
Comput Mech (2010) 45:141–156
DOI 10.1007/s00466-009-0429-9

ORIGINAL PAPER

Analysis of plates and shells using an edge-based smoothed finite
element method

Xiangyang Cui · Gui-Rong Liu · Guang-yao Li ·
GuiYong Zhang · Gang Zheng

Received: 16 December 2008 / Accepted: 6 October 2009 / Published online: 23 October 2009
© Springer-Verlag 2009

Abstract In this paper, an approach to the analysis of
arbitrary thin to moderately thick plates and shells by the
edge-based smoothed finite element method (ES-FEM) is
presented. The formulation is based on the first order shear
deformation theory, and Discrete Shear Gap (DSG) method is
employed to mitigate the shear locking. Triangular meshes
are used as they can be generated automatically for com-
plicated geometries. The discretized system equations are
obtained using the smoothed Galerkin weak form, and the
numerical integration is applied based on the edge-based
smoothing domains. The smoothing operation can provide a
much needed softening effect to the FEM model to reduce the
well-known “overly stiff” behavior caused by the fully com-
patible implementation of the displacement approach based
on the Galerkin weakform, and hence improve significantly
the solution accuracy. A number of benchmark problems
have been studied and the results confirm that the present
method can provide accurate results for both plate and shell
using triangular mesh.
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1 Introduction

Plates and shells are the most widely used structural compo-
nents in civil, mechanical and aerospace engineering. In the
past several decades, the finite element method has been used
as a powerful numerical tool to simulate behaviors of plates
and shells. Due to the complexity of the existing plate and
shell elements, research on simpler, more efficient and inex-
pensive plate and shell elements receives continuously strong
interest. Compared with quadrilateral element, triangular ele-
ment is particularly attractive because of its simplicity, easy
in automatic meshing and re-meshing in adaptive analysis.
However, the development of effective triangular elements
for plates and shell is not a trivial matter. The major difficul-
ties are to overcome (1) the overly stiff behavior, and (2) the
shear locking phenomenon.

Shear locking is a very well known phenomenon caused
by parasitic internal energy leads to an additional, artifi-
cial stiffness. Many efficient works have been done to over-
come the shear locking and various triangular elements have
been proposed. Pugh et al. [1] proposed a triangular plate
bending element with reduced integration. Belytschko et al.
[2] used a single Gauss point integration for calculating the
shear strain energy. However, the elements with reduced
integration or selective integration have low accuracy and
often exhibit zero energy modes. Moreover, they often can
not pass the patch test for thin plates. Discrete Kirchhoff
triangular (DKT) elements were developed by Stricklin et al.
[3] and Dhatt [4,5], where the shear locking was eliminated
by removing the shear deformation from element kinemat-
ics. Efficient results were obtained using these elements only
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for thin structures since transverse shear flexibility cannot
be neglected in the analysis of thick shells. Batoz et al. [6]
summarized the developments of flat triangular plate bend-
ing elements with displacement degrees of freedom at the
three corner nodes, and concluded that only a few elements
are reliable in this class. Based on mixed interpolation of ten-
sorial components (MITC), Bathe and co-workers developed
a series of triangular elements [7,8]. MITC3 is a three-node
triangular element which has a simple formulation, but some
locking is present in the solution of the clamped plate prob-
lems and the hyperboloid shell problems [9]. Ayad et al. [10]
proposed a MiSP (Mixed Shear Projected) approach based
on the Hellinger-Reissner variational principle. The shear
strains in this method were defined in terms of the edge tan-
gential strains that were projected on the element degrees of
freedom. Using assumed natural strains (ANS) model, Sze
and Zhu [11] proposed a quadratic curved triangular shell
element, and Kim et al. [12,13] proposed a 3-node macro
triangular element for analysis of plates and shells. Chen and
Cheung [14] proposed two refined triangular thin/thick plate
elements (DKTM and RDTKM) based on the Timoshenko’s
beam theory. Based on this work, Chen [15] proposed a
15-DOF triangular discrete degenerated shell element.
Bletzinger et al. [16] presented a 3-node non-isotropic tri-
angular element DSG3 using the Discrete Shear Gap method
(DSG). This element may be classified as an ANS element,
but it needs not to choose an interpolation for the shear strains
or to specify any sampling points. It is based on the explicit
satisfaction of the kinematic equation for the shear strains at
discrete points and effectively eliminates the parasitic shear
strains. This element is very simple and does not need to
choose an interpolation for the shear strains or to use addi-
tional sampling points.

The overly stiff behavior is observed in all fully compat-
ible displacement-based FEM models. The primary cause
of the overly stiff behavior is the fully compatible imple-
mentation of the assumed displacement field based on the
standard Galerkin weakform. The overly stiff behavior is
particularly severe when displacement-based triangular ele-
ments is used, which often leads to very poor accuracy in
the solution. In order to reduce the stiffness of the model
and widen the solution space, Liu [17] proposed a general-
ized smoothed Galerkin weak form (GS-Galerkin), revealed
and proved a number of important properties including var-
iational consistence, convergence, upper bound and soften
effects [18]. The smoothing operation [19] has been gen-
eralized to include discontinuous functions [17], and is used
for the gradient of field variables, and the smoothing
operations are performed in various ways for creating mod-
els of desired properties. Using the node-based smoothing
operation and the point interpolation method for shape func-
tion construction, a node-based smoothed point interpola-
tion method (NS-PIM or LC-PIM [20]) was formulated. Liu

and Zhang [21] found that NS-PIM is variationally consis-
tent when the solution is sought from a proper H space, and
can provide much better stress results. More importantly it
can provide upper bound solution in energy norm. Using
the FEM shape function and the element-based smoothing
operations, a smoothed finite element method (SFEM) was
proposed [22]. The SFEM further divides the elements into
some smoothing domains, computes the integrals along the
edge of the smoothing domains, and has been proven to have
excellent properties. The SFEM of general n-sided polygonal
elements has also been formulated, and works well for very
heavily distorted mesh [23]. Liu et al. [24] gave detailed the-
oretical aspects including stability, bound property and con-
vergence about SFEM. Cui et al. [25] extended the SFEM for
linear and nonlinear analysis of plates and shells. Nguyen-
Xuan et al. [26] extend the SFEM for plate problem coupled
with MITC4 element [27]. All these models have a common
foundation of the so-called G space theory [28], and fall into
the category of weakened weak (W2) formulation [18].

An edge-based smoothed finite element method
(ES-FEM) [29,30] has been proposed for 2D solid mechan-
ics problems using also the smoothed Galerkin weak form
with edge-based smoothing domains. It has been found that
the simple change of smoothing domains gives the ES-FEM
excellent properties including good accuracy and free of spu-
rious modes. In this work, the ES-FEM has been further
extended to solve plates and shells. The present formula-
tion is based on the first order shear deformation theory,
and the shear locking is suppressed using DSG [16]. The
domain is first discretized into a set of triangular elements
and linear shape functions are used as same as in the standard
FEM. The smoothing domains associated with the edges of
the triangles are then further formed and the system stiff-
ness matrix is obtained by integrating numerically over each
smoothing domains. Compared with FEM, the smoothing
operation reduces the stiffness of the discretized system, and
compensates nicely the “overly stiff” behavior of the FEM
model. Hence, the ES-FEM can produce better solutions than
corresponding FEM model. For shell problems, an edge local
coordinate system is introduced for performing strain
smoothing operations. To validate the accuracy and stability
of the present method, a number of numerical examples have
been examined and comparisons are made with results avail-
able in literatures. The excellent results have been obtained
for both plate and shell problems.

2 Formulations

2.1 Basic equations for plate and shell

The first order shear deformation theory [31] is used in this
work, and thus the displacements in Cartesian coordinate
system can be expressed as follows
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u = u0 + zθy

v = v0 − zθx (1)

w = w0

where u0, v0 and w0 are the displacements of the mid-plane
of the plate or shell in the x, y and z directions, θx and θy

denote the rotations respect to x and y directions, respec-
tively.

The relevant strain vector ε can be written in terms of the
mid-plane deformations of Eq. (1), which gives

ε =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εxx
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0
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0
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(2)

where εm the membrane strain, εb the bending strain (curva-
ture), and εs the shear strain are given by

εm =
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Applying the principle of virtual work, the weak form is
stated as follows
∫

�

δεT
mDmεmd� +

∫

�

δεT
b Dbεbd� +

∫

�

δεT
s Dsεsd�

−
∫

�

δuT f̃d� −
∫

�

δuT t̃d� = 0 (4)

where the membrane stiffness constitutive coefficients (Dm),
the bending stiffness constitutive coefficients (Db) and the
transverse shear stiffness constitutive coefficients (Ds) are
defined as

Dm =
t
2∫

− t
2

D0dz = tD0 (5)

Db =
t
2∫

− t
2

z2D0dz = t3

12
D0 (6)

Ds =
t
2∫

− t
2

χG

[
1 0
0 1

]

dz = χ tG

[
1 0
0 1

]

(7)

in which G is shear modulus, χ = 5/6 is the shear correc-
tion factor, and the matrix D0 is the constitutive coefficients
given by

D0 = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1 − ν/2

⎤

⎦ (8)

where E is Young’s modulus, and ν is Poisson ratio.
The stresses can be given as follows,

σm = {Nx , Ny, Nxy
}T = Dmεm (9)

is the membrane force,

σ b = {Mx , My, Mxy
}T = Dbεb (10)

is the bending moment, and

σ s = {Qx , Qy
}T = Dsεs (11)

is the transverse shear force.
At any point in a triangular element, the generalized dis-

placement field u in the element is interpolated using the
nodal displacements at the nodes of the element by the linear
shape functions. The same shape functions are used for both
displacements and rotations

u = {u, v, w, θx , θy
}T = [N1 N2 N3]

⎧
⎨

⎩

d1

d2

d3

⎫
⎬

⎭
(12)

where di = {u0i , v0i , w0i , θxi , θyi }T is the generalized
nodal displacement at node i, Ni (x) is a diagonal matrix of
shape functions given by

Ni = diag {Ni (x) , Ni (x) , Ni (x) , Ni (x) , Ni (x)} (13)

in which Ni (x) is the shape function for node i . Since 3-node
triangular element is used, the shape function is linear and
can be given as follows [32]

Ni (x) = ai + bi x + ci y

ai = 1

2Ae

(
x j yk − xk y j

)
, bi = 1

2Ae

(
y j − yk

)
, (14)

ci = 1

2Ae

(
xk − x j

)

where Ae is the area of the triangular element, the subscript
i varies from 1 to 3, j and k are determined by the cyclic
permutation in the order of i, j, k.

Substituting Eq. (12) into Eq. (3), the membrane strain εm

and the bending strain εb can be written as

εm = Bmd = [Bm1, Bm2, Bm3]

⎡

⎣
d1

d2

d3

⎤

⎦ (15)

εb = Bbd = [Bb1, Bb2, Bb3]

⎡

⎣
d1

d2

d3

⎤

⎦ (16)
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in which

Bmi =
⎡

⎣
Ni,x 0 0 0 0
0 Ni,y 0 0 0
Ni,y Ni,x 0 0 0

⎤

⎦ (17)

Bbi =
⎡

⎣
0 0 0 0 Ni,x

0 0 0 −Ni,y 0
0 0 0 −Ni,x Ni,y

⎤

⎦ (18)

where “( ),” indicates differentiation, the subscript i = 1, 2, 3.

In order to eliminate the shear-locking, the “Discrete Shear
Gap” (DSG) method [16] is used here. In each triangular
element, the shear strain here can be given as:

γxz =
3∑

i=1

Ni,x (x) 
wxi +
3∑

i=1

Ni,x (x) 
wyi

γyz =
3∑

i=1

Ni,y (x) 
wxi +
3∑

i=1

Ni,y (x) 
wyi

(19)

where 
wxi and 
wyi are the discrete shear gaps at the node
i given by


wx1 = 
wx3 = 
wy1 = 
wy2 = 0


wx2 = (w2 − w1) − 1

2
b (θx 1+θx 2)

+1

2
a
(
θy1 + θy2

)
(20)


wy3 = (w3 − w1) − 1

2
d (θx 1 + θx 3) + 1

2
c
(
θy1 + θy3

)

where

a = x2 − x1, b = y2 − y1

c = x3 − x1, d = y3 − y1
(21)

From Eqs. (19), (20) and (21), the shear strain εs in each
element can be written as

εs =
{

γxz

γyz

}

= Bsd = [Bs1, Bs2, Bs3]

⎧
⎨

⎩

d1

d2

d3

⎫
⎬

⎭
(22)

in which

Bs1 = 1

2Ae

[
0 0 b − d 0 Ae 0
0 0 c − a −Ae 0 0

]

(23a)

Bs2 = 1

2Ae

[
0 0 d − bd

2
ad
2 0

0 0 −c bc
2 − ac

2 0

]

(23b)

Bs3 = 1

2Ae

[
0 0 −b bd

2 − bc
2 0

0 0 a − ad
2

ac
2 0

]

(23c)

Γk

Edge k

Nodes of the element Centroid  of the element

Ωk
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Ωm
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Fig. 1 A problem domain is divided into Neiem triangular elements
with a total of Nedge edges. Interior element edge k is sandwiched in
the smoothing domain �k bounded by �k . Smoothing domain �m for
the boundary edge m is a triangle. There are Nk nodes that influence
the kth smoothing domain �k . For domains associated with boundary
edges Nk = 3; for example, nodes n3, n5 and n6 influence �m . For
domains associated with interior edges Nk = 4; for example, nodes
n1, n2, n3 and n4 influence �k

2.2 Edge-based strain smoothing technique for plate

In this section, the edge-based strain smoothing technique
will be introduced. In present ES-FEM, the problem domain
� is divided into Nelem triangular elements with a total of
Nedge edges. In order to perform the smoothing operation, a
smoothing domain for each edge is formed by sequentially
connecting two end points of the edge and centroids of its sur-
rounding triangles, such that � = �1 ∪�2 ∪ . . .∪�Nedge and
�i ∩� j = ∅, (i �= j, i = 1, . . . , Nedge, j = 1, . . . , Nedge),
as shown in Fig. 1. In the ES-FEM, the displacement inter-
polation is element based, but the integration is based on the
smoothing domains. As shown in Fig. 2, for interior edges,
the integration domain �k of edge k is formed by assem-
bling two sub-domains �k1 and �k2 of two neighboring ele-
ments. The sub-domain �k1 and the sub-domain �k2 are
from element e1 and element e2, respectively.

Introducing the strain smoothing operation [17], the
smoothed strain in the smoothing domain �k are given by

ε̄(k)
m = 1

Ak

∫

�k

ε(k)
m d�

= 1

Ak

⎛

⎜
⎝

∫

�k1

ε(k1)
m (x) d� +

∫

�k2

ε(k2)
m (x) d�

⎞

⎟
⎠ (24a)
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Fig. 2 The integration is
performed over each of the
edge-based smoothing domains.
Domain �k of edge k is formed
by assembling two sub-domains
�k1 and �k2 of two neighboring
elements. The sub-domain �k1
is from element e1 and the
sub-domain �k2 is from element
e2

Edge k
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Ωk2

i m

j

n
j

m

m

n
j

i

element Nodes index

e1

e2

e2

e1

e1 i,  j,  m
e2 j,  n,  m

ε̄
(k)
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∫
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ε
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⎞

⎟
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ε̄(k)
s = 1

Ak

∫

�k

ε(k)
s d�

= 1

Ak

⎛

⎜
⎝

∫

�k1

ε(k1)
s (x) d� +

∫

�k2

ε(k2)
s (x) d�

⎞

⎟
⎠ (24c)

where Ak is the area of the smoothing domain �k ,
ε
(k1)
m (x), ε

(k1)
b (x) and ε

(k1)
s (x) are the compatible strains cal-

culated in element e1, ε
(k2)
m (x), ε

(k2)
b (x) and ε

(k2)
s (x) are the

compatible strain calculated in element e2.
Since linear shape functions are used in the present

method, the compatible strain is a constant in each smoothing
sub-domain. Therefore, Eq. (24) can be rewritten as

ε̄(k)
m = 1

Ak

(
Ak1ε

(k1)
m + Ak2ε

(k2)
m

)
(25a)

ε̄
(k)
b = 1

Ak

(
Ak1ε

(k1)
b + Ak2ε

(k2)
b

)
(25b)

ε̄(k)
s = 1

Ak

(
Ak1ε

(k1)
s + Ak2ε

(k2)
s

)
(25c)

where Ak1 and Ak2 are areas of the smoothing sub-domains
�k1 and �k2, respectively.

Substituting Eqs. (15), (16) and (22) into Eq. (25), the
smoothed strains can be given by

ε̄(k)
m = Ak1

Ak
B(k1)

m d(k1) + Ak2

Ak
B(k2)

m d(k2) = B̄(k)
m d(k) (26a)

ε̄
(k)
b = Ak1

Ak
B(k1)

b d(k1) + Ak2

Ak
B(k2)

b d(k2) = B̄(k)
b d(k) (26b)

ε̄(k)
s = Ak1

Ak
B(k1)

s d(k1) + Ak2

Ak
B(k2)

s d(k2) = B̄(k)
s d(k) (26c)

Boundary line

m

Edge k

i

j
Γ

Ω

k

k

Fig. 3 The integration domain�k of edge k is only a single sub-domain

where d(k1) and d(k2) are the nodal displacements vector
of the element e1 and the element e2, respectively, d(k) are
the displacements vector of the nodes associated with edge
k, B(k1)

m , B(k1)
b and B(k1)

s are the compatible strain matrices of

the smoothing sub-domain �k1 and B(k2)
m , B(k2)

b and B(k2)
s are

the compatible strain matrices of the smoothing sub-domain
�k2, respectively. Note that the sign ‘+’ denotes assembly
but not sum here.

For boundary edges as shown in Fig. 3, the smoothing
domain �k of edge k is a single sub-domain, and strains in
Eq. (26) are obtained by the single subdomain. In this case,
the strain and strain matrix have the same form as those in
FEM.

2.3 Edge-based strain smoothing technique for shell

For shell problems, local coordinate system is defined in each
element, and the compatible strains are computed in this local
coordinate system. In order to perform the strain smoothing
over the same local coordinate system for two sub-domains
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from two different elements sharing an inner edge, coordi-
nate system (x̄, ȳ, z̄) associated with an edge is defined in
this study. Let x̄ be coinciding with the edge k, z̄ be the aver-
age normal direction of the two elements sharing edge k, and
ȳ direction is then defined as the cross product of the unit
vectors in the z̄ and x̄ directions. From simple transforma-
tion rules for each triangular element, the strain in the edge
coordinate system can be written as

ε̄m = Rm1Rm2ε̂m

ε̄b = Rb1Rb2ε̂b (27)

ε̄s = Rs1Rs2ε̂s

in which ε̂m, ε̂b and ε̂s are strains in element local coordinate
system, and

Rm1 = Rb1 =
⎡

⎣

c2
x̄ x c2

x̄ y c2
x̄ z cx̄ x cx̄ y cx̄ ycx̄z cx̄x cx̄z

c2
ȳx c2

ȳ y c2
ȳz cȳx cȳy cȳycȳz cȳx cȳz

2cx̄x cȳx 2cx̄ ycȳy 2cx̄zcȳz cx̄x cȳy + cȳx cx̄ y cx̄zcȳy + cȳzcx̄ y cx̄x cȳz + cȳx cx̄z

⎤

⎦ (28)

Rs1 =
[

2cx̄x cz̄x 2cx̄ ycz̄y 2cx̄zcz̄z cx̄x cz̄y + cz̄x cx̄ y cx̄zcz̄y + cz̄zcx̄ y cx̄x cz̄z + cz̄x cx̄z

2cȳx cz̄x 2cȳycz̄y 2cȳzcz̄z cȳx cz̄y + cz̄x cȳy cȳzcz̄y + cz̄zcȳy cȳx cz̄z + cz̄x cȳz

]

(29)

Rm2 = Rb2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c2
x̂ x c2

ŷx cx̂x cŷx

c2
x̂ y c2

ŷ y cx̂ ycŷy

c2
x̂ z c2

ŷz cx̂zcŷz

2cx̂x cx̂ y 2cŷx cŷy cx̂x cŷy + cx̂ ycŷx

2cx̂ ycx̂z 2cŷycy′z cx̂ ycŷz + cx̂zcŷy

2cx̂x cx̂z 2cŷx cy′z cx̂x cŷz + cx̂zcŷx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(30)

Rs2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cx̂x cẑx cŷx cẑx

cx̂ ycẑy cŷycẑy

cx̂zcẑz cŷzcẑz

cx̂x cẑy + cx̂ ycẑx cŷx cẑy + cŷycẑx

cx̂zcẑy + cx̂ ycẑz cŷzcẑy + cŷycẑz

cx̂x cẑz + cx̂zcẑx cŷx cẑz + cŷzcẑx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)

where as usual cx̄x is the cosine of the angle between the x̄
and x axes, etc.

Using Eqs. (15), (16) and (22), the strains in the edge sys-
tem can be obtained using those in element local coordinate
system

ε̄m = Rm1Rm2B̂m d̂

ε̄b = Rb1Rb2B̂bd̂ (32)

ε̄s = Rs1Rs2B̂s d̂

where B̂m, B̂b and B̂s are strain matrices in element local
coordinate system, and

d̂i = T̂di (33)

where d̂i and di are the nodal displacement vectors at node i
expressed in local and global coordinates, respectively, and

transformation matrix T̂ can be written as

T̂ =
[

T3×3 03×3

02×3 T2×3

]

(34)

in which

Ti j = cîj (35)

As shown in Fig. 4, the smoothing domain �k correspond-
ing to an inner edge k consists of two sub-domains. The strain
in the edge coordinate system of each sub-domain �kI can be
noted as ε̄(k I )

m , ε̄
(k I )
b and ε̄(k I )

s for the I th triangular element.
As the strain is constant field in the linear triangular element,
the strain in smoothing domain can be easily obtained by

ε̄(k)
m = 1

Ak

∑

I

Ak I ε̄
(k I )
m (36a)

ε̄
(k)
b = 1

Ak

∑

I

Ak I ε̄
(k I )
b (36b)

ε̄
(k)
b = 1

Ak

∑

I

Ak I ε̄
(k I )
b (36c)

where Ak is the area of the smoothing domain �k , Ak I is the
area of the sub-domain �k I .

Using Eqs. (32), (33) and (36), the relationship between
strains and global nodal displacement vectors can be
given as

1e

1̂z

2ẑ z

1̂x
1ŷ2x̂

2ŷ xy

i

j

m

n

x

y

z

2e

edge k

Fig. 4 Shell element for edge-based smoothing, integration domain
and coordinate systems
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ε̄(k)
m = B̄(k)

m d(k) (37a)

ε̄
(k)
b = B̄(k)

b d(k) (37b)

ε̄(k)
s = B̄(k)

s d(k) (37c)

in which

B̄(k)
m = 1

Ak

∑

I

Ak I R(k)
m1R(k I )

m2 B̂(k I )
m T̂(I ) (38a)

B̄(k)
b = 1

Ak

∑

I

Ak I R(k)
b1 R(k I )

b2 B̂(k I )
b T̂(I ) (38b)

B̄(k)
s = 1

Ak

∑

I

Ak I R(k)
s1 R(k I )

s2 B̂(k I )
s T̂(I ) (38c)

where the summation in Eq. (38) means an assembly pro-
cess, R(k)

m1, R(k)
b1 and R(k)

s1 are the transformation matrices for

the kth edge given by Eqs. (28) and (29), R(k I )
m2 , R(k I )

b2 , R(k I )
s2

and T(k I ) are the transformation matrices for the I th element
sharing the edge k and they are given by Eqs. (30), (31) and
(34). It must be pointed out that the global nodal displace-
ments vector d(k) contains all of nodes of the two elements
sharing the edge k.

2.4 Smoothed Galerkin formulation

We now seek for a weak form solution of generalized dis-
placement field u that satisfies the following smoothed
Galerkin weak form
∫

�

δε̄T
mDm ε̄md� +

∫

�

δε̄T
b Dbε̄bd� +

∫

�

δε̄T
s Ds ε̄sd�

−
∫

�

δuT f̃d� −
∫

�

δuT t̃d� = 0 (39)

where f̃ is the external load applied over the problem domain
�, and t̃ is the traction applied on the natural boundary �.

Substituting Eq. (12) and Eq. (26) (for plate) or Eq. (37)
(for shell) into Eq. (39), a set of discretized algebraic system
equations can be obtained in the following matrix form

K̄d − f = 0 (40)

where d is the vector of global nodal displacement at all of
the nodes, and f is the force vector defined as

f =
∫

�

N (x) f̃d� +
∫

�

N (x) t̃d� (41)

In Eq. (40), K̄ is the (global) smoothed stiffness matrix
assembled in the form of

K̄i j =
Nedge∑

k=1

K̄(k)
i j (42)

The summation in Eq. (42) means an assembly process
same as the practice in the FEM, Nedge is the number of

the edges of the whole problem domain �, and K̄(k)
i j is the

stiffness matrix associated with edge k given as follows

K̄(k)
i j = K̄(k)

mi j + K̄(k)
bi j + K̄(k)

si j (43)

where

K̄(k)
mi j =

∫

�k

(
B̄(k)

m

)T

i
Dm

(
B̄(k)

m

)

j
d�

=
(

B̄(k)
m

)T

i
Dm

(
B̄(k)

m

)

j
Ak

K̄(k)
bi j =

∫

�k

(
B̄(k)

b

)T

i
Db

(
B̄(k)

b

)

j
d�

=
(

B̄(k)
b

)T

i
Db

(
B̄(k)

b

)

j
Ak

K̄(k)
si j =

∫

�k

(
B̄(k)

s

)T

i
Ds

(
B̄(k)

s

)

j
d�

=
(

B̄(k)
s

)T

i
Ds

(
B̄(k)

s

)

j
Ak (44)

3 Numerical examples

3.1 Patch test

The first numerical example is the standard patch test; the
mesh of a square patch of the plate with thickness t = 0.001
is depicted in Fig. 5. The plate is subjected to the prescribed

4 (0,10) (10,10)3

6 (8,9)

2 (10,0)

5 (3,4)

1 (0,0)

x

y

Fig. 5 Mesh for the standard patch test
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displacement and rotations on boundary of the patch (at nodes
1 to 4) are computed using

w = 10−3(1 + x + y + x2 + xy + y2)

θx = −∂w

∂x
= −10−3(1 + y + 2x) (45)

θy = −∂w

∂y
= −10−3(1 + x + 2y)

The material properties of patch are E = 1.0 × 106 and
ν = 0.25. To satisfy the patch test, the deflection and rota-
tions at any interior nodes computed by numerical method
should be exactly the analytic ones given in Eq. (45). To
examine the numerical error precisely, an error norm is
defined as

eu =
√
√
√
√

6∑

i=1

((
ui

num − ui
exact

)T (
ui

num − ui
exact

)

(
ui

exact

)T (
ui

exact

)

)

(46)

where unum is the displacement vector computed by the pres-
ent ES-FEM, and uexact is the displacement vector computed
from Eq. (45). Our numerical computation has found the error
norm being eu = 4.474065656539186 × 10−15 that is of the

order of the machine accuracy. This shows a successful pass
of the patch test for present method.

3.2 Square plates

A square plate of length L = 10 subjected to different
boundary conditions is considered in this subsection. The
material properties are taken as Young’s modulus E = 3.0×
107, and Poisson ratio ν = 0.3. Owing to the symmetry
conditions, only a quarter of the plate is modeled. Figure 6
shows the meshes of different density used for the square
plate. The results of center deflections are normalized with
the formulation given by Zienkiewicz and Taylor [33]. For
the plate subjected to uniform load, the deflection is normal-
ized as ŵ = wc D/q L4, where q is the uniform load. For
the plate subjected to concentrated central load, the deflec-
tion is normalized as ŵ = wc D/P L2, in which P is the
concentrated central load. Both thin plate (L/t = 100) and
thick plate (L/t = 5) with different boundary conditions are
investigated in this subsection.

For the purpose of testing the element performance, the
numerical results obtained from the present ES-FEM are
compared with several existing triangular plate elements,

Fig. 6 Square plate mesh

2 elements per side
x

y

edis rep stnemele 8edis rep stnemele 4 6 elements per side

L
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Table 1 Numerical results of
normalized central deflection for
a simply supported square plate
subjected uniform load
(L/t = 100)

Mesh DKT RDKTM DSG Present

2 × 2 0.004056 0.004058 0.003705 0.004078

4 × 4 0.004065 0.004069 0.003975 0.004068

6 × 6 0.004064 0.004066 0.004024 0.004066

8 × 8 0.004064 0.004065 0.004042 0.004065

Analytic solution 0.004064

Table 2 Numerical results of
normalized central deflection for
a simply supported square plate
subjected uniform load
(L/t = 5)

Mesh DKT RDKTM DSG Present

2 × 2 0.004056 0.004902 0.004499 0.00496

4 × 4 0.004065 0.004904 0.004804 0.00492

6 × 6 0.004064 0.004906 0.00486 0.004912

8 × 8 0.004064 0.004906 0.004879 0.004909

Analytic solution 0.004907

Table 3 Numerical results of
normalized central deflection for
a clamped square plate subjected
uniform load (L/t = 100)

Mesh DKT RDKTM DSG Present

2 × 2 0.001547 0.00155 0.00107 0.00135

4 × 4 0.001347 0.00135 0.001213 0.001299

6 × 6 0.001303 0.001305 0.001243 0.001285

8 × 8 0.001287 0.001289 0.001254 0.001279

Analytic solution 0.001265

Table 4 Numerical results of
normalized central deflection for
a clamped square plate subjected
uniform load. (L/t = 5)

Mesh DKT RDKTM DSG Present

2 × 2 0.001547 0.002423 0.002226 0.001862

4 × 4 0.001347 0.002243 0.002205 0.002093

6 × 6 0.001303 0.002205 0.00219 0.002136

8 × 8 0.001287 0.002191 0.002183 0.002152

Analytic solution 0.00217

Table 5 Numerical results of
normalized central deflection for
a square plate subjected
concentrated central load with
different constraints
(L/t = 100)

Mesh Simply supported Clamped

DSG Present DSG Present

2 × 2 0.010624 0.011986 0.004252 0.005393

4 × 4 0.011285 0.011750 0.005205 0.005658

6 × 6 0.011445 0.011685 0.005416 0.005657

8 × 8 0.011507 0.011656 0.005496 0.005647

Analytic solution 0.011601 0.005612

123



150 Comput Mech (2010) 45:141–156

1 2 3 4 5 6 7 8 9
-14

-12

-10

-8

-6

-4

-2

0

2

4

Mesh Density

E
rr

or
 in

 C
en

tr
al

 D
ef

le
ct

io
n,

%

BCIZ
HSM
DKT
RDKTM
DSG
HCT
Present

1 2 3 4 5 6 7 8 9
-25

-20

-15

-10

-5

0

5

10

15

Mesh Density

E
rr

or
 in

 C
en

tr
al

 D
ef

le
ct

io
n,

%

DKT
RDKTM
DSG
Present

(a)

(b)

Fig. 7 Relative error of the deflection at centre for a simply supported
square plate with uniform load for different element types. a Thin plate
(L/t = 100). b Thick plate (L/t = 5)

which include HCT [34], HSM [35], BCIZ [36], DKT [37],
RDKTM [14] and DSG [16], and the analytic solutions got
from Ref. [31].

Numerical results of normalized central deflection for all
cases are given in Tables 1, 2, 3, 4 and 5. The relative errors
of the results are plotted in Figs. 7, 8, and 9, in which the label
“mesh density” of the horizontal axes refers to the number
of elements per side. From the results, it can be seen that
the present method has a high accuracy and possesses fast
convergence for both the thick and thin plates with differ-
ent boundary conditions. For all studied cases, the proposed
ES-FEM is not the best for each of the cases, but it is always
among the bests for all these cases, which show clearly the
stable and well-balanced feature of the ES-FEM. Note that
the present method is very simple in formulation and no
extra sampling points are introduced, compared with other
elements.

3.3 Shear locking test

A simply supported or clamped square plate subjected to a
uniform loading is used to test the shear locking phenom-
enon. The geometry and material properties are as same as
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Fig. 8 Deflection at centre for a clamped square plate with uniform
load for different element types. a Thin plate (L/t = 100). b Thick
plate (L/t = 5)

those used in the previous subsection. The deflection is nor-
malized as ŵ = wc D/q L4 and a 6 × 6 mesh is used here,
and the computed results are plotted in Fig. 10. The results
show clearly that the proposed method can avoid shear lock-
ing successfully and it provides excellent results regardless
of the thickness of the plate.

3.4 Circular plate

A simply supported or clamped circular plate subjected to
uniform loading is analyzed to demonstrate more features of
the present method. The radius of the plate is R = 5 and two
cases of the thickness, t = 0.1 and t = 1, are investigated
here. Poisson ratio ν of the material is taken to be 0.3; Young’s
modulus E of the material is 3 × 105. The configuration and
mesh information of the plate are shown in Fig. 11, where
a quarter of the plate is modeled because of the symmetry
conditions. A set of three meshes, 6, 24 and 96 elements, are
employed here. The boundary conditions are given by:

Simply supported: w = 0 on the boundary

Clamped: u = v = w = θx = θy = 0 on the boundary

(47)
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Fig. 9 Deflection at centre for a thin square plate (L/t = 100) with
concentrated central load for different element types subjected different
boundary. a Simply supported square plate. b Clamped square plate
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Fig. 10 Shear locking test. a simply supported square plate. b Clamped
square plate

Fig. 11 Circular plate with
uniform load. Geometry and
Mesh arrangements

t

R=5

x

y
z

6 elements 24 elements 96 elements

Boundary conditions
Simply supported:
w=0 
Clamped:
u=v=w= x= y=0

123



152 Comput Mech (2010) 45:141–156

0 10 20 30 40 50 60 70 80 90 100
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Element number

w
c/w

re
f

Present
MiSP3
DKT
DSG
RDKTM
DST-BK
DST-BL 95 95.5 96

0.993

0.994

0.995

0.996

0.997

0 10 20 30 40 50 60 70 80 90 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

Element number

w
c/w

re
f

Present
MiSP3
DKT
DSG
RDKTM
DST-BK
DST-BL 95 95.5 96

0.995

1

1.005

(a)

(b)

Fig. 12 Deflection at centre for a thin circular plate (t/R = 0.02) with
uniform load for different element types. a Simply supported plate.
b Clamped plate

For a simply supported or clamped thin circular plate
subjected to uniform load q0; the analytic solutions for cen-
tral deflections w and moment Mr are given by [37]

Simply supported:
w = q0 R4

64D

(
5+v
1+v

+ 8
3k(1−v)

( t
R

)2
)

Mr = q0 R2

16 (3 + v) (48)

Clamped:
w = q0 R4

64D

(
1 + 8

3k(1−v)

( t
R

)2
)

Mr = q0 R2

16 (1 + v)
(49)

where D = Et3/(12(1 − ν2)) is the bending stiffness.
Numerical results of the present method are compared

with those of existing triangular elements, which include
DKT [37], RDKTM [14], BST-BK [38], BST-BL [39],
MiSP3 [10], and DSG [16]. Numerical results of normalized
central deflection wc/wref , in which wref is analytic results in
Eqs. (48) and (49) for the thin plate (t/R = 0.02) are plotted
against the elements number in Fig. 12. The results of central
moment are plotted in Fig. 13. These two pictures show that
the present method can produce very accurate results when
the problem domain is descritized using a reasonably num-
ber of elements (24 and 96 elements for this case). When
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Fig. 13 Moment at centre for a thin circular plate (t/R = 0.02) with
uniform load for different element types. a Simply supported plate.
b Clamped plate

too few elements are used (6 elements for this case), results
of the present method are found only better than the plain
elements also using DSG to eliminate shear locking. This
is because the ES-FEM relies on the sufficient number of
edges for the smoothing operation to take effects. When the
model has too few edges, it has no much difference compared
to the plain elements. For the case of 6 elements, there are
totally 12 edges and only half of them (6 interior edges) are
being effectively smoothed. Therefore, we are not expecting
an outstanding performance of the ES-FEM for this case. This
founding agrees with those methods using smoothed Galer-
kin formulations [17]. With the increase of the number of
elements (e.g., 24 and 96 elements), the ES-FEM clearly out
performs other elements. Note that in any practical problems,
we use a lot more than tens of elements, and hence ES-FEM
is expected to perform well in solving actual problems.

A clamped thin (t/R = 0.02) and thick (t/R = 0.2)
circular plates subjected to a uniform load are analyzed to
obtain the distributed bending moments (Mr , Mθ ) and shear
force (Tr ). The mesh of 96 elements is employed, and the
numerical results of present method are shown in Figs. 14, 15
and 16, together with the results obtained using BST-BK
[38], BST-BL [39] and MiSP3 [10] with the same mesh.
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Fig. 14 Moment Mr along the radius for a clamped circular plate with
uniform load. a Thin plate (t/R = 0.02). b Thick plate (t/R = 0.2)

The analytic solutions are given by [40] as follows

Mr (r) = q0

16

[
(1 + v) R2 − (3 + ν) r2

]

Mθ (r) = q0

16

[
(1 + v) R2 − (1 + 3ν) r2

]
(50)

Tr (r) = −q0r

2

where r is the distance gauged from the plate center, and
D = Et3/(12(1 − ν2)) is the bending stiffness.

Nodal values of Mr , Mθ and Tr for present method are
obtained by averaging the values of the associated smooth-
ing domains. The forces of the MiSP3 element are computed
at the nodes, and the forces of BST-BL and BST-BK elements
are computed at the centroids of the elements. It is found that
the present method performs among the best for all the cases
of both thin and thick plates. For bending moments, numer-
ical results of all the methods studied here are all in good
agreement with the reference solutions. For shear forces, the
present method and MiSP3 element provide more accurate
results compared with other numerical methods.
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Fig. 15 Moment Mθ along the radius for a clamped circular plate with
uniform load. a Thin plate (t/R = 0.02). b Thick plate (t/R = 0.2)

3.5 Pinched cylinder with end diaphragms

A pinched cylinder supported at each end by rigid diaphragm
shown in Fig. 17 is considered in this section. It is a widely
used benchmark problem for determining the ability of the
elements to represent inextensional bending and complex
membrane states. The length of the pinched cylinder is L =
600 in., the radius is R = 300 in., and the thickness is
t = 3 in. The material properties are: Poisson’s ratio υ = 0.3,
and Young’s modulus E = 3.0 × 106 N/in.2. The loading is
a pair of pinching loads P = 100 N. Owing to the sym-
metry, only 1/8 of the problem is modeled. Five meshes,
4 × 4, 6 × 6, 8 × 8, 12 × 12 and 16 × 16, are examined here
and only the 4 × 4 mesh is shown in Fig. 17. In this case, the
analytical solution of the radial displacement under the point
load is 0.0018248 in., and the solutions given in this case are
normalized with this value. Numerical results of the present
method are compared with those of existing triangular shell
elements ANS6S [11], C0 [41], DSG3 [16] and S3R element
in ABAQUS©. From the results given in Table 6, it can be
seen that the proposed element provides accurate results and
has a good convergence performance.

123



154 Comput Mech (2010) 45:141–156

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

r

T
r

Reference
Present
DST-BK
DST-BL
MiSP3

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

r

T
r

Reference
Present
DST-BK
DST-BL
MiSP3

(a)

(b)

Fig. 16 Shear force Tr along the radius for a clamped circular plate
with uniform load. a Thin plate (t/R = 0.02). b Thick plate (t/R = 0.2)
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Fig. 17 Pinched cylinder with end diaphragms, 4 × 4 mesh illustrated

3.6 Hemispherical shell

The hemispherical shell with an 18◦ hole is loaded anti-
symmetrically by point loads as shown in Fig. 18. It exhibits
almost no membrane strains but it is a challenging test on
the ability of an element to handle rigid body rotations about
normals to the shells surface. The geometric parameters are
radius R = 10 m and thickness t = 0.04 m. The material

Table 6 Pinched cylinder with end diaphragms; normalized displace-
ment at load point (the value used for normalization is 0.0018248 in)

Mesh 4 × 4 6 × 6 8 × 8 12 × 12 16 × 16

ANS6S 0.502 0.741 0.857 0.955 0.985

S3R 0.550 – 0.801 0.897 0.937

C0 0.300 0.530 0.670 – –

DSG 0.313 0.548 0.690 0.832 0.897

Present 0.421 0.674 0.806 0.924 0.972

z

x

y

1.0F =

1.0F =

18°

Sym

Sym

Fig. 18 Pinched cylindrical with end diaphragms, five nodes per side
illustrated

Table 7 Hemispherical shell; normalized displacement at load point
(the value used for normalization is 0.093 m)

Mesh 4 × 4 6 × 6 8 × 8 12 × 12 16 × 16

ANS6S 0.949 – 0.982 0.995 1.001

S3R 0.357 – 0.913 0.968 0.981

C0 0.870 0.930 0.960 – –

DSG 0.965 0.977 0.981 0.986 0.989

Present 1.021 1.010 1.004 1.002 1.002

properties are: Poisson’s ratio υ = 0.3, and Young’s mod-
ulus E = 6.825 × 107 Pa. The point loading is F = 1 N.
The solutions are obtained by using five meshes including
4 × 4, 6 × 6, 8 × 8, 12 × 12 and 16 × 16. A typical 4 × 4
mesh is shown in Fig. 18. The analytical radial deflection
coincident at point load is 0.093 m, and the solutions given
in Table 7 are normalized with this value. It can be observed
that the present results agree well with analytic solutions.

3.7 Hood of an automobile

Finally, an actual structure component of a car hood shown in
Fig. 19 is studied using the present element. The dent resis-
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Fig. 19 Model of the hood of an automobile
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Fig. 20 Displacements in x-direction at the loading point

tance of car hood is one of the important considerations in
the process of car design. In this example, all of the bound-
ary nodes are fixed, and a concentrated load F = 150 N
is imposed along the x-direction. The thickness of the thin
shell is 0.8 mm; Poisson’s ratio of the material is taken to be
0.3; Young’s modulus of the material is 2.1×105‘N/ mm2. In
order to test the accuracy of the present element, the solutions
of triangular element S3R in ABAQUS© is used for compar-
ison. The reference solution is obtained using quadrilateral
shell elements in ABAQUS© with large number of (25,423)
nodes. Figure 20 shows that the present triangular element
has a much higher accuracy than triangular shell elements
used in the ABAQUS©.

4 Conclusions

In this paper, an edge-based smoothed finite element method
is formulated to analyze plates and shells using simple 3-
node triangular elements. The smoothed Galerkin weak form
is used for discretizing the system equations and the numeri-
cal integration is performed based on the smoothing domains
associated with edges of the mesh. The Discrete Shear Gap
method (DSG) is employed to mitigate the shear locking

effect. Numerical results of plate and shell problems have
confirmed the following features of the present method.

1. The conventional 3-node triangular element is used in the
ES-FEM. There is no extra sampling point introduced
to evaluate the stiffness matrix in present formulation.
Hence the present method is very simple and can be eas-
ily implemented with little changes to the FEM code.

2. Compared with fully compatible displacement-based and
hence overly stiff finite element, the present method can
provide a much needed softening effect to the model
owing to the edge-based gradient smoothing operation.
Therefore, the performance of the present method is
greatly enhanced.

3. The present method can pass exactly the pure bending
patch test which ensures numerically the convergence of
the proposed method.

4. Numerical comparisons show that the present element
can obtain very stable and accurate results.
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