are problematic in the context of 

measuring presence: for example, they are unstable, in the sense of being very sensitive to 

prior experience (Freeman et al., 1999), they may not be able to distinguish reality from 

virtual reality (Usoh et al., 2000), and they can shed no light on whether ‘presence’ actually 

exists as a uniquely identifiable brain activity during the course of the experience to which it 

is meant to relate (Slater, 2004). Although answers to questionnaires can be invaluable, they 

are but the ‘tip of the iceberg’ of the totality of responses of the participant in the VE-human 
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overall system. As well as what people might say, we should also be interested in what they 

do – at as many levels of response as possible. 

1.2 Behavioural Measures 
 

Behavioral measures have been developed in an attempt to overcome, or at least supplement 

the use of questionnaires. Examples include gross behavioral responses such as looming, 

postural swaying (Freeman et al., 2000), and pointing behavior (Slater et al., 1995). From the 

idea that presence corresponds to behavior in the VE akin to what would have been observed 

in a similar real-world environment these behavioral measures are clearly appropriate. Their 

only problem is that they are application specific – for example, not every environment can 

include postural swaying or looming. Specific features would have to be designed into the VE 

solely for the purpose of evaluating presence, and such features may be inappropriate for the 

major purpose of the application. 

 

One approach within the behavioral class has been to design environments that would lead to 

particular forms of response if sufficient presence were experienced. Applications 

concentrating on psychotherapy fall into this class – such as fear of spiders, heights, post 

traumatic stress disorder, and fear of public speaking – see (Rizzo and Buckwalter, 2001) for 

a recent example of this range of applications. These applications rely on presence, because if 

there were no presence, the corresponding anxiety necessary for successful therapy would not 

be induced, and therefore effective therapeutic intervention would be impossible. 

 

Presence has been explicitly tackled within the context of a stress-inducing environment 

(Meehan et al., 2002). The purpose of this study was to examine whether expected low level 

physiological responses such as changes in GSR or heart rate would indeed occur as a result 

of a stressful experience within a VE – in this case being exposed to a precipice in the middle 

of a virtual room. The evidence strongly suggested that, in particular, heart rate measured as 

beats per minute, did increase as predicted when stress was induced. Perhaps this is the 

strongest evidence to date that the phenomenon of presence exists as an objective, measurable 

phenomenon, and that physiological time series can be exploited for measurement. This still 

leaves open the question of how presence can be measured in mundane, non-stressful 

environments.  
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1.3 Breaks in Presence 
 

An alternative strategy for measurement of presence was proposed in (Slater and Steed, 

2000). This work is premised on the idea of eliciting moments in time when ‘breaks in 

presence’ (BIPs) occur. A BIP is any perceived phenomenon during the VE exposure that 

launches the participant into awareness of the real-world setting of the experience, and 

therefore breaks their presence in the VE. Examples include gross events such as bumping 

into a Cave wall, getting wrapped in cables, through to more subtle effects such as revelations 

that come from seeing a tree as a texture map rather than a solid object. The original paper 

proposed a stochastic model that allowed the construction of a presence measure from 

knowledge of moments in time when participants reported such BIPs. This estimator was 

shown to be correlated with traditional questionnaire measures both in the original study, and 

also in a more recent study (Brogni et al., 2003). The main problem with this approach, 

however, is that it also relied on subjective reporting of BIP events, which therefore required 

prior training – thus potentially causing bias in the responses.  

 

This BIP approach was taken further (Slater et al., 2003) where it was been shown that there 

is a likely heart rate and skin conductance response associated with a reported BIP. There was 

also some evidence that this physiological response was likely not caused by the very act of 

BIP-reporting. This approach provides an alternative strategy to the use of physiological 

measures. Rather than limiting the application of these to stress-inducing environments, it 

tries to find the physiological signature of a BIP, and since BIPs may occur in any 

environment it provides a more general approach – in particular the environments do not need 

to be stressful. Rather, BIPs themselves may be considered as the specific stress-inducers, and 

the goal is to try to automatically capture when (or if) these occur. 

 

The research in this paper falls into the BIPs paradigm where we investigate whether such 

events are associated with a characteristic physiological signature. If they are, then they 

become objective experiential or perceptual events. Some other means, such as interviews, are 

necessary to assess the extent to which such events are actually experienced as breaks in 

presence. In addition we are interested in the inverse problem: if BIPs have a characteristic 

physiological signature, can the moments when these occur be predicted by analysis of the 

corresponding physiological time series? If this is the case then we would have an automatic 

method of detecting when such events occur, which would provide an overall measure of one 

aspect of the effectiveness of the VE. 
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In the first section the physiological recordings and measures are explained. Then the 

experimental procedure and the questionnaire are discussed. The next session compares the 

heart rate parameters in the training and experimental phase, compares social phobic and non-

social phobic participants and shows the effect of BIPs on heart rate and GSR. 

 

2. Physiological Measures 
 
Participants were connected to a ProComp Infiniti by Thought Technology Ltd, which was 

fitted on a belt around the waist of the participants (see Figure 1). This was for recording 

physiological responses – specifically Galvanic Skin Response (GSR) and ECG. 

 
 

Figure 1. A participant wearing the biosensors and the 3D glasses 

2.1 Heart Rate and ECG Recordings 
 

Several parameters can be extracted from ECG recordings in addition to the obvious one of 

heart rate (HR). For example, the heart-rate variability (HRV) can be used to describe the 

physiological behavior of the participant, and an event-related heart rate response may be 

useful to study the reaction of the subject to an event (e.g. such as a break in presence). The 

variability of HR is also influenced by the autonomous nervous system (ANS) activity. 

Statistical measures in time and frequency domains can be used for the quantification of the 

HRV. Recent studies show that the parasympathetic and sympathetic nervous activities 

influence the HRV at different frequencies (Task-Force, 1996). 

 

In general there are several effects that influence the HRV: 



 6

1. Respiratory Sinus Arrhythmia (RSA) mediated by respiration is responsible for changes of 

the heart-rate in 2-5 seconds intervals and is controlled by parasympathetic activity. The 

sympathetic system is too slow to influence this frequency band; 

2. Blood pressure regulation contributes to HRV in 10 second rhythms; 

3. Changes with a periodic length above 20 seconds are mediated by the sympathetic system; 

4. Changes in the range of minutes and hours are influenced by the neurohumoral 

oscillations in the circulating blood, by circadian rhythms or  rapid eye movement phases 

during sleep. 

 

Because the HRV analysis of the ECG signal in the time and frequency domains can be used 

for non-invasive investigation of autonomic cardiovascular regulation and sympathovagal 

interaction (Task-Force, 1996), each QRS complex (depolarization of the heart) is detected in 

the ECG signal and the distance from one to the previous is calculated and termed RR 

interval. Then the power spectrum of this time series can be estimated to describe the 

parasympathetic and sympathetic system (Bernardi et al., 1998, Guger et al., 2005, Task-

Force, 1996). The power spectrum in the frequency range 0.04 – 0.15 Hz is normally referred 

as the low frequency (LF) component, and that in the range of 0.15 – 0.4 Hz as the high 

frequency (HF) component. The latter is mainly modulated by the parasympathetic system 

and the former by the parasympathetic and sympathetic systems. However, if the LF 

component is divided by the total power of the power spectrum then it can be seen to be 

mainly modulated by the sympathetic system (Task-Force, 1996). The ratio LF/HF describes 

the balanced behavior of the sympathetic and parasympathetic systems. Low frequency 

components (LF, 0.1 Hz) and high frequency components (HF, 0.15-0.4 Hz) indicate mental 

stress when the LF component is increased and the HF component is decreased. During 

dynamic exercise the heart rate changes but the HF component does not change significantly.  

 

The ECG in this experiment was acquired as standard Einthoven I derivation (sampling 

frequency: 256 Hz) and the analysis was performed with the g.BSanalyze biosignal analysis 

software package (g.tec – Guger Technologies OEG, Graz, Austria). 

 

2.2 Galvanic Skin Response 
 

GSR, also sometimes called galvanic skin conductivity or Electro Dermal Activity (EDA), 

was also recorded in this experiment. This is measured by passing a small current through a 



 7

pair of electrodes placed on the surface of the skin and measuring the conductivity level. GSR 

was sampled at 32 Hz, and the signal obtained from electrodes on two fingers. Skin 

conductance is considered to be a function of the sweat gland activity and the skin’s pore size. 

The real-time variation in conductance, which is the inverse of the resistance, is calculated. As 

a person becomes more or less stressed, the skin’s conductance increases or decreases 

proportionally (Andreassi, 2000). GSR and other physiological measures have long been 

proposed for use in human-computer interaction, typically as methods for estimating the 

emotional state of users, and then adjusting computer response accordingly. A classic 

reference in this area is (Picard, 1997). 

 

3.  Experiment 
 

3.1 Experimental Procedures 
 

Twenty people were recruited by advertisement on the University Campus, and paid the 

equivalent of $10 for their participation. The participants were not involved in any way with 

the research group that carried out the experiment. They were presented with a disclaimer 

form that advised them of the potential risks involved in virtual reality displays, and advised 

that they could withdraw from the experiment at any time without giving reasons. They were 

read the procedures of the experiment from a standard script, and advised that they would be 

entering into a bar scenario, and that their task was to feel free to interact with the characters 

there and also pay attention to what might be happening there. 

 

The virtual reality experience took part in a four-walled Cave-like system. This is an 

approximately 3 meter cubed area, with projection screens on the floor and three walls (but 

not the ceiling) providing a stereo view. We use the term ‘Cave’ in this paper to refer to the 

generic type of system described in (Cruz-Neira et al., 1993). The particular system used was 

a Trimension ReaCTor, together with Intersense IS900 head-tracking.  

 

The scenario displayed to the participants was that of a ‘bar’ or ‘pub’. This was approximately 

the same size as the physical Cave area, so that participants were free to physically walk 

around the virtual bar (hence no other tracking than head-tracking was needed).  

 

There were 5 virtual characters in the bar, a barman and two couples, one pair standing near 

the bar, and the others sitting across the room. These virtual characters (2 women and 2 men) 
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would be ‘aware’ of the location of the participant (through head-tracking) and would often 

address remarks towards him/her.  During the experience two songs played in the background 

one after the other, and in addition there was background chatter as might be heard in a real 

bar. The entire experience lasted approximately 5 minutes. The system was implemented 

using DIVE (Frecon et al., 2001; Steed et al., 2001) and the network interface between the 

various components achieved using VRPN1. The experiment was approved by the Ethics 

Committee. 

 

Specifically, the virtual characters addressed remarks to the participant seemingly about a 

third person not present. This third person could be inferred to be a celebrity, who was to visit 

the bar. The virtual characters would wave and gesticulate towards the participant when they 

spoke. When the participant first entered the bar, some characters said ‘Hi’, ‘What’s up?’ and 

other greeting phrases. Then there were other phrases such as ‘Did you see the limousine 

yet?’, ‘Have you seen her photo in the newspaper?’, ‘If she doesn’t come soon I’m leaving’. 

The specific utterances of the virtual characters are not important for this paper – the most 

important point to note is that the environment was a ‘noisy’ one in both senses of the word. 

The virtual characters were designed to be more likely to say something and gesticulate to the 

participant under the condition of mutual gaze. 

 
Each experimental session was divided into three phases:  

The baseline phase: when participants entered the Cave they first stood for approximately 2 

minutes with nothing being displayed. This was in order to check the physiological readings, 

and also to provide a baseline.  

The training phase: next there was a short training session, where the VE depicted a room 

which had some large solid numbers on the floor, and participants were encouraged to move 

around from number to number, and also reach out to one of the numbers. We often find that 

participants must be explicitly told and shown that they can move around normally and bend 

down, or reach out within a VE, and this was the purpose here.   

The experimental phase:  the music started, and the bar scenario was initiated. Just before this 

black curtains were drawn across the opening to the Cave, so that the participants were 

isolated from the experimenters. Nevertheless the whole session was video taped, and the 

experimenters could watch the progress of the participants on a video monitor. 

 

                                                 
1 http://www.cs.unc.edu/Research/vrpn 
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At four times at approximately evenly spaced intervals during the bar experience, the 4 

projection walls became white, so that the bar and virtual people completely vanished 

visually. These ‘whiteouts’ lasted for 2 seconds each. These were the induced breaks in 

presence. 

 
At the end of the second song the participants came out of the Cave, and were given an open 

interview which typically lasted about 15 minutes. This explored various aspects of their 

experience, in particular their reactions to the virtual characters, their presence, and their 

reactions to the whiteouts.  Examples of the scenario are shown in Figure 2. 

 

  

 

Figure 2. The bar scene 
 

3.2 Questionnaires 

 

Each participant completed a questionnaire prior to their immersion that gathered basic 

demographic information and also other background information regarding their use of 

computer games. Also each participant filled out a social phobia questionnaire (Watson and 

Friend, 1969) with 27 yes/no questions. Some examples are: (i) I feel relaxed even in 

unfamiliar social situations, (ii) I try to avoid situations which force me to be very sociable or 

(iii) I have no particular desire to avoid people. 

 
After the experiment there was a further questionnaire that elicited their responses to the 

virtual characters followed by the interview. The results from the interview sessions are 

presented in (Garau et al., 2004) and are not considered in this paper. 
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4.   Analysis 

4.1 ECG Analysis Methodology 
 

The first step in ECG analysis is to detect QRS (ventricular contraction) complexes in the 

ECG time series. The QRS complexes determine the distance in time from one heart 

contraction to the next one (RR interval). The term “NN interval” is used in the literature to 

indicate that only normal-to-normal beat distances are used for the calculations (non-normal 

beats like extra systoles are excluded). The QRS complexes in the ECG data were detected  

automatically based on a modified Pan-Tompkins algorithm (Pan and Tompkins, 1985). Then 

a visual  inspection of the detected QRS complexes was performed to guarantee high data 

quality. 

 

Changes in RR-intervals are referred to as HRV and can be described in time and frequency 

domains. The following are most important time domain measures: 

 

MeanRR - mean RR interval [ms]. 

SDNN - standard deviation of NN intervals [ms]. 

MaxRR - maximum RR interval [ms]. 

MinRR - minimum RR interval [ms]. 

MinMaxRR - difference between MaxRR and MinRR [ms]. 

MeanHR - mean heart rate [bpm]. 

SDHR - standard deviation of the heart-rate [bpm]. 

 

The segmented measures divide the recorded ECG signal into equally long segments to 

calculate: 

 

SDANN - standard deviation of the average NN interval calculated over short periods. 

SDNNindex - mean of e.g. 1 min standard deviation of NN intervals calculated over total 

recording length. 

 

The following measures yield differences between adjacent intervals: 
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SDSD - standard deviation of successive NN differences [ms]. 

RMSSD - square root of the mean squared difference of successive NN intervals [ms]. 

NN50 - number of intervals of successive NN intervals greater than 50 ms. 

PNN50 - NN50 divided by the total number of NN intervals. 

 

Frequency domain measures provide information on how power is distributed as a function of 

frequency. RR time series were resampled with a frequency of 2 Hz. Then the power 

spectrum of the resampled time series were estimated with the Burg method (Stoica and 

Moses, 1997) of order 15. The RR sequence was detrended and a Hanning window was 

applied prior to the spectrum estimation. The FFT length was 128 with an overlap of 64 and a 

sampling frequency of 2 Hz. Three main spectral components were distinguished: (i) very low 

frequency (VLF): <0.04 Hz, (ii) low frequency (LF): 0.04 – 0.15 Hz and (iii) high frequency 

(HF): 0.15 – 0.4 Hz. The unit of these parameters is ms2. To express LF and HF in normalized 

units, each parameter is divided by the total power minus the VLF component. This 

minimizes the effect of the total power on LF and HF. The LF/HF ratio describes the balanced 

behavior of both components.  

 

4.2 Comparison of Training and Experimental Phase 
 

Table 1 shows the changes of HRV parameters in time domain averaged over all subjects for 

the two phases: (i) training and (ii) experimental phase. A sign test for paired samples was 

applied between the parameters of the training and experimental phase. The 4th column gives 

the corresponding p-values.  

 

Table 1: HRV time domain parameters 

HRV Training Experimental p value

MeanHR [bpm] 93.41 88.33 0.0072

RMSSD [ms] 22.51 27.08 0.0266

SDSD [ms] 22.61 27.21 0.0266

PNN50 [%] 4.94 8.26 0.0118

SDNNindex [ms] 37.46 40.86 0.0266

 

The analysis shows that there is a significant difference between the training and experimental 

phase in terms of the heart-rate (MeanHR): 93.41 bpm versus 88.33 bpm (p=0.0072), and also 
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in the heart rate variability (HRV) parameters. RMSSD, SDSD, PNN50 and the SDNNindex 

are smaller in the training phase than in the experimental phase. 

 

Figures 3 shows the HRV frequency analysis results for one subject. During the training phase 

the LF component is increased to about 180 ms2 and the HF component is decreased to about 

5 ms2. In the experimental phase LF is about 118 ms2 and HF is 18 ms2.  

 

  

 

Figure 3: HRV in frequency domain of the training phase (left side) and experimental phase 

(right side). 

 

The mean values for all subjects are represented in Table 2. Between training and 

experimental phase the normalized LF component (LFnorm) decreases from 74.5 to 64.9, the 

normalized HF component (HFnorm) increases from 15.1 to 22.3 and the LF/HF ratio 

decreases from 6.9 to 4.0. All three parameters have a p-value of 0.0266. 

 

Table 2: HRV frequency domain parameters 

HRV Training Experimental p value 

LFnorm [n.u.] 74.5 64.9 0.0266 

HFnorm [n.u.] 15.1 22.3 0.0266 

LF/HF [1] 6.9 4.0 0.0266 

 

 

Figure 4 is a time frequency map of the HRV data. The map shows the evolution of the power 

spectrum over time for the baseline, training and experimental phase. An activated 
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parasympathetic system yields frequency components in the HRV map around 0.35 Hz (HF 

component) and the sympathetic system yields frequency components around 0.1 Hz (LF 

component). Basically the LF component is dominant throughout the whole experiment. The 

HF component in contrast varies between the baseline-, training- and experimental phase. The 

arrows indicate the changes between the different experimental phases. It can be seen that the 

activated HF component from the baseline phase becomes immediately smaller after the 

change to the training phase, but the amplitude increases towards the end of the training 

phase. With the change to the experimental phase the HF component disappears again and 

comes back after around 30 seconds. The HF component is present throughout the rest of the 

experimental phase.  

 

 

 

 

 

 

Social Phobia Score 

 

Heart rate - and HRV ¯ with social phobia (p<0.05)  

 

Figure 4: Time/frequency map shows the activation of parasympathetic and sympathetic 

systems. 

 

4.3 Comparison of non-social phobic and social phobic participants 
 

All participants filled out the social phobia questionnaire with 27 questions. A high score 

shows a more social phobic participant. The minimum observed score was 0 and the 

maximum was 23. The median was 6. For the following analysis the 9 subjects with the 

highest and the 9 subjects with the lowest score were selected. Other participants were not 

used for the comparison. 

 
Figure 5 shows a boxplot of the heart rate and HRV parameter RMSSD. In social phobic 

participants the heart rate is 9.1 bpm higher than in non-social phobic. RMSSD is 14.2 ms 

lower. The p-value is in both cases below 0.05.  

training experimentbaseline 
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Figure 5: Heart rate and HRV difference depending on social phobic level of participants. 

 

4.4 Event Related ECG: Effects of speaking avatars and BIPS 

 

The change of the HR that was initiated by the speaking avatars and by the BIPS was 

analyzed with the event-related ECG analysis (ER-ECG). A specific number (n=2 to n=30) of 

RR intervals before the event and after the event (BIP, avatar speaking) were averaged. The 

difference shows the event-related change in HR. This procedure was repeated for all 

speaking events (about 30) and separately for all 4 BIPs. An important parameter is the 

number of RR intervals (n) used for the averaging. Therefore, the ER-ECG was calculated 

separately for n=2 up to n=30. 

 

For the speaking events, the most significant change was found for n=3. The mean HR 

increase for all subjects was 0.7 bpm with a p-value of 0.04. The opposite was the case for the 

BIPs. The mean HR decrease for all subjects was 2.3 bpm because of the BIP (p=0.007). The 

most significant change was found with n=5. 
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4.5 The GSR Wave Form 
 
In this section we consider whether the BIPs are signaled within the GSR data. Let 

itx ( 1,..., )it n= be the GSR time series for the ith participant. An example is shown in Figure 6, 

for an arbitrarily selected participant.  

 

Note that there is a tendency for GSR readings to drift upwards over time, due to 

accumulation of sweat on the surface of the electrodes. In order to overcome this problem we 

linearly de-trend all GSR data, using as break-points the start of the training and the start of 

the bar sequence, since these are entirely different experiences. We are only interested in local 

patterns of change rather than overall trend within the sequence. After de-trending the GSR 

data is also normalized to lie between 0 and 1, for convenience of plotting, and more 

importantly to allow averaging over the participants. 

 

 
Figure 6. Event Sequence and GSR (participant 1) 

 

Recall that there were 4 induced BIPs for each of 20 participants. The GSR wave-form is 

extracted for ±10s around each BIP point, and averaged over all BIPs over all participants. 

Each extracted GSR wave has its origin set at zero at the start of the sequence, so that only 

changes are averaged rather than absolute values. The result is shown in Figure 7 as the black 

curve. On the average the GSR curve rises to a peak about 3s after the onset of the anomaly.  
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Figure 7. Average GSR wave forms – black curve  true anomalies – coloured curves – 

randomized anomalies 

 

It is possible to test the significance of this result by simulation. Suppose that we follow the 

same procedures as above, except that instead of using the true BIP times, we use 4 randomly 

generated times for each participant, within the valid period of the bar experience. If there is 

nothing special about the times when the true BIPs occurred, and our result is due to chance 

alone, then we should find a similar pattern for these randomly generated anomalies as we do 

for the true ones. If we repeat such simulated curve generation a large number of times and 

never or rarely see a pattern like the true curve, then this is a demonstration that it is unlikely 

that the characteristics of the true curve have occurred by chance. The colored curves in 

Figure 7 show 100 such simulated curves. It is clear that none of them approaches the shape 

of the true generated curve. 

 

For each of the 100 simulated curves we compute two statistical characteristics – the mean 

and the maximum. For each of these we can therefore construct a sampling distribution. If we 

then compare these statistics for the true curve with the sampling distributions we have a 

quantitative measure of significance. These are shown in Figure 8. The mean for the true 

curve is 0.0097 and the maximum is 0.0661. These are so far into the right hand tail of the 

sampling distributions, that the significance level against the null hypothesis that the true 

curve shape was due to chance is zero for practical purposes. 
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Figure 8. Sampling distributions for mean and maxima of the 100 simulated curves based 

 

This section has shown that there is a characteristic GSR response to the induced BIPs. This 

adds further weight to the finding in (Slater et al., 2003) which was carried out for 

subjectively signaled BIPs. Here we have shown that unexpected anomalies cause a similar 

pattern of responses to the subjectively signaled BIPs. This result is encouraging, but not too 

surprising. Such BIPs, especially the rather extreme ones used here are likely to startle the 

participants, which is exactly what the GSR picks up. The more interesting question is the 

extent to which the BIPs can be identified by looking at the GSR sequences of individuals. 

We turn to this in the next section. 

 

4.6 Using GSR to Infer BIPs  
 

In this Section we consider the inverse relationship – from the GSR signal, can we ‘predict’ 

the locations where the BIPs occurred?  It is clear from Figure 6 that this is not an obvious 

possibility. The most clear change in GSR happens around the start of the bar scenario – not 

surprisingly. Also the environment is very ‘active’ with many events happening all the time. 

Although in the previous section we showed that around the induced BIPs there is, on the 

average, a non-random response with a definite GSR spike, it would be difficult from the raw 

GSR data to identify such points in the case of GSR sequences of individual participants. 

 

Instead we work with the hypothesis that the response to an anomaly might be embodied in 

the frequency domain and therefore not transparent in the original time series. In order to 

investigate this we use a continuous wavelet transform (Mallat, 1998) of the GSR signal. 
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( , ) ( ) ( , , )C scale pos f t scale pos t dtψ
∞

−∞

= ∫         (1) 

 

 

In Eq. (1) the original signal f(t) is transformed by the continuous wavelet transformation 

ψ into the wavelet coefficient C. We use the Haar wavelet throughout (others were tested but 

with no difference in the results). Higher values of C indicate a greater similarity between the 

signal and the wavelet shape at the given scale and position. Scale is akin to frequency – small 

scale corresponds to rapidly changing parts of the signal (and therefore high frequency) 

whereas large scale corresponds to slowly changing parts of the signal (low frequency). As we 

shift and dilate the wavelet function over the signal we get an indication of its frequency 

properties at the various locations.  

 

This is illustrated in Figure 9, which shows a plot of the wavelet transform coefficients for 

participant 1. The horizontal axis is time, and the vertical axis is scale. The scales chosen are 

32 evenly spaced scales. Higher color intensity indicates higher absolute value of C. 

 
Figure 9. Wavelet transformation of complete GSR sequence for participant 1. Higher values 

of C indicated by greater color intensity. The first two lines indicate the start of the training 

and of the bar experiment, the last 4 lines indicate the anomalies. 

 

Looking along the higher scales we see the slowly changing aspects of the curve, and at the 

lower scales the higher frequencies. It looks as if there is a change across a range of scales 
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around the start of each anomaly, and the start of the bar experience seems to correspond to a 

maximum across almost all the scale values. 

 

We now derive a more systematic approach to exploring the relationship between the 

anomalies and the GSR time series. Consider the ith participant (we drop the i for 

convenience) Let tb  be a variable such that 1tb =  if time t is within 6 seconds of the start of a 

whiteout, and 0 otherwise. Hence for any participant b is a sequence of 0s with four sets of 

192 1s (corresponding to the 2-second anomalies and sampling rate of 32Hz plus another 4 

seconds to allow for latency in response). We treat b as a response variable and try to explain 

its variation by the variation in GSR. However, instead of using the GSR directly, we use its 

wavelet transformation coefficients. Therefore we use k explanatory variables 

, ( 1,..., )tjC j k= where tjC  is the wavelet coefficient at time t, at the jth scale being used. These 

are k scales distributed over some range of scales appropriate to the sequence. It is important 

to note that the time period t = 1,…,T is only over the time period of the bar scenario itself, 

and does not include the earlier resting and training times. T represents approximately 4.6 

minutes in the actual bar scenario, and is therefore around 8900 for each person. 

 

A normal linear regression relating tb  to the k scale coefficients 1 2, ,..., ( 1,..., )t t tkC C C t T= would 

not be appropriate since predicted values from such an equation may fall outside of the range 

[0,1]. Instead we use standard logistic regression (McCullagh and Nelder, 1989) which 

restricts the fitted response variable to the correct range. This is shown in Eqs (2) and (3). 

 

1
1 exp( )t

t
b

η
=

+ −
     (2) 

 

 

with 0 1 1 2 2 ...t t t k tkC C Cη β β β β= + + + +    (3) 

 

Whatever the value of the linear predictor (η) the predicted value of b will always lie between 

0 and 1. The goal is to use the data to estimate the coefficients .jβ  This is achieved by 

iteratively re-weighted least squares, and implemented by the function ‘glmfit’ in the 

MATLAB2 statistics toolbox. The regression analysis was carried out for each of the 20 data 

                                                 
2 http://www.mathworks.com/ 
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sets, and for each Eq. (2)-(3) was used to compute the fitted values from the data (MATLAB 

function ‘glmval’).  

 

The question arises as to the set of scales that could be used. Too many explanatory variables 

results in over-fitting the data, and too few results in a poor fit. Moreover, using scales that 

are very low does not make much sense, since the very highest frequencies in GSR represent 

noise. The sequence for each participant could be analyzed individually, and the best set of 

explanatory (scale) variables determined appropriately for each case. However, here we carry 

out the same analysis across all the participants. Since T > 8000 we choose 8000 as the 

highest scale, and the lowest scale at 1000, with increments of 1000. This is equivalent to the 

‘largest’ wavelet stretching over the entire sequence, and the smallest about 8 times less than 

the whole sequence. In this setup there are therefore just 8 explanatory variables. We fit the 

logistic regression model under this situation and therefore can obtain fitted values b̂  from (2) 

and (3). 

 

In order to examine goodness of fit between b and b̂  we use a Receiver Operating 

Characteristic (ROC) analysis. This plots the true positive rate (vertical axis) against the false 

positive rate (horizontal axis) for each possible value of a diagnostic test. In other words, from 

the predicted values of the curve )(ˆ tb at time t we could construct the rule: there is an inferred 

BIP at time t if ctb >)(ˆ . This result can be compared with the ‘ground truth’ (the actual value 

)(tb ). If 1)( =tb  then the result is ‘true positive’, otherwise it is ‘false positive’. The area 

under the curve (AUC) measures how well such a test discriminates between these two cases. 

An area of 0.5 means that the curve cannot discriminate at better than chance values, and the 

closer the area is to 1.0 the better the test. An interpretation of the AUC is that it is the 

probability that a randomly selected moment in time corresponding to a true BIP will be 

classified as a BIP than a randomly selected non-BIP moment (Mcneil and Hanley, 1984). 

The lowest AUC is 0.76±0.01, the median is 0.84±0.01 and the maximum is 0.96±0.005.  

 

Figure 10 (a)-(c) shows these three cases – the plots of the true binary BIP curves and the 

fitted curves from Eqs. (2) and (3) against time, together with the corresponding ROC curve. 
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(a) Subject 3 (lowest fit) 
 

AUC = 0.76±0.01 

(b) Subject 2 (median fit) 
 

AUC = 0.84±0.01 

(c) Subject 11 (highest fit) 
 

AUC = 0.96±0.005 

 

Figure 10 : The left column shows the plot of )(tb and )(ˆ tb against t, for the subjects with the 

lowest, median and highest AUCs. The corresponding ROC curves are shown in the right 

column. The time t is only during the time of the actual ‘bar’ experience. 

 

This analysis has shown that it is possible to find an equation that models the relationship 

between the GSR sequence expressed in the form of wavelet coefficients at different scales 
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and the moments in a time sequence where anomalies occurred. This can be achieved with a 

very small number of parameters (in this case only 8).  

 

5. Results 
 

This paper has three main findings. The first is that the ECG parameters show significant 

changes of HR and HRV between the training and experimental phase. The second one is that 

HR and HRV parameters differ between participants who score higher on the social phobia 

scale than those who score lower. The third finding is that ECG and GSR analysis can be used 

to signify events such as speaking avatars and BIPs. 

 

The time and frequency parameters display significant changes of HR and HRV between the 

training and experimental phase. The heart-rate decrease of 5.08 bpm could have 2 reasons:  

 

1. during the training phase the subjects were specifically instructed to move around the 

VE to practice navigation, whereas in the experimental phase they were free to 

actively move around the bar or stay still if they preferred; 

2. the subjects were more relaxed in the experimental phase when they were in the bar 

environment. 

 

The HRV displays a high variability in the experimental bar phase. The time domain 

measures increased: RMSSD by 4.57 ms, SDSD by 4.6 ms, pNN50 by 3.3 % and the 

SDNNindex by 3.4 ms. In the case of frequency domain measures the LFnorm component 

decreased by 9.6, the HFnorm component increased by 7.2 and the LF/HF ratio is reduced by 

2.9. It is well known that during dynamic exercise the HR is increased, but the HF component 

does not change significantly. In the experiment presented here the heart-rate changed and the 

HF component changed.  Therefore it can be argued that the change was not initiated by 

dynamic exercise. Furthermore, an increased LF component and a decreased HF component 

normally indicate mental stress. This is precisely what happened in the training phases in our 

experiment, where subjects were more stressed than in the experimental phase. There are 

several possible explanations: the novelty of the experience of being in a VE, the unfamiliar 

equipment (including stereoscopic goggles and 3D mouse), and the novelty of entering the bar 

environment.  Conversely, the positive relaxing effect of being in the bar could have caused 

the changes in HRV and HR. 
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The comparison of HR and HRV parameters of social phobic and non-social phobic 

participants showed that the HR is increased by 9.1 bpm in participants who are social phobic. 

Additionally the HRV parameters RMSSD and pNN50 were reduced. This shows that the 

participants who are social phobic were less relaxed in the bar environment. This is what 

would be expected in an equivalent real scenario, and hence is a sign of presence. 

 

The most surprising result is the increase of the HR when an avatar speaks to the subjects. In 

two subjects the HR was increased by almost 3 % because of the speaking avatar.  

 

In the case of the BIPs it is interesting that the HR decreased. This can be explained by the 

sudden ‘whiteout’ event, which surprised the subjects and changed their respiration rhythm. 

Furthermore it was shown that the GSR signal can be used to characterize the occurrence of 

this anomaly during the VE experience. This is in spite of the ‘noisy’ environment where 

there are many possible events that might cause people to become aroused or startled, thus 

triggering a GSR response.  In addition the GSR responses to the induced anomalies can be 

modeled by a scale representation of the GSR signal, as obtained from a continuous wavelet 

transformation. Unlike the first result, which operates as an average over all anomalies and all 

participants, this result applies at the level of the individual, and is illustrated in Figure 10, 

where the anomaly occurrences of individuals are quite well-predicted by a logistic equation 

derived from a regression analysis. In other words the scale structure of the GSR signal can be 

used to model, for an individual, where the BIPs occurred. A reasonably good fit was 

achieved for most individuals with only 8 explanatory scale variables.  

 

6. Conclusions 
 

The primary contribution of this research is methodological. Apart from continuing our 

analysis of this particular experiment, examining the contributions of the other physiological 

data, the effects of interactions of the people with the virtual characters, the results of the in-

depth interviews, and the implications for the theory of presence – we intend to continue to 

explore this paradigm with different types of BIP. For this first work, we have chosen a strong 

one – the whiteouts. But of course in a VE there are many different types of anomaly that may 

occur – caused by unwanted encounters with the physical equipment such as walls, cables and 

helmets, failures in graphics, tracking, sudden changes in frame rate or latency, and so on. 

Each one of these types of BIP needs to be investigated, and perhaps there may emerge one 

model that encompasses them all.  In this paper we have talked about BIP as a particular 
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strong ‘failure’ in the VE system. The post-experimental interviews confirm that these events 

were considered as ‘breaks in presence’ by the participants. The analysis of the interview data 

also reveals a rich pattern of time variant presence responses that cannot be captured by the 

statistical analysis alone (Garau et al., 2004).  

 

 



 25

Acknowledgments 
 

This project is funded by the European Union project PRESENCIA, IST-2001-37927.  

 

References 
 

ANDREASSI, J. L. (2000). Psychophysiology human behavior and physiological response. 
Mahwah, N.J.: L. Erlbaum, Publishers. 

BROGNI, A., SLATER, M. & STEED, A. (2003). More Breaks Less Presence. In The 6th Annual 
International Workshop on Presence. Aalborg, Denmark, 2003. 

CRUZ-NEIRA, C., SANDIN, D. J. & DEFANTI, T. A. (1993). Surround-screen projection-based 
virtual reality: the design and implementation of the CAVE. In Proceedings of the 
20th annual conference on Computer graphics and interactive techniques: ACM 
Press, 1993, pp. 135-142. 

DRAPER, J. V., KABER, D. B. & USHER, J. M. (1998). Telepresence. Human Factors, 40:354-
375. 

FRECON, E., SMITH, G., STEED, A., STENIUS, M. & STAHL, O. (2001). An overview of the 
COVEN platform. Presence-Teleoperators and Virtual Environments, 10:109-127. 

FREEMAN, J., AVONS, S. E., MEDDIS, R., PEARSON, D. E. & IJSSELSTEIJN, W. I. (2000). Using 
behavioral realism to estimate presence: A study of the utility of postural responses to 
motion stimuli. Presence-Teleoperators and Virtual Environments, 9:149-164. 

FREEMAN, J., AVONS, S. E., PEARSON, D. E. & IJSSELSTEIJN, W. A. (1999). Effects of sensory 
information and prior experience on direct subjective ratings of presence. Presence-
Teleoperators and Virtual Environments, 8:1-13. 

GARAU, M., RITTER-WIDENFELD, H., ANTLEY, A., FRIEDMAN, D., BROGNI, A. & SLATER, M. 
(2004). Temporal and Spatial Variations in Presence: A Qualitative Analysis, 7th 
International Conference on Presence. In Presence 2004. Valencia, Spain, 2004, pp. 
232-239. 

HELD, R. M. & DURLACH, N. I. (1992). Telepresence. Presence: Teleoper. Virtual Environ., 
1:109-112. 

MALLAT, S. G. (1998). A wavelet tour of signal processing. San Diego: Academic Press. 
MCCULLAGH, P. & NELDER, J. A. (1989). Generalized linear models. London ; New York: 

Chapman and Hall. 
MCNEIL, B. J. & HANLEY, J. A. (1984). Statistical Approaches to the Analysis of Receiver 

Operating Characteristic (Roc) Curves. Medical Decision Making, 4:137-150. 
MEEHAN, M., INSKO, B., WHITTON, M. & BROOKS, F. P. (2002). Physiological measures of 

presence in stressful virtual environments. Acm Transactions on Graphics, 21:645-
652. 

PAN, J. & TOMPKINS, W. J. (1985). A Real-Time Qrs Detection Algorithm. Ieee Transactions 
on Biomedical Engineering, 32:230-236. 

PICARD, R. W. (1997). Affective computing. Cambridge, Mass.: MIT Press. 
RIZZO, A. & BUCKWALTER, J. G. (2001). Special issue: Virtual reality applications in 

neuropsychology - Guest editors' introduction. Presence-Teleoperators and Virtual 
Environments, 10:Iii-V. 

SINGER, M. J. & WITMER, B. G. (1999). On selecting the right yardstick. Presence-
Teleoperators and Virtual Environments, 8:566-573. 

SLATER, M. (1999). Measuring presence: A response to the Witmer and Singer presence 
questionnaire. Presence-Teleoperators and Virtual Environments, 8:560-565. 



 26

—. (2004). How colorful was your day? Why questionnaires cannot assess presence in virtual 
environments. Presence-Teleoperators and Virtual Environments, 13:484-493. 

SLATER, M., BROGNI, A. & STEED, A. (2003). Physiological Responses to Breaks in Presence: 
A Pilot Study. In The 6th Annual International Workshop on Presence. Aalborg, 
Denmark, 2003. 

SLATER, M. & STEED, A. (2000). A virtual presence counter. Presence-Teleoperators and 
Virtual Environments, 9:413-434. 

SLATER, M., USOH, M. & CHRYSANTHOU, Y. (1995). The influence of dynamic shadows on 
presence in immersive virtual environments. In Selected papers of the Eurographics 
workshops on Virtual environments '95. Barcelona, Spain: Springer-Verlag, 1995, pp. 
8-21. 

SLATER, M. & WILBUR, S. (1997). A framework for immersive virtual environments (FIVE): 
Speculations on the role of presence in virtual environments. Presence-Teleoperators 
and Virtual Environments, 6:603-616. 

STEED, A., MORTENSEN, J. & FRECON, E. ( 2001). Spelunking: Experiences using the DIVE 
System on CAVE-like Platforms. In Immersive Projection Technologies and Virtual 
Environments. Translated by B. Frohlicj, J. Deisinger & H.-J. Bullinger: Springer-
Verlag/Wien, 2001, pp. 153-164. 

STOICA, P. & MOSES, R. L. (1997). Introduction to spectral analysis. Upper Saddle River, 
N.J.: Prentice Hall. 

TASK-FORCE. (1996). Heart rate variability. Standards of measurement, physiological 
interpretation, and clinical use. Task Force of the European Society of Cardiology and 
the North American Society of Pacing and Electrophysiology. European Heart 
Journal, 17:354-381. 

USOH, M., ARTHUR, K., WHITTON, M. C., BASTOS, R., STEED, A., SLATER, M. & FREDERICK 
P. BROOKS, J. (1999). Walking > walking-in-place > flying, in virtual environments. In 
Proceedings of the 26th annual conference on Computer graphics and interactive 
techniques: ACM Press/Addison-Wesley Publishing Co., 1999, pp. 359-364. 

USOH, M., CATENA, E., ARMAN, S. & SLATER, M. (2000). Using presence questionnaires in 
reality. Presence-Teleoperators and Virtual Environments, 9:497-503. 

WATSON, D. & FRIEND, R. (1969). Measurement of Social-Evaluative Anxiety. Journal of 
Consulting and Clinical Psychology, 33:448-&. 

WITMER, B. G. & SINGER, M. J. (1998). Measuring presence in virtual environments: A 
presence questionnaire. Presence-Teleoperators and Virtual Environments, 7:225-240. 

 
 


