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Analysis of polygenic risk score usage and
performance in diverse human populations
L. Duncan 1, H. Shen1, B. Gelaye2, J. Meijsen 1, K. Ressler3, M. Feldman4, R. Peterson5 & B. Domingue 6

A historical tendency to use European ancestry samples hinders medical genetics research,

including the use of polygenic scores, which are individual-level metrics of genetic risk. We

analyze the first decade of polygenic scoring studies (2008–2017, inclusive), and find that

67% of studies included exclusively European ancestry participants and another 19% inclu-

ded only East Asian ancestry participants. Only 3.8% of studies were among cohorts of

African, Hispanic, or Indigenous peoples. We find that predictive performance of European

ancestry-derived polygenic scores is lower in non-European ancestry samples (e.g. African

ancestry samples: t=−5.97, df= 24, p= 3.7 × 10−6), and we demonstrate the effects of

methodological choices in polygenic score distributions for worldwide populations. These

findings highlight the need for improved treatment of linkage disequilibrium and variant

frequencies when applying polygenic scoring to cohorts of non-European ancestry, and

bolster the rationale for large-scale GWAS in diverse human populations.
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T
he over-representation of participants of European ances-
try in human genetics research has been broadly
acknowledged1–5, and increasing the representation of

diverse populations has recently become a higher priority for the
research community5–10. This has led funding agencies such as
the National Institutes of Mental Health to prioritize genetic
studies of diverse populations. Accordingly, representation of
non-European ancestry participants in genome-wide association
studies (GWAS) increased, from 4% in 20091 to 19% in 20163.
Most of the increase in non-European ancestry research is attri-
butable to expansion of genetic studies of East Asian populations,
as reported previously3 and as observed in our data (see below).
Thus, most populations are still severely under-represented. This
lack of representation, if not mitigated, will limit our under-
standing of etiological factors predisposing to disease risk, and
will hinder efforts to develop precision medicine. It is also
important to understand the implications of the European-centric
bias of earlier genetic studies for work that builds upon existing
research. For example, researchers need to know how the limited
diversity in earlier medical genetic studies impacts the use of
polygenic risk scores in non-European ancestry populations.

The use of polygenic risk scores11,12 (PRS, also known as risk
profile scoring, genetic scoring, and genetic risk scoring) has
become widespread in biomedical and social science dis-
ciplines13–15. Businesses have commercialized this technology,
including direct-to-consumer testing from 23andMe and other
companies. Perhaps most importantly, there is hope that poly-
genic risk scores can improve health outcomes by accelerating
diagnosis and matching patients to tailored treatments16. Poly-
genic scoring studies have demonstrated reliable, though modest,

prediction using straightforward scoring methods11,12 for many
complex genetic phenotypes (e.g., blood pressure13,17, height18,
diabetes9,19, depression7,20, and schizophrenia14). Polygenic risk
scores are calculated by summing risk alleles, which are weighted
by effect sizes derived from GWAS results11,12,21. Commonly
used methods account for ancestry using principal components
(calculated on pruned genetic data). In the parlance of polygenic
scoring studies, the training GWAS is referred to as the discovery
sample, and the testing dataset is referred to as the target sample.
No overlap between training and testing datasets is essential to
maintain independence of predictions, and the removal of related
individuals is also needed, as demonstrated by Wray et al.21.
Methods of prediction that offer modest improvements on this
basic framework are also available22–25.

Polygenic scores can be constructed for any complex genetic
phenotype for which appropriate GWAS (or other robust asso-
ciation) results are available. The challenges inherent in using
polygenic scores—including modest capacity for prediction and
necessary considerations regarding statistical power—have been
reviewed previously21,26. Recent research has focused on the
generalizability of polygenic scores to non-European ancestry
populations27. There is good reason to anticipate reduced pre-
dictive power in non-European ancestry samples because of dif-
ferences in variant frequencies and linkage disequilibrium
patterns between populations12,28. However, the magnitude of
performance decrease is largely unknown. Few systematic studies
of polygenic score performance across different ancestry groups
are available, though see Hoffman et al.13 for an investigation of
blood pressure metrics and a recent UK Biobank analysis27.
Further, some previous findings may need to be re-evaluated in
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Fig. 1 Ancestry representation in the first decade of polygenic scoring studies (2008–2017; N= 733 studies). a Cumulative numbers of studies by year are

denoted by color. The stacked bar graph below the cumulative distribution plot shows proportional ancestry by year. b Stacked bar charts depict world

ancestry representation (left) and polygenic scoring study representation (right). c The percentage representation for each ancestry group is given, such

that 100% would indicate equal representation in the world and in polygenic scoring studies. For example, European ancestry samples are over-

represented (460%) whereas African ancestry samples are under-represented (17%)
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light of newer findings about relationships between ancestry and
GWAS results29–31. Thus, there is a need for systematic evalua-
tion of polygenic score performance across multiple populations,
phenotypes, and samples.

In this manuscript we answer questions about the predictive
performance of polygenic scores. Based on ancestry, we find large
statistically significant differences in performance between
populations. A second major area of inquiry concerns differences
in the distributions of polygenic scores for worldwide popula-
tions, as currently calculated30–39. (The term “worldwide popu-
lations” is used in this manuscript. It is important to note that
there are many meanings and operationalizations of the term
“population”, and that only some of the world’s populations are
represented in genetic analyses). Multiple potential causes of
observed distribution differences of polygenic scores have been
reported, including drift32, selection33,36–39, artifactual differences
due to uncorrected population stratification30,31, and different
environmental effects40,41. We show that investigator-driven
choices in the construction of polygenic scores also significantly
impacts distributions of these polygenic scores for worldwide
populations. Finally, in contrast to putative claims about the effect
(or lack thereof) of polygenic score differences on phenotypic
differences among worldwide populations, we show that current
knowledge is insufficient to either confirm or refute such reports.
These results calibrate researcher expectations about polygenic
score performance in different populations and demonstrate that
treatment of ancestry depends critically on how polygenic scores
are constructed, for diverse non-European ancestry populations.

Results
PRS usage and performance in worldwide populations. How
well-different ancestry groups have been represented in the first
decade of polygenic scoring research (2008–2017, inclusive) is
shown in Fig. 1a, which presents cumulative distributions of
numbers of studies for specific ancestry groups across time. The
field has been dominated by European ancestry studies. Across
the 733 studies examined (see Methods for inclusion criteria and
Supplementary Data 1 for a list of studies), 67% included exclu-
sively European ancestry participants. There have also been
140 studies conducted in exclusively Asian populations (19%),
most commonly in East Asian countries (e.g., China and Japan).
Only 3.8% of the polygenic studies from the first decade of
polygenic scoring research concerned populations of African,
Latino/Hispanic, or Indigenous peoples combined. (Note that we
retain population names from the original reports (e.g., Native
American and Middle Eastern) in Fig. 1 in order to maintain
consistency in terminology. Combined denotes that more than
one ancestry group was included in the study (e.g., European
ancestry and Asian ancestry participants)). These results are
similar to those reported by Popejoy and Fullerton3, who noted
that non-European ancestry representation in GWASs was almost
exclusively in Asian populations, and East Asian populations in
particular.

By comparing representation of particular ancestry groups with
world population estimates for those groups (Fig. 1b), it is
possible to quantify the over- or under-representation of each
major ancestry group. European ancestry representation was
~460% of what it would be if representation was proportional to
world ancestry. In contrast, African ancestry (17%) and Latino
samples (19%) were under-represented relative to world popula-
tions. East and South Asian samples are combined in this figure,
but it should be noted that representation of East Asian samples is
much higher than South Asian samples, which have been
included in very few polygenic scoring studies to date. Relative
to world populations for these groups, Middle Eastern and

Oceanic populations have the lowest representation in polygenic
scoring studies (10% and 0%, respectively).

Having analyzed the use of polygenic scores in different
ancestry groups (above), we next assessed the performance of
polygenic scores in multiple ancestry groups. Since most large-
scale GWAS have been conducted in primarily (or exclusively)
European ancestry individuals42, our a priori hypothesis was that
polygenic scores would perform best among European ancestry
individuals, and less well for other populations. Figure 2 provides
an overview of polygenic score performance across ancestry
groups. Results from all complex genetic phenotypes are analyzed
together in order to increase the amount of data available for
analysis. In Fig. 2, each point represents one within-study
comparison between a non-European ancestry sample and the
matched (within-study) European ancestry sample. The vertical
black line represents equal performance in the non-European
ancestry sample, as compared to the matched European ancestry
sample from the same study.

As shown in Fig. 2, polygenic score performance was worst
among African ancestry samples. The median effect size of
polygenic scores in African ancestry samples was only 42% that of
matched European ancestry samples (t=−5.97, df= 24, p=
3.7 × 10−6). Relative to matched European ancestry samples,
performance was also lower in South (60%) and East Asian (95%)
samples, but not significantly so (see top right portion of Fig. 2).
In sum, an expectation of poorer polygenic score performance in
non-European ancestry populations seems reasonable given these
data. Attenuation of predictive performances is likely to be most
extreme in samples of African ancestry, consistent with, on
average, greater genetic distance between European and African
ancestry populations, than between European and other ancestry
populations28,43.

Methodological choices impact polygenic score distributions.
We now consider questions about possible differences in poly-
genic scores among ancestral populations. Polygenic scores, as
currently calculated, vary with ancestry. Indeed, polygenic scoring
practices from as early as 2009 accounted for this12. The method
used by Purcell et al. in 200912 (and frequently since) includes
two steps for mixed ancestry samples. First, samples are separated
into more ancestrally homogeneous subgroups (using visual
inspection of plots of principal components calculated on all
genetic data from all samples). Second, principal components are
calculated again within each of these more ancestrally homo-
geneous subgroups, and are used as covariates in polygenic
scoring analyses, which are conducted separately within each
subgroup. However, some research groups are not aware of these
methodological recommendations and others (understandably)
prefer a more inclusive analytical approach of analyzing all
samples together (instead of creating subgroups). Figure 3
demonstrates why care must be taken in treatment of ancestry in
polygenic scoring studies.

As shown in Fig. 3, methodological choices in the construction
of polygenic risk scores can cause dramatic differences in
distributions of polygenic risk scores for worldwide populations
(polygenic scores were constructed for all 1000Genomes
participants, N= 2577, see Methods for additional details). In
general, the inclusion of more variants caused greater dispersion
of distributions for these 1000Genomes populations (i.e.,
comparing panel A with panel B; genome-wide significant
variants to all variants). Lower r2 thresholds for clumping tended
to make worldwide population distributions more similar (left to
right, in both A and B), and use of particular populations for
clumping also dramatically affected distributions, particularly
when East and South Asian populations were used for clumping.
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For further demonstration of the large effect that these
methodological choices have on polygenic score distributions,
see Supplementary Fig. 1 (polygenic scores for height18, weighted
with GIANT) and Supplementary Fig. 2 (polygenic scores for
PTSD10, from a multi-ancestry GWAS from the Psychiatric
Genomics Consortium, PGC).

Regarding polygenic scoring practices and as stated above, it is
typical for researchers to separate samples into more ancestrally
homogeneous groups prior to polygenic scoring analyses; Fig. 3
demonstrates why this is one sensible analytical choice. However,
this is not always done. Some researchers are unaware of the
extent to which ancestry can impact variant frequencies, and
others may choose not to split samples because there is no clear

choice regarding how multiple admixed and/or similar popula-
tions should be split. In all instances, proper use of principal
components (PCs) or other methods of correcting for ancestry is
critical. Further, Fig. 3 implies that there is no single
recommendation for the number of PCs needed, given that PCs
correlate with 1000Genomes populations (see Supplementary
Fig. 3). Underscoring this point, Supplementary Fig. 4 shows the
magnitude of correlations between 1000Genomes participants’
polygenic scores (for height, BMI, and schizophrenia) and the
first 20 PCs (N= 2577; see Supplementary Fig. 5 for representa-
tive scatterplots and Methods for additional details). Two key
conclusions can be drawn from these figures. It is important that
multiple, sometimes non-consecutive, PCs are correlated with
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polygenic scores for each of these phenotypes. For example, for
height polygenic scores constructed with GIANT summary
statistics, it is primarily the first PCs (1–4) that are significantly
correlated with polygenic scores, but non-consecutive and later
PCs are also correlated (e.g., PCs 7 and 12, in this example).
Second, results vary somewhat across a range of p-value
thresholds (pT) used for constructing polygenic scores. These
points underscore that using only a small (e.g., under 10) number
of PCs may be inadequate for polygenic scoring analyses of mixed
ancestry and admixed samples, and that careful inspection of data
and plots is always needed.

Putative correlations between worldwide phenotypes and PRSs.
Finally, we turn to the most difficult question: what causes dif-
ferences in polygenic scores, as currently calculated, among dif-
ferent populations? Differences could be real or artifactual (i.e.,
due to bias in data and/or methods), and five categories of
explanations are listed below.

(1) True differences due to drift
(2) True differences due to selection
(3) True differences in genetic effects due to environmental

differences (gene-environment interactions)
(4) Bias due to uncorrected population stratification in

discovery and/or training samples
(5) Bias due to discovery/training population data and/or

polygenic scoring methods. Specifically, linkage disequili-
brium (LD) structure and variant frequency are captured
imperfectly with current methods (including genotyping
and imputation), and they vary across populations, and
currently available data resources are unequally representa-
tive of diverse worldwide populations.

(6) Random error in the estimation of GWAS betas

Drift has been implicated as an explanation for population
differences in polygenic scores among populations32, but
others have reported that drift is insufficient to explain such
differences33. Further, initial estimates of the strength of
polygenic selection on height in European ancestry
populations33,37 have recently been greatly reduced30,31, based
on findings of uncorrected population stratification
in summary statistics from the GIANT Consortium30,31. There
is also disagreement about whether or not differences in
average polygenic scores among populations might contribute
to differences in phenotypic values among the same popula-
tions (which could also be due to environmental variation).
Some have noted apparent positive correlations between
average polygenic scores and phenotypes for BMI34, lupus35,
and height as calculated using GIANT Consortium
scores33,36,37. As described below, we include more data than
used previously to address questions about potential correla-
tions between worldwide height polygenic scores and height
phenotypes.

Using 1000Genomes data (as described in the Methods) and
commonly used but different methodological choices in the
construction of polygenic scores, we demonstrate that no simple
conclusions can be drawn about polygenic scores and height for
worldwide populations. In Fig. 4 we plot average polygenic scores
for height of 1000Genomes populations on the x-axis, using three
sources of weights for constructing scores (PRS= polygenic risk
score):

4a (top row) GIANT Consortium18 based scores: PRSheight_GIANT
4b (middle row) UKBiobank44 based scores from the NealeLab:
PRSheight_UKBiobank
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4c (bottom row) East Asian GWAS based scores45 from He et al:
PRSheight_EastAsian

On the y-axis, we plot average height for countries of origin for
1000Genomes populations, when available (see Methods for
details and exclusions).

As shown in Fig. 4a, height phenotypes for worldwide
populations (y-axis) are positively correlated with GIANT-
based18 polygenic scores for height (x-axis), but not with UK-
Biobank-based polygenic scores (4b) or East Asian GWAS based
polygenic scores (4c). Polygenic scores constructed using only
genome-wide significant variants from GIANT (top left) were
positively correlated with height phenotypes (r= .67, p= .002), as
were scores constructed using larger numbers of GIANT-based
variants (e.g., all variants, top right, r= .59, p= .008). Results in
4b and 4c demonstrate that correlations (or lack of correlations)
between height and polygenic scores for height are dependent on
discovery GWAS. There are numerous reasons why polygenic
scores differ between studies. However, recent findings suggest
that correction for population stratification may not have been
adequate in GIANT30,31, and therefore the positive correlations

observed in 4a could be partially due to uncorrected population
stratification. The dependence of correlation estimates on
discovery GWAS is further illustrated in 4c, in which the point
estimate for correlation between height and East Asian GWAS
based polygenic scores for height is negative (r=−.11, p= .643).
Power in discovery GWAS is also relevant, and greater confidence
should be assigned to the results in 4a and 4b because both
European ancestry discovery GWAS were adequately powered to
detect hundreds of height loci, whereas the East Asian height
GWAS was only adequately powered to detect 17 loci. Finally,
methodological choices in polygenic score construction (see
Fig. 3) must also be considered. The shape, dispersion, and even
the ordering of distributions of polygenic scores for different
1000Genomes populations depends on polygenic score construc-
tion parameters, and would also necessarily result in different
correlations with population phenotypes, and this is one
additional reason why differences in polygenic scores among
populations cannot be naively interpreted.

More research is needed to better understand the exact causes
of differences in score distributions across populations and their
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Fig. 4 Scatterplots of height polygenic scores (x-axis) and phenotypic height (y-axis). Plots demonstrate that correlations between polygenic scores for

height and height are not consistent across discovery GWAS. The y-values for height are the same for each plot and reflect average height of individuals in

the country of origin for each population included. Average heights (y-axis) are from a different height GWAS used to construct polygenic scores (x-axis).

Three different GWAS of height were used (i.e., three rows) with three different p-value thresholds (i.e., three columns) for the construction of polygenic

scores. a GIANT-based polygenic scores for height. b UK Biobank-based polygenic scores for height. c East Asian based polygenic scores for height. The

last two plots are missing because only genome-wide significant variants were available for the East Asian GWAS of height. p and r values for each plot are

for correlation tests between polygenic scores for height (x-axis) and height (y-axis). GWAS=genome-wide association study, GIANT=Genetic

Investigation of ANthropometric Trait, PRS=polygenic risk score, population abbreviations within scatterplots are those used by the 1000Genomes

Consortium and are available in Supplementary Table 3
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putative relationships to phenotypes. Future research must also
account for environmental effects on phenotypes, as well as
variability in measurement validity and reliability across popula-
tions. Even for the relatively simple example of height (which is
easily measured and for which major environmental influences
are relatively well-understood) our analyses suggest that a great
deal of caution should be used in drawing conclusions about
polygenic score differences underling worldwide phenotypic
differences, until data resources are significantly improved (i.e.,
well-powered GWAS in diverse populations), and until a deeper
understanding of relevant population genetics principles has
emerged. As discussed further below, even more caution will be
required for other phenotypes such as psychiatric disorders.

Discussion
As conversations about personalized medicine make their way to
the general public, it is important to recognize the need to include
under-represented populations in genetic studies. Among other
concerns, the inclusion of participants representing diverse
ancestries in research is imperative to ensure equitable benefit
from scientific discoveries for diverse populations, and to prevent
further increase in health disparities. Relevant to these longer-
term objectives, our findings provide essential basic information
about polygenic risk score usage among diverse populations,
summarized in four key points. First, polygenic scoring studies
have primarily been conducted in European and East Asian
ancestry populations. Second, the performance of polygenic
scores in non-European populations is generally poorer than
performance in European ancestry samples, particularly for
African ancestry samples. Third, polygenic scores for complex
genetic phenotypes depend critically on the methods used to
construct scores. Fourth, appropriate data resources are lacking to
address most questions about putative differences in polygenic
scores across worldwide populations. The straightforward, albeit
expensive and time-consuming, solution to improving polygenic
score performance across diverse populations is to create well-
powered GWAS data resources for many different worldwide
populations. However, the collection of very many samples from
ancestrally disparate populations could be a poor use of resources,
if all samples are underpowered. Perhaps the best approach is
strategic collection of large samples from multiple populations,
some of which may be ancestrally homogeneous, while others of
which may be from specific admixed populations. This approach
would afford cross-ancestry comparisons of more ancestrally
homogeneous populations (which are easier to analyze) as well as
much-needed method development for admixed populations
(which are currently considered to be more difficult to analyze).

Our finding that the predictive power of polygenic risk scores is
poorer in non-European populations, particularly among African
ancestry individuals, is almost certainly due to the use of Eur-
opean ancestry training data, combined with the greater genetic
diversity within many African populations, the phenotypic con-
sequences of which are not well-captured by European ancestry
GWAS. (Differences in heritability across populations for the
same trait might also exist and could also impact the performance
of polygenic scores in particular populations. Ultimately, the
performance of a particular polygenic score, as applied in a
particular population, should be evaluated with respect to the
population-specific heritability for that phenotype). Indeed, the
relative reduction of genetic diversity among European ancestry
and other non-African populations (due to past population bot-
tlenecks) is a natural limitation of European ancestry GWAS. In
addition to the important goal of collecting more samples from
more populations, there can also be improvements in the manner
in which variant frequencies and linkage disequilibrium are

handled in polygenic scoring studies. The results presented here
provide benchmarks for the performance of polygenic scores in
diverse populations, relative to performance in populations of
European ancestry. This is important, because it not only informs
power calculations for future research, but also highlights relative
differences in predictive utility across diverse populations, which
must be considered in public health and medical decisions
regarding how and when to use polygenic risk scores.

Regarding expectations about polygenic score performance in
non-European ancestry samples we note that polygenic scores for
many complex genetic phenotypes are strongly correlated with
global PCs, which highlights the critical importance of appro-
priate statistical methods for the analysis of genetic data from
admixed populations, and caution in using imputed data from
samples for which reference sequence datasets are lacking. Test-
ing future polygenic scoring results for robustness to the inclusion
of variable combinations of PCs will reduce the chances of
spurious results (that are actually attributable to ancestry). In
sum, the preponderance of genetic studies based on European
ancestry samples has led to a situation in which polygenic scores
are approximately one-third as informative for African ancestry
individuals, as they are for European ancestry individuals. This is
presumably true for commercially available tests as well; given
these findings, consumers should be aware of the differential
performance of tests across individuals.

Regarding scientific and public perception of polygenic scores,
it is important to address apparent differences in polygenic score
distributions across populations. Our findings suggest that it is
currently not possible to know precisely the distribution of
polygenic scores for non-European ancestry populations, for any
complex genetic phenotype, for two major reasons: (1) score
distributions depend critically on methodological choices in score
constructions, and (2) data resources for most populations are
currently inadequate. Further, as we have shown, the ordering of
population distributions of polygenic scores varies under accepted
methods of constructing these scores (i.e., using different p-value
thresholds for variant inclusion in scores and using alternative
discovery GWAS). Explanations for these differences are cur-
rently incomplete. Until vastly superior data resources are avail-
able—including large-scale GWAS in multiple globally
representative populations—scientists are unlikely to reach con-
sensus regarding the existence, nature, and exact causes of poly-
genic score differences among populations.

In our analysis of possible relationships between average phe-
notypes for worldwide populations and average polygenic scores
for those populations, we chose to examine height because it is
easily measured and because factors affecting height (e.g., nutri-
tion) are also relatively easily quantified. In contrast, research on
other variables such as weight, smoking status, psychological
symptoms, and cognitive performance requires more careful
control for environmental confounders (including variables like
social status), which are often correlated with ancestry and
therefore may also be correlated with global principal compo-
nents and polygenic scores (as currently calculated). This means
that confounding of environmental and genetic effects is likely.
For example, social experiences such as being subjected to racism
are prime candidates for confounding in genetic studies.

In closing, we emphasize the need to engage experts from other
disciplines, such as social psychology and bioethics46, as geneti-
cists attempt to characterize genetic effects on complex genetic
phenotypes that are also affected by social factors (especially
psychological and cognitive variables). This is necessary because
societal influences including socioeconomic status and dis-
crimination can powerfully influence these phenotypes47, and
these causal social factors can co-vary with ancestry. In genetic
research, there is a tendency not to include environmental
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influences on phenotypes (often due to resource constraints), but
collaboration with disciplinary experts and increased attention
from geneticists on gene-environment interplay (i.e., correlations
and interactions) can address this problem which, we argue, will
ultimately improve studies attempting to find genetic causes of
human traits and behavior. Only then, with cautious and broadly-
informed research, can the medical benefits of correctly inter-
preting polygenic variation within and among populations be
realized.

Methods
Methods overview. This study has two major components. First, we analyzed
results extracted from previous polygenic scoring studies in order to describe
trends in polygenic scoring research. Second, we analyzed properties of polygenic
scores as calculated for the 1000Genomes individuals, and compared polygenic
scores to country-level information about height. This work received a notice of
determination that it was not human subjects research from Stanford University.

Part 1. Published polygenic scoring studies. See Supplementary Fig. 6 for a
flowchart of study ascertainment, per PRISMA example. We first identified suitable
studies via PubMed on 23 January 2018 using the following search terms: (Gen-
ome-Wide Association Stud* OR GWAS OR Genome Wide Association Stud*)
and (polygenic risk score OR genetic risk score OR polygenic risk scor* OR genetic
risk scor* OR risk profile scor* OR genomic profile). We sought to identify all
polygenic scoring studies, of any complex genetic phenotype, from the first decade
of polygenic scoring research. This yielded 1226 studies, 733 of which were poly-
genic scoring studies (see Fig. 1 and Supplementary Data 1).

We next identified studies that contained valid comparisons of the performance
of polygenic scores in European ancestry participants and at least one other
ancestry. Specifically, matched analyses (from two or more ancestry groups, from
any given publication) had to use the same genotyping chip for all samples, the
same weights for variants, the same algorithm for constructing polygenic scores,
and the same methods of measuring phenotypes across all participants. Results
from 26 studies met inclusion criteria, and there was minimal overlap in samples
used (see Supplementary Data 2). From these studies we then extracted effect size
metrics for each ancestry group. Effect size, refers to variance explained (the
preferred metric) and to beta coefficients from regression, odds ratio (OR), or area
under the curve (AUC), as available. Score performance for each analysis of a
sample of non-European ancestry, was normalized to performance in the matched
European ancestry sample from the same study, by dividing effect sizes (i.e., non-
European ancestry/European ancestry). Odds ratios were first converted to log
(OR). We multiplied values by 100 so that performance for each non-European
ancestry sample could be expressed as a percentage of European ancestry
performance, which was standardized to 100%. For example, the first polygenic
scoring study of schizophrenia12 found that polygenic scores explained only 0.4%
of phenotypic variance in an African ancestry sample, whereas 3.2% of phenotypic
variance was explained in a matched European ancestry sample. Consequently, the
value of 12.5% ((0.004/.032) × 100) is represented as the top-most yellow point in
Fig. 2 (see schizophrenia and Purcell 2009 in the citation information for this
point). By normalizing within-study effect sizes to European ancestry effect sizes,
we were able to combine observations across phenotypes, and therefore to obtain
general estimates of polygenic score performance across ancestry groups and
complex genetic phenotypes.

Part 2. Polygenic score properties for worldwide populations. For part 2, we
used publicly available data from 1000Genomes48. Individual-level genotype data
for 2577 individuals were downloaded from ftp-trace.ncbi.nih.gov/1000genomes/
ftp/release/20130502/. Weights for constructing polygenic scores came from pub-
licly available sources of GWAS results for height, body mass index (BMI), and
schizophrenia14,18,44,45. For height we used GIANT summary statistics and UK
Biobank statistics from the Neale Lab (version 1), which included 10 PCs as
covariates, as calculated on all cleaned UK Biobank samples (i.e., including
ancestrally diverse samples as well as the large majority of European ancestry
samples). Data about average human height, for countries of origin for
1000Genomes populations, were downloaded from a pre-compiled table with male
and female heights by country: https://en.wikipedia.org/wiki/
List_of_average_human_height_worldwide.

Data preparation and analysis for 1000Genomes samples: The full
1000Genomes dataset was first filtered to include only bi-allelic single nucleotide
polymorphisms (SNPs) with greater than 0.1% minor allele frequency. In order to
calculate principal components across 1000Genomes genotypes, we used second
generation PLINK49 to obtain variants in approximate linkage equilibrium, and we
also removed the MHC region of chromosome 6 (25–35Mb) and the large
inversion region on chromosome 8 (7–13Mb). We then calculated 20 PCs across
all individuals.

In order to obtain weights for constructing polygenic scores, summary statistics
files (i.e., GWAS results) were clumped to include only variants in approximate

linkage equilibrium, using second generation PLINK49,50 and the following
thresholds (varying the linkage disequilibrium r2 threshold): --clump-kb 500,
--clump-p1 1, --clump-p2 1, --clump-r2 0.2 (and .05 and .01). 1000Genomes data
were used as the source for linkage disequilibrium information for pruning all
summary statistic files, and we varied the source populations to include all samples,
and each of the major populations individually.

Second generation PLINK49 was used to construct polygenic scores for each
phenotype for the 1000Genomes participants (N= 1940, see below for exclusions),
using 13 thresholds, pT, as follows: p < 5 × 10−8, p < 1 × 10−6, p < 1 × 10−4, p < 1 ×
10−3, p < 1 × 10−2, p < .05, p < .1, p < .2, p < .3, p < .4, p < .5, p < .75, p <= 1. The
statistical package R51 was used for plotting and statistical analyses (t-tests,
correlations). For correlations between polygenic scores and principal components,
see Supplementary Data 3. Height phenotype data were downloaded from a
compiled table of average heights, for males and females, by countries. Heights for
males and females were averaged. Certain populations were excluded from the
analysis of correlations between polygenic risk scores for height and height
phenotypes for three reasons: Four populations were excluded due to lack of height
phenotype data: Puerto Rican in Puerto Rico (PUR; N= 105), Bengali in
Bangladesh (BEB; N= 86), Punjabi in Lahore, Pakistan (PJL; N= 96), Mende in
Sierra Leone (MSL; N= 85). Two populations were excluded due to the
combination of highly mixed country ancestry (impacting validity of height
phenotype) and admixture of the 1000Genomes population (impacting variability
in the polygenic scores for height): African Ancestry in Southwest US (ASW; N=
66), African Caribbean in Barbados (ACB; N= 96). One population was excluded
due to the absence of a single European country of origin (needed for height
phenotype information used in this report): Utah residents with Northern and
Western European ancestry (CEU; N= 103). Details are given in Supplementary
Table 1. All ethical regulations (including informed consent) were followed in the
relevant studies, which provided the summary results used in this manuscript. This
manuscript contains only secondary data analysis of publicly available data. No
work with human participants was conducted, as determined by the Human
Subjects review board at Stanford University.

Data availability
All data used in this report are publicly available as specified in this manuscript (with

appropriate links) and/or are provided as Supplementary Data (i.e., modifiable.xlsx files).
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