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Abstract—A subspace method for channel estimation is pro-
posed for asymmetric antenna array systems. The so-called
pilot contamination problem reported in [1] is found to be due
to the linearity of channel estimation in [2]. We show that
it does not occur in cellular systems with power control and
power-controlled handoff when the nonlinear channel estimation
method proposed in this paper is used. Power-control hand-off is
needed to guarantee separability between signal and interference
subspaces. We derive the transmission conditions for subspace
separability based on free probability and perturbation theory.

Index Terms—Multiple antennas, multiple-input multiple-
output (MIMO) systems, massive MIMO, spread-spectrum, chan-
nel estimation, principal component analysis

I. INTRODUCTION

Two pioneering works [1], [2] introduced the concept of
large antenna array networks, commonly referred to as massive
MIMO, and showed that the use of very large antenna arrays
in multiuser networks is even more appealing than the use of
single user MIMO systems. Under the assumptions that the
number of antennas at the access nodes is much higher than
the number of served user terminals, the effects of uncorrelated
noise and fast fading can be made arbitrarily small (vanishing
as the number of antennas goes to infinity). More interestingly,
with perfect channel state information (CSI), the total radiated
power can be made inversely proportional to the number of
radiating antennas without degradation of the quality of the
received signals, and, as the number of antennas increases
and radiated power is reduced, simple single cell processing
becomes asymptotically optimum. The total throughput is
asymptotically independent of the cell-size, and the spectral
efficiency is independent of the bandwidth. This system design
has attracted considerable attention, see e.g. [3] and references
therein, and other appealing features have been pointed out
(e.g. [9], [10]).

According to the results in [2], the only impairment that
does not vanish in asymptotic conditions is the inter-cell
interference due to the re-use of orthogonal pilot sequences
in other cells. This impairment is dubbed pilot contamination
and is based on the implicit assumption of linear channel esti-
mation in [2, Eq. (5)]. As a result, orthogonal pilot interference
from interfering cells would limit the accuracy of the channel
estimation regardless of the number of antenna elements at the
access point. This effect was believed by many researchers,
e.g. [4]–[6] to be a fundamental effect, despite the lack of a
solid proof that it cannot be overcome.

Using Bayesian channel estimation, [7] found that pilot
contamination can vanish under the condition that the channel
angular spreads of active users do not overlap.

In this paper, we show that pilot contamination is not a
fundamental feature of large antenna array networks, but a
shortcoming of linear channel estimation. We show, that the
array gain can easily be utilized to obtain a channel estimation
whose accuracy grows unboundedly with the number of an-
tennas. Our approach is based on the utilization of randomly
generated pilot sequences in all the base stations. Under this
assumption, the transmitted signals (pilots and data) become
asymptotically (i.e. when the number of antennas in the
arrays grows large) orthogonal. More interestingly, the signal
subspace of each cell becomes orthogonal to the interference
subspace. Then, a projection of the received signal onto the
signal subspace would remove interference from adjacent
cells including pilot contamination. The remaining problem
is to distinguish the signal subspace from the interference
subspace at each access point. We propose a low complex-
ity approach based on power-controlled hand-off. Thanks to
power-controlled hand-off, we keep the powers of subspace
of the signals of interest in a range non overlapping with the
range of the powers of interferers’ subspace. This allows to
identify the signal subspace very easily and perform projec-
tion. The complexity of subspace identification and projection
has polynomial complexity in the number of antenna elements.

Additionally, we analyze the network under the assumption
of Rayleigh fading and provide expressions for the ranges
of the signals of interest and interference based on free
probability and perturbation theory. Transmission conditions
for nonzero gap between the two ranges are also provided.
Simulations and numerical results corroborate the effectiveness
of the proposed method and the correctness of the correspond-
ing analysis.

This contribution is structured as follows. In Section II, we
introduce the system model. In Section III, we propose an
algorithm for nonlinear channel estimation utilizing the array
gain. In Sections IV and V, we investigate the performance of
this algorithm by analytic and simulative means, respectively.
Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a wireless cellular system in uplink with a cell
of interest and L interfering cells. Each access point (base
station) in a cell is equipped with R receive antennas and each
cell is populated by T active transmit antennas with T < R.

By observing that a channel with bandwidth larger than
the coherence bandwidth can be always decomposed into
equivalent parallel narrowband channels with bandwidth nar-
rower than the coherence bandwidth by orthogonal frequency
division multiplexing or related techniques, without loss of



generality we focus on a frequency flat block fading channel.
A coherence time interval consists of C symbol intervals. The
baseband signal received at the access point of interest during
a coherence time interval is given by

Y = HX +HIXI +W , (1)

Y is the R × C matrix of received signals in CR×C , X is
the T × C matrix of transmitted data of interest in CT×C .
It contains information symbols eventually multiplexed with
pilot symbols. Similarly, XI is the LT × C matrix of trans-
mitted symbols by the LT active transmit antennas in the L
interfering cells. The R×T matrix H consists of the unknown
propagation coefficients from antennas in the cell of interest to
the access point of interest. Similarly, HI is the R×LT matrix
of the propagation coefficients from interfering antennas to the
access point of the cell of interest. Finally, W is the R × C
matrix of the white additive Gaussian noise.

In order to keep exposition and derivations simple, we
assume that C ≥ R. However, it is worth noticing that
the results presented in the following hold in general also
for C < R although their derivation may require some
modification.

For the sake of analysis, we assume that the entries of
the matrices X, XI , H, HI , and W are independent and
identically distributed (i.i.d.) zeromean complex random vari-
ables. The entries of X and XI have unit variance while the
elements of H and HI , have variance P and I, respectively.
The variance of the additive white noise is W.

We define the normalized coherence time

κ =
C

R
(2)

and the cell load
α =

T

R
. (3)

Additionally, sometimes, it is useful to consider a unique
matrix of noise including both the thermal noise and interfer-
ence

Z = HIXI +W (4)

such that (1) reduces to

Y = HX +Z. (5)

Note that (5), can also be understood as a code-division
multiple-access (CDMA) system with the columns of H de-
noting the spreading sequences and R denoting the processing
gain. It is well-known that CDMA can be demodulated without
knowledge of the spreading sequences by means of blind
algorithms, see e.g. [8]. Those algorithms can also be applied
in massive MIMO systems as proposed in [9]. In the following
section, we introduce an algorithm particularly suitable for
large scale antenna array systems.

III. PROPOSED ALGORITHM

Subspace methods are very suitable for dimensionality and
noise reduction. They rely on the underlying assumption that
the useful information is contained in a subspace with smaller
dimensions that the space of observations. A significant part
of the total signal power is concentrated in such a subspace,
whereas additive white noise is typically distributed through
the larger space isotropically. Then, by projecting the received
signal onto the signal subspace, it is possible to reduce the

dimensionality of the problem while removing a considerable
amount of noise.

In the simple case of a single active transmit antenna in
additive noise, i.e. T = 1 and L = 0 in (1), the linear
receiver m∗ that maximizes the signal to noise ratio (SNR)
is equivalent the one that maximizes the total received power
normalized to the power gain of the filter, i.e.,

m∗ = argmax
m

m†Y Y †m

m†m
. (6)

It is a well-known result of linear algebra that the vector m∗

maximizing the right hand side of (6) is the eigenvector of
Y Y † corresponding to the largest eigenvalue.

Similarly, for T transmit antennas in white noise, i.e. L = 0
in (1), the projection onto the signal subspace requires the
Singular Value Decomposition (SVD) of the matrix Y with
singular values sorted in non-increasing order, i.e.

Y = UΣV † (7)

with unitary matrices U ∈ CR×R and V ∈ CC×C and the
R × C diagonal matrix Σ with diagonal entries σ1 ≥ σ2 ≥
· · · ≥ σR. Then, it is performed the decomposition of the
matrix of left singular vectors into the signal space basis S ∈
CR×T and the null space basis N ∈ CR×(R−T ), i.e.

U = [S|N ]. (8)

Finally, the received signal is projected onto the signal sub-
space to obtain

Ỹ = S†Y

= S†HX + S†W (9)

= H̃X + W̃

where Ỹ is a T×C matrix with dimensions reduced compared
to Y and does not contain the noise lying in the null space
N ; H̃ = S†H is a T × T matrix and W̃ = S†W is the
noise component in the projection subspace. Then, the channel
estimation problem reduces to the estimation of the T × T
channel matrix H̃.

In the following, we discuss the implications that the
assumption of large antenna array system, i.e., R ≫ T ideally
α → 0, has on the application of a projection subspace
method:

• The T -dimensional signal subspace is much smaller than
the R-dimensional full space, which the noise lives in.
White noise is evenly distributed in all dimensions of the
full space. Thus, the influence of white noise onto the
signal subspace becomes negligible as R → ∞. Using
the algorithm above, we can achieve an array gain even
without the need for estimating the channel coefficients.
In fact, the channel can be estimated solely after projec-
tion onto the signal subspace when the dominant part of
the white noise has already been suppressed;

• Although the data dependent projection (9) implies that
the noise W̃ ∈ CT×C is not independent from the
data X , neglecting this dependence is an admissible
approximation that becomes exact as the number of
receive antennas R grows large;

• Any R-dimensional channel vector from any transmitter,
be it in the cell of interest or in a neighboring cell, to the
receive array in the cell of interest becomes orthogonal to



any other channel vector as R → ∞. This implies that the
subspace spanned by transmit antennas in interfering cells
is asymptotically orthogonal to the subspace spanned by
the signal of interest. Then, in the cases where we are able
to discriminate between the subspace of the interfering
signals and the subspace of the signals of interest, the
proposed projection subspace method is applicable to
system (1) even with L > 0 by replacing W and W̃
in (9) with Z and Z̃ = S†Z, respectively.

We conclude this section discussing conditions and tech-
niques to identify and distinguish between interference sub-
space and subspace of the signal of interest. To this aim, we
observe that, for R → ∞ and α → 0 and in absence of noise,
the (L + 1)T largest singular values of the received signal
matrix Y become identical to the Euclidean norms of the
(L+1)T channel vectors multiplied by the average amplitude
of the transmitted signals, i.e.

√
P or

√
I for the signal of

interest or the interferers. Then, if we keep these values in two
orthogonal intervals for the two different sets of signals, we
are able to identify the two subspaces by the singular values
of the matrix Y .

This is possible by power control and power controlled
hand-off. Note that for R → ∞, the system has infinite
diversity, thus the effect of short-term fading (Rayleigh fad-
ing) vanishes. Thus, the norm of a channel vector is solely
determined by path loss and long-term fading (shadowing).
In a cellular system with power control and power-controlled
handoff strategy, the norm of channel vectors from neighboring
cells can never be greater than the norm of channel vectors
from the cell of interest. We conclude that the identification
of singular values belonging to transmitters within the cell of
interest is possible by means of ordering them by magnitude.
Admittedly, such orderings might be inaccurate for a small
fraction of transmitters that happen to experience similar chan-
nel conditions to more than a single access point. In practice,
this ambiguity can be overcome by a smart scheduling that
ensure a certain margin of power separation between users
within the cell of interest and users from neighboring cells.

IV. PERFORMANCE ANALYSIS

In the previous section we showed that the interference
subspace and the user-of-interest subspace are orthogonal
for R → ∞ and α → 0. Additionally, adopting power
control, power-controlled hand-off and a smart scheduling, it
is possible to maintain the signal powers of the two subspaces
into two disjoint intervals and distinguish and separate the
signal-of-interest subspace based only on the singular values
of the matrix Y . However, in practical systems the number
of transmit and receive antennas is finite and the load α can
be made very small but not arbitrarily small. Then, in real
systems the asymptotic properties are only approximated. A
useful and insightful approach to understand the behaviour
of a real network consists in assuming that both T and R
grow large with a small but finite ratio α. This setting can be
studied effectively by random matrix theory. Intuitively, while
for α → 0 all the singular values related to the signals-of-
interest and interferers are equal to

√
P and

√
I, respectively,

in the practical case with finite α the singular values get
spread around the ideal values. Objective of our analysis is
to determine the distribution of the singular values of Y , or
equivalently the eigenvalue distribution of Y Y † for small but
finite α and R, T → ∞.

Let us denote the asymptotic eigenvalue distribution of
Y Y † as P(x). In [11], we showed that this asymptotic
eigenvalue distribution obeys

sG(s) = − 1− PTCα (sG(s) + 1− κ)G(s)

ακ− PTC (sG(s) + 1− κ)G(s)

− ILTCα (sG(s) + 1− κ)G(s)

ακ− ITC (sG(s) + 1− κ)G(s)

− WC (sG(s) + 1− κ)G(s)

κ
(10)

with
G(s) =

∫
dP(x)

x− s
(11)

denoting its Stieltjes transform.
By means of the Stieltjes inversion formula

p(x) =
1

π
lim

y→0+
ℑG(x+ jy) (12)

the asymptotic eigenvalue distribution is obtained.
The fixed point equation (10) is not insightful to determine

under which transmission conditions the two bulks of the
eigenvalues related to the signal-of-interest and interference
subspaces are disjoint. In the following, we derive conditions
under which the two bulks are disjoint.

In order to find the support of asymptotic eigenvalue distri-
butions we follow [12, Chapter 7]. There it is shown that the
boundaries of the support of the asymptotic eigenvalue distri-
bution are extrema of the inverse of the Stieltjes transform.
Note that the fixed point equation for the Stieltjes transform
in (10) can be rewritten as

sG+ 1 +
ζ(sG+ 1− κ)G

κ
+

α(sG+ 1− κ)G

rκ− (sG+ 1− κ)G

+
αL(sG+ 1− κ)G

tκ− (sG+ 1− κ)G
= 0 (13)

with r = (PRC)−1, t = (IRC)−1, and ζ = WC. The inverse
function s(G) can be obtained as a zero of the numerator of
(13), N(s) = N0(s) +Np(s) where

N0(s) = (G(κ+ζG)s+ζ(1−κ)G+κ)(rκ−(sG+1−κ)G)

(tκ− (sG+ 1− κ)G)

is a cubic function in s and

Np(s) = ακG(sG+1−κ)(κ(t+Lr)−(L+1)(sG+1−κ)G),

is a quadratic function in s proportional to α. Then, N(s) is a
cubic function in s obtained as perturbation of N0 by Np(s).
Then, for very small α the zeros of the original numerator
N(s) can be computed as a perturbed version of the zeros in
N0(s) given by

s0,1 = −ζ(1− κ)G+ κ

(κ+ ζG)Gs
(14)

s0,2 = − (1− κ)G− κr

G2
(15)

s0,3 = − (1− κ)G− κt

G2
. (16)

Due to lack of space, we do not go into the details of the
derivation of the boundaries of the two bulks but just provide
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Fig. 1. Eigenvalue pdf of a network with T = 3, L = 2, R = 300, and
W = 0 with approximation of its support boundaries

that guidelines for their derivation. In order to obtain a good
approximation of N(s) in the surroundings of its extremes, we
consider the second order Taylor expansions of N(s) around
s0,1, s0,2 and s0,3. Each of these expansions has two zeros
s
(2,1)
α (G) and s

(2,2)
α (G) and provide a set of 6 functions whose

extremes should be derived. To this aim, the expansions with
respect to s0,2 and s0,3 are especially useful since they enable
analytical approximations of the values of G corresponding to
the extremes.

In the following , in order to keep equations shorter we
set ζ = 0, i.e. we consider the high SNR regime. However,
similar expressions are available for any value of ζ. Then, for
ζ = 0 the proposed derivation of the extremes yield the two
pairs

G
(2)
2 = −κr(t− r)

(
κ(t− r) + α(t+ (L− 2)r)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)

±2
√

ακ(t− r)2 − α2r(t+ (L− 1)r)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)

)
(17)

for the expansion around s0,2 and

G
(2)
3 = −κt(t− r)

(
κ(t− r) + α((2L− 1)t− Lr)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)

±2
√
ακL(t− r)2 + α2Lt((L− 1)t− Lr)

(αt+ αLr − κt+ κr)2 + 4ακLr(t− r)

)
(18)

for the expansion around s0,3. It can be shown that under the
assumptions of physical interest that L ∈ N+ and t ≥ r ≥ 0,

G
(2)
2 and G

(3)
2 are all negative real zeros if

t

r
≥ 1 +

α

2κ
+

α

2κ

√
1 +

4Lκ

α
(19)

or equivalently

0 ≤ α

κ
≤ (t− r)2

r(t+ (L− 1)r)
. (20)

For x = 2, 3, let us denote by G
(2)
x,− and G

(2)
x,+ the instances of

G
(2)
x obtained by selecting the sign minus or plus, respectively.

Then, by simple inspection of (17) and (18), we observe that

G
(2)
x,+ ≤ G

(2)
x,−. (21)

By inspection, it is easy to verify that G(2)
3,− ≤ G

(2)
2,+ under the

above mentioned conditions of physical interest. However, we
are interested in determining under which conditions the two
intervals [G(2)

2,+, G
(2)
2,−] and [G

(2)
3,+ ≤ G

(3)
x,−] do not intersect, i.e.

when G
(2)
3,− ≤ G

(2)
2,+. It can be verified that this last condition

is satisfied for

0 ≤ α

κ
≤ (Lr2 + 3Lrt+ 3rt+ t2 − 2(t+ r)

√
3Lrt)

· (t− r)2

L2r2(3t+ r)2 − 6r3tL− 4r2Lt2 − 6Lrt3 + t2(3r + t)2
.

Finally, let us define

s
(2)
2 (G) =

2ακ(L+ 1)− 2α(L+ 1) + 2κ(1− κ)

2((1 + L)α− κ)G+ 2κ(t− 2r)

+
κ(κ(t− 5r) + α(t+ Lr) + 4r − 2t)G+ κ2r(t− 3r)

2G2(((1 + L)α− κ)G+ κ(t− 2r))

and

s
(2)
3 (G) =

2ακ(L+ 1)− 2κ(κ− 1)− 2α(L+ 1)

2((α(L+ 1)− κ)G− κ(2t− r))

+
κ((4− 5κ)t+ (κ− 2)r + α(t+ Lr))G+ κ2t(r − 3t)

2G2((α(L+ 1)− κ)G− κ(2t− r))

Then, an approximation of the boundaries based on the second
order Taylor expansion is given by s

(2)
x,− = s

(2)
x

(
G

(2)
x,−

)
and

s
(2)
x,+ = s

(2)
x

(
G

(2)
x,+

)
.

A rougher approximation of the position of the the two bulks
is obtained by defining

s(0) = − 1

G
(22)

and assuming as boundaries of the eigenvalue pdf support
s
(0)
x,− = s(0)

(
G

(2)
x,−

)
and s

(0)
x,+ = s(0)

(
G

(2)
x,+

)
.

The tightness of the proposed approximation is assessed by
numerical simulations. In Figure 1 we show the histogram of
the eigenvalues for a finite systems with T = 3 transmitted
signals per cell, L = 2 interfering cells, and R = 300
receive antennas at the base station. The signal of interest is
received with power P = −10dBW and the interfering signal
is received with power I = P

4 . Additionally, the asymptotic
eigenvalue probability density function (pdf) obtained by (10)
is drawn by a solid line. The vertical lines indicate the approx-
imation of the boundaries of the asymptotic pdf obtained by
perturbation analysis. As expected, the approximation based
on s(0)(G) provides a quite rough estimation of the support
of the eigenvalue pdf which is strictly contained in the actual
support while the approximation based on the second order
Taylor expansion provides a much tighter estimation which
includes the actual asymptotic support. Thus, the estimation
of the gap between the two bulks based on this estimation is
conservative and of practical interest.

V. NUMERICAL RESULTS

In this section, results of simulations based on realistic
settings with a finite number of receive antennas corroborate
the usefulness of the proposed method. In all the simulations
we adopt as performance metric the uncoded bit error rate
(BER) and compare the proposed algorithm with the linear
channel and data estimation proposed in [2].
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Fig. 2 shows the system improvement in terms of BER when
the number of receive antennas increases. In the simulations
we set L = 3, T = 5, C = 200, and unit ratio P

W , i.e. the
SNR is equal to 0dB. The ratio P

I assumes the three different
values over the set {2, 3, 4}. We transmit one pilot symbol
per transmit antenna, i.e. 5 pilot symbols in total, and an
identical set of orthogonal training sequences is adopted by all
the access points as proposed in [2]. For data detection, single
user matched filtering is implemented. The proposed algorithm
widely outperforms the receiver based on linear channel esti-
mation in [2] (conventional receiver). More interestingly, for
any value of the ratio P

I the performance of the conventional
receiver flattens due to pilot contamination while the BER of
the proposed receiver, for sufficiently large P

I ratios, decreases
unboundedly with a slope that, not surprisingly, increases
with the ratio1 P

I . Thus, this trend confirms that the pilot
contamination problem is overcome, in principle.

Fig. 3 shows the dependence of the BER on the SNR
( P
W ) for T = {4, 6, 8}, R = C = 200, L = 3, P

I = 4.
As in the previous set of simulations, all the cells adopt the
same set of orthogonal pilot sequences with one pilot symbol
per transmit antenna. As expected, the performance of all
systems flatten out at high SNR regime since the thermal
noise becomes negligible compared to the interference. The
curves for different values of T show the dependence of the
performance on α. As pointed out in Section IV the value of α
should be below a certain threshold to guarantee separability
between the interference and signal-of-interest subspaces.

VI. SUMMARY AND CONCLUSIONS

We proposed a practical algorithm to avoid pilot contamina-
tion in cellular systems with random generated pilot sequences,
power-controlled handoff and appropriate scheduling. The
dominant complexity of this algorithm is a singular value
decomposition of received signal block. We conclude, that
pilot contamination is not a fundamental effect, but an effect
of linear channel estimation. An asymptotic analysis based on
free probability and perturbation theory has been proposed.

1We recall that the ratio P
I

determines the separability between the
interference and the signal-of-interest subspaces.
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