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Cyclotron resonance (CR) was measured at high magnetic fields in three-dimensional bulk n-

GaAs and in the two-dimensional {2D) electron system of an A1GaAs-GaAs heterojunction, at a
number of far-infrared laser lines, up to energies close to the longitudinal optical phonon energy,
fun«. A quantitative analysis of the CR as a function of magnetic field is presented, taking into ac-
count dimensionality, band nonparabolicity, and polaron effects. It is found that screening is impor-
tant in 2D systems, and from an analysis of polaron effects in the CR of the AlGaAs-GaAs hetero-
junction, a value for the screening strength in a 2D electron system is obtained. Our analysis of data
very close to resonance with the optical' phonon shows that band nonparabolicity has to be included
explicitly in the calculation of polaron corrections to obtain the proper asymptotic limit Ace« for the
CR transition energy.

I. INTRODUCTION

For many years, the measurement of polaron effects on
the cyclotron resonance (CR) has been an excellent tool
for studying the electron-phonon interaction in pure polar
semiconductors of high carrier mobility. Numerous CR
investigations have been done in bulk [three-dimen-
sional (3D)] semiconductors, and it is generally accepted
that the CR effective mass is enhanced due to polaron ef-
fects, i.e., due to the virtual coupling of a quasifree elec-
tron with the optical phonon; the enhancement is most
prominent in the resonant regime close to the energy of
the optical phonon AcoLo. '

Recently, very pure semiconductor systems have be-
come available with interfaces that support a quasi-two-
dimensional (2D) electron gas of very high mobility.
These systems include heterojunctions, superlattices with
multiple interfaces, and metal-oxide-semiconductor field-
effect transistors (MOSFET's), and they are of great tech-
nological importance as components for optoelectronic de-
vices and fast switches. There is also a growing interest in
fundamental properties of the 2D electron gas, such as the
electron-electron and electron-phonon interactions, and
the influence of screening and localization. CR measure-
ments were therefore soon applied to study polaron effects
in these 2D systems as well.

To date, the knowledge and understanding of the 2D
polaron effect is still much less well developed than for
the 3D case. Horst, Merkt, and Kotthaus 'studied the po-
laron effect on CR in an InSb space-charge layer and
found, qualitatively just as in bulk InSb, an anomaly in
the CR effective mass at about the energy of the optical
phonon. Seidenbusch, Lindemann, Lassnig, Edlinger, and
Gornik studied the polaron effect in A1GaAs-GaAs and

found no polaron mass enhancement in marked contrast
with bulk GaAs, where a substantial mass enhancement
due to polaron effects is found. ' This is in clear contrast
with theoretical predictions that the 2D polaron mass
enhancement should be even larger than for the 3D case.
Very recently, it was suggested that the 2D mass enhance-
ment may be quenched by screening and the finite exten-
sion of the quasi-two-dimensional electron wave func-
tions, or that the polaron effect is weakened due to a
phonon inactive interface layer. '

In this paper we will present measurements of the CR
in n-GaAs and in A1GaAs-GaAs heterojunctions up to
energies close to ALLO. We will give an analysis of the po-
laron effects on the 3D and 2D CR data, and will discuss
the dimensionality dependence of these effects for con-
duction-band electrons in n-GaAs (3D) and in
A1GaAs-GaAs (2D), respectively.

The details of samples and measurement technique are
summarized in Sec. II. The calculation of polaron correc-
tions is discussed in Sec. III, based on a second-order per-
turbation analysis of the Frohlich Hamiltonian. It is
shown how dimensionality, band nonparabolicity and
screening enters in these calculations. Finally, in Sec. IV,
we will analyze quantitatively the measured cyclotron res-
onance energies and we will show that screening is impor-
tant in a 2D electron gas, and that the resonant polaron
contributions in 3D n-GaAs and 2D A1GaAs-GaAs are
quite similar.

II. EXPERIMENTAL DETAILS

We have measured the transmission and photoconduc-
tivity of n-GaAs and A1GaAs-GaAs heterojunctions in
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high magnetic fields and at far-infrared (FIR) wave-

lengths in a conventional way. The radiation was generat-
ed by a FIR molecular laser, pumped with a C02 laser;
the radiation was coupled to the sample in the Faraday
configuration with the Poynting vector parallel to the ap-
plied magnetic field. The laser system was optimized for
the generation of short-wavelength FIR laser lines, as we
have described elsewhere, " so that the CR in GaAs could
be measured at energies close to the optical-phonon energy
AcoLQ —36 75 meV. ' The samples were mounted in a
continuous-flow cryostat. or immersed in liquid helium in
the bore of a high-field hybrid magnet system. ' The FIR
laser radiation was guided into the cryostat by oversized
light pipes and coupled to the sample with a cone. The
transmitted radiation was measured with a helium-cooled
Ge bolometer in a second cryostat at some distance from
the magnetic field.

The very pure epitaxially grown n-GaAs sample had an
electron density at 77 K of n, =4.4X10'" cm and a
mobility p =67 000 cm /V s, deduced from Hall resistance
and resistivity measurements. The transmission of this
sample was measured at T=10 K; unfortunately, due to
reststrahlen reflection, the signal becomes too weak to be
observed for energies above 30 meV. For measuring pho-
toconductivity, the optimum temperature was found to be
T=15 K, and CR was observed with this technique over
the whole range of energies. Figure 1(a) shows the photo-
conductivity at h v=32.76 meV as a function of the mag-
netic field; here the splitting of the CR signal due to
spin-up and spin-down Landau levels is very well
resolved. The spin-split peaks are so narrow that the mid-
field value of the transition can be determined with a rela-

LO
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tive uncertainty of 68/8=10
The Al„Gat „As-GaAs (x=0.3) heterojunctions were

grown by means of metal organic chemical vapor phase
deposition. The electron density was n, =4.0X 10"
cm, and the mobility was iM =30000 cm /Vs, deduced
from Shubnikov —de Haas oscillations in the resistance
and the resistivity. The transmission measurements were
done on a sample with Corbino geometry and the photo-
conductivity measurements on a sample shaped as a stan-
dard Hall strip, with the sample at T=1.3 K. The 2D
samples were oriented with the interface perpendicular to
the direction of the magnetic field. As in the bulk case,
reststrahlen reflection prevents transmission measure-
ments at the highest energies. Figure 1(b) shows the pho-
toconductivity of the A1GaAs-GaAs heterojunction, again
at hv=32. 76 meV, indicating the cyclotron resonance
which is superposed on a strong background signal. The
background photoconductivity is related to the strong
temperature dependence of the Hall resistance in the pres-
ence of the quantum Hall effect, ' and using measure-
ments at T=6 K we could evaluate the background signal
and subtract it from the photoconductivity at lower tem-
peratures.

In Fig. 2 and Table I we present our experimental
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FIG. 1. Photoconductivity as a function of magnetic field at
an energy of incident radiation of hv=32. 76 meV. (a) For n-

GaAs measured at T= 15 K (note the very well resolved spin-up
and spin-down resonances); (b) for an A1GaAs-GaAs hetero-
junction, measured at T=1.3 K; the dashed curve indicates the
background signal.

FIG. 2. Observed CR transition energy as a function of mag-
netic field in 3D n-GaAs (0) and 2D AlGaAs-GaAs hetero-
junctions (S). The dot-dash curve through the 3D data and
solid curve through the 2D data are to guide the eye. The devia-
tion from the zero-order transition energy fm, =e AB/m o

(straight line), is due to band nonparabolicity and to polaron ef-
fects: mass enhancement and hybridization for CR energies
close to the optical-phonon energy RcoLo. The discontinuity in-
dicated with a solid arrow is tentatively ascribed to filling up of
Landau levels, the discontinuity with a dashed arrow to a plas-
ma anomaly.



ANALYSIS OF POLARON EFFECTS IN THE CYCLOTRON. . . 5255

Energy
hv (meV)

TABLE I. Experimental data.

Resonance field 8(T)
n-GaAs A1GaAs-GaAs

with

4m.cia'( ficoLo)

(2mo )' Qq
(lb)

2.64
4.94
7.61

10.45
12.03
12.85
16.02
17.59
21.70
25.99
28.37
29.41
29.98
31.06
32.76

6.02
6.98
7.45
9.41

10.36
13.02
15.89
17.51-
18.28
18.73
19.58
20.95

1.58
3.15
4.92
6.48
7.36
7.80

10.67
12.98
15.70
17.28
18.04
18.39
19.14
20.40

values of. the magnetic field B and of the FIR energy
e=hv at the CR. For both n-GaAs and A1GaAs-GaAs
heterojunctions the transition energy between the Landau
levels increases with the magnetic field, and with increas-
ing field the CR transition energy becomes more and
more reduced below fuu„ i.e., the curve bends increasingly
stronger away from the straight line representing the
zero-order transition energy fico, =efiBlm . 0For B~ oo

the CR energy seems to approach the energy of the optical
phonon ficoLo, as one expects for resonant polaron effects.
The data of the A1GaAs-GaAs heterojunctions reveal two
anomalies in the low-field regime where the 2D CR is not
a smooth function of the magnetic field as the CR of n

GaAs. In this paper we will be mainly concerned with
polaron effects which are most prominent near resonance
with the optical phonon, at high fields.

III. THEORETICAL ANALYSIS

A. Polarons

For both the 2D and 3D cases, the polaron model is
analyzed in terms of second-order perturbation theory of
the Frohlich Hamiltonian. The dimensionality depen-
dence will then enter through the appropriate zero-order
energy dispersion relation and the appropriate electron
wave function. On the other hand, however, the phonon
system is assumed to be bulk like in the 2D case as well,
and in our estimates we take the bulk value for the
optical-phonon energy AcoLo and for the coupling constant
a. When the conduction band is not parabolic, correc-
tions due to band nonparabolicity (BNP) have to be in-
cluded in the zero-order energy levels. BNP will be dis-
cussed in more detail in Sec. III B.

When a virtual coupling of the conduction electrons
with the optical phonon is included, the energies of the
Landau levels are given in the weak coupling limit by'

M
EJ'"=Ex+ 2 ve i 0 (la)

q Ef' E fmLo— —

(lc)

E„k (B)=(n+ —,
'

)fuo, +
2mo

(2a)

'P„k (r) =c@„(x,y)e (2b)

where Ace, =eAB/m o is the cyclotron resonance energy, c
is a normalization factor, and N„ the nth harmonic oscil-
lator wave function. For a confined 2D electron gas, one
has

E„,(B)=(n+ —,
'

)fuo, +E, ,

0'„,(r) =c'4„(x,y)f, (z),

(3a)

(3b)

where E;, Ef, 4;(r), and %f(r) are, respectively, the elec-
tron energies and wave functions of the unperturbed
(zero-order) electrons in the intermediate and final Lan-
dau state, and 0, is the volume of the crystal. Equation
(1) describes the energy spectrum of the free-electron sys-
tem as a function of the magnetic field, when its electron
charge distribution %(r)

~

is weakly coupled to the po-
larization field of the optical phonon; the strength of this
coupling is given by vz ~

M
~

which is proportional to the
Frohlich coupling constant a. A summation has to be
carried out over the phonon wave vector q and all inter-
mediate states i =(n, k~~), where n is the Landau-level in-
dex and k~~ the electron wave vector in the direction
parallel to the quantizing magnetic field.

In Eq. (1) the following approximations are made: the
energy of the optical phonon is assumed to be independent
of the phonon wave vector q, only single-phonon scatter-
ing processes are considered, and only virtual phonons are
included in the calculation (at zero temperature, there are
no phonons in the system). These approximations are
valid for our experimental conditions: in GaAs, one has
o;=0.065 «1, and the measurements were carried out at
low temperatures (T=10 K for n-GaAs, and T=l K for
the A1GaAs-GaAs heterojunctions).

We will now analyze the interaction of a phonon with

electrons in the following two cases: when the electrons
are quasifree in all three dimensions with isotropic effec-
tive mass m o, and when the electrons are quasifree in

only two dimensions (m„*=m„*=mo), confined in the z
direction parallel to the magnetic field by some interface
potential. (We think of a 3D polaron as a bulk electron
interacting with a bulk phonon, and a 2D polaron as a
confined electron interacting with a bulk phonon as well. )

In our model the dimensionality of the systems enters
through the electron wave function in the matrix elements

~

M ~,f, and through the k~~ dependence of the zero-order
electron energy E . For a quasifree bulk electron, in a
magnetic field along the z direction and in the nth Lan-
dau level, the energy and wave function are given, respec-
tively, by
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where E, is the energy of the sth subband in the confining
potential well, c' is a normalization factor, and

~ f, (z)
~

determines the extension of the wave function of the sth
subband in the z direction; in the ideal 2D case

~
f(z)

~

=5(z). The summation in Eq. (la) has to be car-
ried out over all intermediate states i =(n, k~~ ) for the 3D
case, substituting Eqs. (2a) and (2b) where appropriate,
and over i =(n, s) and substituting Eqs. (3a) and (3b) in
the 2D case. As a result, one gets directly from Eq. (1)
for the change in transition energy between Landau levels
due to the polaron effect: b,e~"=E~&"—Eo~"—fico, . The
polaron mass enhancement b, = 1 —m o/m ~,~

is given by
b,e~"/fico, . In the limit of low fields, the calculation of
AE ' requires a summation over the whole range of Lan-
dau levels, but in the final result, only terms linear with
the magnetic field need to be considered. For the mass
enhancement in this low-field limit one obtains in the 3D
case 6= 6 a (Ref. 15) and in the 2D case b, = —,

' ira. ' In
the resonant or high-field limit, we need to consider only
that single term in the summation which can become
resonant: for a final state f=(1,0) only the intermediate
state i =(O, k~~ ) in the 3D case, or the state i=(0,0) in the
2D case. For fico, /Picot o 1 one the——n obtains b, =( —,

' a)
(Refs. 15 and 17) for the 3D case, and 5=(—„av'ir)'~
(Ref. 18) for the 2D case.

From this analysis it follows that the mass enhance-
ment in a 2D A1GaAs-GaAs heterojunction is about twice
as large as in bulk GaAs, and largest in the low-field re-
gime. However, we will show below that the mass
enhancement in a 2D system will be quenched consider-
ably by effects due to screening and due to extension of
the wave function in the direction perpendicular to the in-
terface.

B. Band nonparabolicity

The band nonparabolicity (BNP) corrections to the
free-electron energy can be calculated from a two-band
k.p approximation, where the coupling is considered be-
tween one conduction band and one valence band separat-
ed by an energy gap eg. This sort of calculation basically
leads to a BNP corrected conduction-band energy
E =E (1+E /eg ), where E is the energy of the
quasifree electron, given by the Eqs. (2a) and (3a). The
transition energy from the (n —1)th to the nth Landau
level, including the nonparabolicity of the conduction
band, is given by

there are electrons only in the lowest Landau level and

k~~
—0, and transitions between the levels n =0~1 only

contribute to Eq. (4). For a degenerate 2D system, howev-
er, the lowest unoccupied Landau level is just above the
Fermi energy (nfico, =EJ; ), and consequently, in the low-
field limit, the BNP correction remains significant and
does not tend to zero as in the 3D case. Therefore, at low
fields a mass enhancement in a 2D system is expected
when compared with the bulk material.

C. Screening in a 20 electron system

Screening enters the calculation of polaron effects
through Uq in Eq. (1). In a Thomas-Fermi approximation,
for a 3D electron-gas screening decreases with decreasing
electron density, and consequently it can be neglected for
low density, nondegenerate semiconductors at low tem-
peratures.

For a 2D electron gas Stern and Howard have calcu-
lated the screening of the Coulomb potential of a point
charge in the Thomas-Fermi approximation. The longitu-
dinal polarization field of the optical photon can be ex-
pressed in terms of an effective charge distribution, pro-
portional to q exp(iq r); we then obtain vq =U~qq/
(gj +g'rp), where Uz is as defined in Eq. (lb); qi is the
phonon wave vector perpendicular to the magnetic field,
i.e., parallel to the interface, and qz„ is the 2D Thomas-
Fermi screening wave vector qzz moe /——2ireycA', where
a. is the bulk dielectric constant. This result is valid for an
ideally restricted 2D electron gas only. For the case,
where fo(z)

~
&5(z) we find, in agreement with a calcu-

lation by Price, '

2D
Vq =Vq

qx+9rv'9(V~ )

where

(5a)

IV. ANALYSIS QF THE EXPERIMENTAL RESULTS

p(g) is the Fourier transform of fo(z)
~

. The screening
is strongly anisotropic, dependent on the component of
the wave vector of the optical phonon parallel to the inter-
face and on the spatial extension of the electron wave
function.

(4)
Cg Cg

where in the 3D case, the kinetic energy K is A k~~/2mo.
For the case of A1GaAs-GaAs, the BNP corrections have
been evaluated using a more sophisticated k.p model, '

where the 2D potential well confining the conduction
electrons is included explicitly in the Hamiltonia. In the
limit of large gap eg, the same expression as Eq. (4) is ob-
tained, but now the expectation value of the kinetic energy
in the z direction has to be substituted for K and not the
total subband energy as one would expect from the more
simple arguments given above.

For a nondegenerate 3D system in the quantum limit,

A. Polaron effects in 3D: the case of n-GaAs

The results of the cyclotron resonance experiments in
bulk n-GaAs are presented in Fig. 2 and Table I. As can
be seen in the figure, at low fields the Landau-level transi-
tion energy increases almost linearly with the magnetic
field; at high fields, as one approaches the energy of the
optical phonon, the effective mass becomes more and
more enhanced. Note that the contribution to the mass
enhancement du| to polarons cannot simply be deduced
from the data, but band nonparabolicity effects must be
taken carefully into account first. In this section we will
give a detailed description of the analysis of polaron ef-
fects in bulk n-GaAs.
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0

Ae = —Ac@, 1.23—+ 1.05—RSPT 0

6 20 AcoLQ
(6)

where the numerical factors 1.23 and 1.05 in the reahstic
case of bulk GaAs with a nonparabolic band are the num-
bers found for the enhancement over the case of a simple
parabolic band.

In Fig. 3 we plotted our experimental CR data
(e—fun, )/fuuLo as a function of fico, /ficoLo. The lower en-

Ie-h~, ) /h~«

O.oo

-0.05

There is a considerable amount of literature on the
low-field regime. Recently, Das Sarma and Mason have
developed a theory to describe polaron effects in the low-
field limit for the case of a nonparabolic band, as, e.g., in
n-GaAs; they calculated the change of the CR transition
energy due to polaron effects for a system with nonpara-
bolic zero-order energy band in a Rayleigh-Schrodinger
perturbation model (RSPT), and we will denote this con-
tribution by he . The most intriguing outcome of
their calculation is the fact that BNP 1eads to an enhance-
ment of polaron effects, and that therefore it is not suffi-
cient to account for BNP merely by a shift of the
conduction-band energy level with respect to the parabolic
case. Accordingly, we will follow Das Sarma and Mason,
who carefully included BNP effects in the evaluation of
polaron corrections.

An expression for the change of the transition energy
due to BNP of the conduction band Ae is given in Eq.
(4). Das Sarma and Mason obtained the following result

RSPT.22

Ae" a
i6coLQ 2

—I/2

1 —A,2—
%COLO

+g
LO

(7)

Larsen' considered the case of a parabolic band, then
—AQ7 /AcoLQ leading to a linear increase of A, with the

magnetic field; he also chose the function g to be zero. In
the case of a nonparabolic band, as in n-GaAs, it is
reasonable to substitute ~, =(fun, +b,e )/ficoLo, for high
magnetic fields b.e" will then tend to ficoLo(1 —A, )

=ficoLo fico, —b.P —. At low fields, however, b,e"
should approach the result Ae . This is achieved if
we substitute in Eq. (7)

ergy range, below and around our lowest CR data on n-
GaAs, is well covered by the CR measurements of Lin-
demann, Lassnig, Seidenbusch, and Gornik, and the data
in our study measured at the same laser wavelengths coin-
cide within the experimental accuracy. The result of Eqs.
(4) and (6) can be compared with all of these low-field
data and a good fit can be obtained using a value for the
effective mass of m0 ——0.0648m, and for the coupling
constant of a =0.065. Note that often too large a value of
cx is found from polaron measurements; the value of a
now obtained agrees very well with the value 0.065+0.005
determined by dielectric measurements. ' The theoreti-
cal result of Ae +b,P is indicated by the dashed
curve in Fig. 3. As would be expected, this low-field ap-
proximation does not describe the data at high fields,
close to resonance with the optical phonon very well. Due
to the hybridization, the CR transition energy for the
lower branch will asymptotically approach AcuLQ for high
magnetic fields; the appropriate limit for the data of Fig.
3 (1 fico, /@co—Lo) is indicated by the dot-dashed line.

A careful analysis of Eq. (1) shows that in the low-field
limit a summation over a large range of Landau levels has
to be carried out, but near resonance only one term will be
dominating —the coupling of the nth Landau level with
the intermediate state n —1, when Ace, =kcuLQ. Accord-
ingly, Larsen' obtains in the resonant limit the following
implicit equation for the polaron correction to the transi-
tion energy:

g(fun, /ficoLo) =b,e +g'(fico, /fuoLo), (sa)

- 0.10 g'(x) = —,a+ —,ax+ —
I6 ax (Sb)

—0.15

1.0
hu)', /hv)„

FIG. 3. Measured deviation of the CR energy from the zero-
order transition energy (e—Ace, )/AcoLo as a function of
Ace, /AcoI o for bulk n-GaAs. The experimental data are
represented by (o), the solid curve is calculated using the effec-
tive mass and coupling constant determined from the low-field
data, and the dashed curve represents the low-field limit
Ae +he . The dot-dashed line gives the proper asymptot-
ic limit (l —~,/AcoLQ).

At low fields be"" will then approach b.P of Eq. (6).
Using Eq. (7) in this way we have evaluated b,e'" over the
whole range of fields. The result of b.e'"+b,e is
shown in Fig. 3 as a solid curve. As can be seen, this
crude approximation describes the data remarkably well.
It is noteworthy, however, that a larger value for o' would
result in a better agreement of the present theory with the
data at higher magnetic fields; such an effective increase
of cx at high fields may be brought about by a more care-
ful analysis (along the lines of Das Sarma and Mason ) of
the single resonant term of Eq. (1) used to derive the
high-field expression Eq. (7).

When, as is usually done, BNP effects on the polaron
contributions are neglected and the analysis discussed
above is carried through, a result is obtained which can
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0 0.85 quite well [howev-describe the data for %co,/AcoLQ &
er, leading to larger values of the parameters, i.e., o.=

ramatically larger as the field increases. This is
d to the fact that in this model, t eue o

o t limit buty now oes noy d ot approach the correc b
muchand the theoretical curve bends muc

stronger than the experimental data. To assuassure that the
er has the proper asymptotic limit AcoLQ it

h the calcula-is therefore essential to carry BNP throug e ca
tions of Eq. (1) for the polaron effects.

B Polaron effects in 2D: the case of AlGaAs-GaAs

Screening and wave func-tion extension

As discussea in ec.d
'

S III C screening is not important
for a low-density electron gas as in the case of nondegen-
erate bulk n- a s. uG A B t we will show that it may become
an important e ect or aff f 2D electron gas as in the case of
an A1GaAs-GaAs heterojunction. Until now, in most
models of polaron effects in 2D systems screening was not
included. 19,25

icall effects of screening on the polaron mass
enhancement can be calculated from qs. an

n the z dependence of the wave function is
needed. A convenient expression is given by Stern in e
form of

fp(z, P) =(1/V2)(Pqp) z exp( Pqpz/2) .—

p~ (y& an p~, ed 0 the unscreened, ideal 2D result is again,
7

4 shows the polaron mass enhancement calculat-Figure s ows e
d ith screening strength y' and as a unc

'

wave-function extension parameter p, and norm
'

ynormalized by
the mass enhancemen in e

't '
the ideal 2D unscreened limit,

both for the limit of low fields (dashed curves) and in t e
f fico /fico =1 (solid curves). As oneresonant limit or, LQ

——

he fi ure, the polaron mass enhancement is
s rot ongly quenched by screening, particu ar y in

of i.e., when t ef' ld limit and also for low values o p,
'

to, the interface. The1 t ns are not strongly con ine o, e
'

e ec rons
mass enhancement increases with P, bu in pt in the resence o
screening i evit levels off at quite low values o

and modelrtant to realize that the single subbanIt is impo an
wn in the limitsused in the present analysis will break down in e

. When p is small, the energy differences
between the lowest subbands become compara e o

and the thermal population of the higher
bb nds has to be taken into account; a argersubban s as

E . (10) will then been ancemenh ment than calculated from q.
oun . Also, the mass enhancement is expect p-ed to a

h h b lk value for P~O rather than zero as shown
in Fig. 4. On the other hand, when p is large, bo

~ lP, y) ta(-, ol

p
'

a parameter that scales t"..eh extension of the waveis
*co /fi); thefunction inf '

the z direction and qp
——(2mproLo/

We will also in-ideal 2D limit is obtained when p~ oo. We wi a
troduce a sca ing ac or y1 f t for the strength of the screening
by defining an e ec

'~e ~

ffective screening wave vector yypqp,
~ ~ ~ ~With these definitions, one can againwhere yp ——q TF/qp. 1

6 =Aep"/%co, andderive the polaron mass enhancement 6= e
the following results are obtaine or ed for the two limiting
cases: in the low-field limit

r 0~e
LO

x ri(x/p)
(1+x ) [x+r)(x/P)ypyj

and in the resonant limit for Ace, /.~LQ ——0

0.5

low field limit

resonant Limit, hu&,'/ h~t&-1

Py', =1
LQ

=V a J"x'e ri(x /p)
[x +r)(x/p)ypy]

(10b)

arma, where ideal 2D screening was considered. The re-
sult of Das Sarma is qualitatively similar but the mass
enhancement calculated as a function of P is systematical-

1 h r result note that Das Sarma uses a
sli htl different definition. for vq than our q. a .sig y i
When the two expressions of Eq. (10) arere evaluated with

0.0
0 1 'p

FIG. 4. Calculated polaron massmass enhancement
=1—mp/m*,

~ for a 2D system as a function of the wave-
function extension parameter P and for va ues o es of the screening
strength parameter y. 6(f3, y )/b ( co, 0) normalized to the mass
enhancement o t e i ea an u'd 1 d unscreened 2D case, is evaluated
for the low- ield regime as er' ld

'
(d hed curves) and for the resonant po-

laron regime (so i curves . o1'd ) For comparison, the mass enhance-
ment for bulk GaAs, calculated in these two limiting cases, is
also shown.
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Fermi energy (Ez ~/3 ) and the energies of the subbands
(E, ~ f3 ) become large, and consequently, for sufficiently
large values of I3, population of higher subbands 'has to be
taken into account again. Also, in this case, the z depen-
dence of the screening should have been considered expli-
citly in our model of Eq. (5). For an AIGaAs-GaAs
heterojunction at a temperature of about 2 K, the single
subband approximation should hold for 0.15 ~ P & 2.0.

For a real AloaAs-CxaAs heterojunction, one has real-
istically P=l and y=l, and therefore Fig. 4 shows that
the polaron mass enhancement will be reduced below the
mass enhancement in bulk GaAs. In the low-field limit,
the suppression of the mass enhancement is so strong that
polaron effects will be very small. Near resonance, pola-
ron effects are still important, but they depend strongly
on the strength of screening.

Ic- II+, ) /hzLO

0.00—

a = 0.065 mo /m~ = 0.0648-- P=1.07, y=1.4

P =1.3, y= 2.1

—0.10—

2. High field dat-a

Because in the low-field limit the polaron effect is so
strongly suppressed due to screening, it is a good approxi-
mation to consider only the single resonant term for the
polaron correction in the summation of Eq. (la),

AeP [U (f3y)] . (11)i
M(P)

i tcX q ' ~0 g BNP+g ot
q C

This expression is similar to Eq. (7) in the sense that for
high fields the transition energy between adjacent Landau
levels Ace, +he +Amp" will approach the energy of the
optical phonon.

Figure 5 shows the experimental values of e—~, to-
gether with the theoretical prediction he +he"" and
the asymptotic limit ~LO —~, . Ae is calculated
from Eq. (4) with kinetic energy X= „'p ficoLQ [using—
Stern's function for fo(z, P) (Ref. 26)] and with Landau-
level index n =1; for lower fields higher Landau levels
seem to become important as we will discuss in more de-
tail in the next paragraph. Ae"" is calculated from Eq.
(ll) where now fo(z, P) enters in the calculation of the
matrix element

~

M ~, so that this factor becomes depen-
dent on P, and where vq (/3, y) is calculated from Eq. (5).

P can be evaluated directly from the electron density;
for our heterojunction, with n, =4.0&& 10"cm, we find
13=1.07. The best fit of our model to the high-field data
for 13=1.07 is obtained with y=1.4. This is indicated in
Fig. 5 by the dashed curve. Note that this result suggests
that screening is important, and stronger than expected
from the Thomas-Fermi model. If we allow both parame-
ters to be adjusted, a best fit is obtained with an even
larger value for y (y=2. 1), and a consequently larger
value for I3 (P=1.3); the result indicated by a solid curve
has a slightly weaker curvature and is in perfect agree-
ment with the high-field data. We therefore conclude,
that in order to describe accurately polaron effects in
AloaAs-GaAs heterojunctions near resonance with the
optical phonon, screening has to be incorporated into the
relevant model.

0.0 0.5 1.0

Lo

FIG. 5. Measured deviation of the CR energy from the zero-
order transition energy (e—%co,)/RcuI o as a function of
Ace, /A~Lo for an AlGaAs-CxaAs heterojunction. The experi-
mental data are represented by (0) and the curves represent a
best fit of the 2D polaron model with effective mass
mo/m, =0.0648 and coupling constant a=0.065. For the cal-
culation at high fields, it was assumed that Landau-level transi-
tions 0—+1 take place, while at low fields, the 1~2 transition
was taken into account. For the dashed curve, the wave-
function extension parameter was fixed at P=1.07, and the best
fit was found for the screening strength @=1.4; for the solid
curve, a best fit for these two parameters is found at P= 1.3 and
@=2.1. The dot-dashed line gives the proper asymptotic limit
(1 —Acu, /AcoLo).

3. Discontinuities at lower energies

At low fields two discontinuities in the CR as a func-
tion of energy seem to be present in the 2D AloaAs-
GaAs heterojunction system (as also observed by other
workers ' ), which are not described by the polaron
given above. These discontinuities are marked by the ar-
rows in Fig. 2.

From Figs. 2 and 5 it is clear that the 2D data below
flcog/scot Q 0.6 do not fit the general trend of the high-
field data. Seidenbusch and co-workers studied CR in
AloaAs-GaAs heterojunctions with varying electron sheet
density, ' they found a different effective mass in the high-
density and low-density regime. They could interpret the
discontinuity as a transition from a regime, where
Landau-level transitions 0—+1 take place, to a regime,
with Landau-level transitions 1—+2. This change mani-
fests itself in b.P of Eq. (4) and may explain the discon-
tinuity around Ace, =0.5fmLQ (marked with a solid arrow
in Fig. 2): if we calculate hP +b.e "from our analysis,
assuming that for %co,/AcoLo~0. 5 transitions from the
first Landau level to the second take place, we can explain
this discontinuity (cf. low-field curves in Fig. 5). For
lower energies, still higher values of n would have to be
assumed, but for the actual electron density of our hetero-
junction, the n =1 Landau level is expected to be com-
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pletely filled only for fico, /ficoLo &0.2, and therefore, the
assumption of the existence of 1 —+2 transitions at
fun, /iris()QQ 0.5 does not seem to be a reasonable explana-
tion.

It is possible that the discontinuity in the data reflects a
discontinuity in the screening as a function of the magnet-
ic field. The dc HaH resistance of our heterojunction
clearly shows spin-resolved Hall plateaus and the filling
factor v =n, h /eB changes from v =2 to v = 1 just around
the observed discontinuity at Ace, =0.5AcoLo. Using our
model, the discontinuity would be reproduced if for some
reason the screening becomes suppressed to y=0.5 at low
fields when v~ 1.

At even lower fields, the data cannot be properly
described this way. Very recently, Schlesinger, Allen,
Hwang, Platzman, and Tzoar reported a shift and a split-
ting of the CR absorption line in many AlGaAs-GaAs
samples with different electron sheet densities and found
anomalies at energies described by a universal function of
the electron density. For n, =4.0& 10" cm the anom-
aly would be around ~,=0.21hcoL&. We suggest that the
anomaly at fun, =0.24fuuLo (marked with a dashed arrow
in Fig. 2) is just this phenomenon. The data at very low
fields show an enhancement of the effective mass, which
is certainly not caused by polaron effects.

c-(htiic+hc +bc ) (meY)

0 o 0

GaAs

~ AlGaAs - GaAs

ma jm, = 0.0648

a = 0.065

I I I I I I

0 5 10 15 20 25 30
tiia)

hv (meY)

FIG. 6. Comparison of the resonant polaron contribution at
high energies for 3D bulk n-GaAs (0) and 2D A1GaAs-GaAs
heterojunctions (~) as a function of the energy of incident radia-
tion hv. The data represent the measured CR transition energy
minus the calculated zero-order transition energy fm, and BNP
correction bP, evaluated for the Landau-level transition 0~1
using mo/m, =0.0648. For n-GaAs, also the low-field polaron
correction Ae was subtracted, using a coupling constant
a=0.065; for the 2D A1GaAs-GaAs system this last correction
is very small and can be neglected.

C. Comparison of 2D and 3D resonant polaron effects

The 2D and 3D systems we have studied both concern
the conduction electrons and phonons of the GaAs host
material. Therefore, the same material constants, such as
mo, a, and %colo, have to be used both for the 2D elec-
tron gas in AlGaAs-GaAs heterojunctions and for the 3D
electron gas in n-GaAs. The conduction band in GaAs is
nonparabolic, and this BNP can be calculated in both
cases, using Eq. (4); however, the kinetic energy term K in
Eq. (4) depends on the electron density and vanishes in the
case of n-GaAs. At low fields, several anomalies are
present in the CR energies of the 2D system. At high
fields, only Landau-level transitions 0~1 take place and
the picture seems to be much simpler. Therefore, the
high-field data of the 3D and 2D systems can be com-
pared directly.

Apart from the contribution to the Landau-level transi-
tion energies Ace, and Ae, we found that in the low-
field limit the polaron contribution for the 3D n-GaAs
system is well described by the expression for Ae . For
the case of 2D A1GaAs-GaAs heterojunctions, the screen-
ing suppressed any low-field polaron effects, leading to
Ae =0 in the 2D case. Recent experiments on an
AlGaAs-GaAs heterojunction of about the same mobility
confirmed our result that at low fields no mass enhance-
ment due to polaron effects can be observed. Figure 6
shows a comparison of the relevant resonant polaron
correction e—Ace, —Ae —he for the high-field
data (0~1 transitions) of the 2D and 3D systems as a
function of the energy of the incident radiation e=hv.
Although the resonant polaron effect in 2D A1GaAs-
GaAs is suppressed by screening, it is still of about the
same order of magnitude as the resonant polaron effect in
n-GaAs.

V. CONCLUSION

We present CR data of the 3D bulk system n-GaAs and
of the 2D electron system of A1GaAs-GaAs heterojunc-
tions, measured up to energies very close to the energy of
the optical phonon. Polaron effects are found to be signi-
ficant in both systems, and the Landau-level transitions
are analyzed with a model that includes nonparabolicity
of the conduction band and that evaluates polaron effects
from a perturbation scheme of the Frohlich Hamiltonian.

In a detailed comparison of the model with the experi-
mental 3D CR data we find for the effective mass in n-
GaAs a value mo ——0.0648m„and a coupling constant
a=0.065. We show that in order to obtain the proper
limit ~LO for the transition energy, when strong hybridi-
zation with the optical phonon has taken place (reso-
nance), band nonparabolicity has to be taken explicitly
into account within the relevant polaron model.

The polaron effect is found to be weaker in the 2D elec-
tron gas of an A1GaAs-GaAs heterojunction than in a 3D
bulk n-GaAs crystal. We can account for the magnitude
of the measured 2D polaron effects within the framework
of the usual polaron model by a nonzero extension of the
quasi-two-dimensional electron wave function in the
direction perpendicular to the interface and, foremost, by
the strength of the screening of the polarization field of
the optical phonon due to electron-electron interaction in
a Thomas-Fermi approximation. From a fit of our ex-
pression for the Landau-level transition energies in the 2D
case (including the suppression of polaron effects due to
screening) to the experimental data, it appears that the ac-
tual screening is about 1.5 to 2 times as strong as estimat-
ed from the Thomas-Fermi model, and we find that with
such a strong screening polaron effects at low fields will
be suppressed very strongly. The anomalies observed at
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low fields in AlGaAs-GaAs are not yet understood, but
they do not seem to be due to polaron effects. We hope
that the availability of CR data close to the resonance will
stimulate theoretical efforts to extend the detailed calcula-
tion of Das Sarma and Mason over the whole energy
range.
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