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Positive linear continuous-time systems are analyzed via conformable fractional calculus. A solution to a fractional linear
system is derived. Necessary and sufficient conditions for the positivity of linear systems are established. Necessary and
sufficient conditions for the asymptotic stability of positive linear systems are also given. The solutions of positive fractional
linear systems based on the Caputo and conformable definitions are compared.
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1. Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever
in the positive orthant for all nonnegative inputs. An
overview of state of the art in positive theory is given
in the monographs by Farina and Rinaldi (2000) as
well as Kaczorek (2002). A variety of models having
positive behavior can be found in engineering, especially
in electrical circuits (Kaczorek and Rogowski, 2015),
economics, social sciences, biology and medicine, etc.
(Farina and Rinaldi, 2000; Kaczorek, 2002).

Positive electrical circuits were analyzed by
Kaczorek (2015a; 2013a; 2014; 2016a; 2015b; 2011a;
2010). The constructability and observability of standard
and positive electrical circuits were addressed also by
Kaczorek (2013a), along with the decoupling zeros
(Kaczorek, 2014) and minimal-phase positive electrical
circuits (Kaczorek, 2016a). A new class of normal
positive linear electrical circuits was introduced by
Kaczorek (2015b), who also investigated positive
fractional linear electrical circuits (Kaczorek, 2013b),
positive linear systems with different fractional orders
(Kaczorek, 2010; 2011b) and positive unstable electrical
circuits (Kaczorek, 2012). The zeroing of state variables
in descriptor electrical circuits was addressed by
Kaczorek (2013c), while the realization problem of
positive linear systems by Benvenuti and Farina (2004).
Positive electrical circuits with zero transfer matrices

were analyzed by Kaczorek (2016b).
In the work of Khalil et al. (2014) a new definition

of the fractional derivative called “conformable” was
proposed, and in that of Abdeljawad (2015) fundamentals
of the conformable fractional calculus were developed. In
this paper, positive linear continuous-time systems will be
analyzed with the use of the conformable derivative.

The paper is organized as follows. In Section 2 some
preliminaries concerning the conformable fractional
calculus are presented. The positive fractional
continuous-time linear systems are addressed in
Section 3. The stability of the positive fractional
linear systems is analyzed in Section 4. Comparison of
the solutions of fractional linear systems using the Caputo
and conformable definitions is presented in Section 5.
Concluding remarks are given in Section 6.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n × m real matrices with nonnegative entries
and R

n
+ = R

n×1
+ ; Mn, the set of n × n Metzler matrices

(real matrices with nonnegative off-diagonal entries); In,
the n × n identity matrix; AT denotes the transpose of
matrix A.

2. Preliminaries

The following conformable derivative of the function f(t)
of order α, 0 < α < 1 will be used (Khalil et al., 2014):
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dαf(t)

dtα
= lim

ε→0

f(t+ εt1−α)− f(t)

ε
, t > 0. (1)

If (1) exists then the function f(t) is called
α-differentiable (Khalil et al., 2014).

Theorem 1. (Khalil et al., 2014) If the functions f(t) and
g(t) are α-differentiable, 0 < α < 1 then

dα

dtα
[af(t) + by(t)] = a

dαf(t)

dtα
+ b

dαg(t)

dtα
, (2)

where a, b ∈ R and

dα

dtα
[f(t)g(t)] = f(t)

dαg(t)

dtα
+ g(t)

dαf(t)

dtα
, (3)

dα

dtα

[
f(t)

g(t)

]
=

g(t)d
αf(t)
dtα − f(t)d

αg(t)
dtα

[g(t)]2
, (4)

dαf(t)

dtα
= t1−α df(t)

dt
, (5)

dαtq

dtα
= qtq−α for all q ∈ R, (6)

dαe
qt

dtα
= qt1−αeqt for all q ∈ R. (7)

3. Positive fractional continuous-time linear
systems

Consider the fractional continuous-time linear system
described by the equations

dαx(t)

dtα
= Ax(t) +Bu(t), 0 < α < 1, (8a)

y(t) = Cx(t) +Du(t), (8b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m.

Theorem 2. The solution x(t) of the equation (8a) has
the form

x(t) = e
A
α tαx0 +

∫ t

0

e
A
α (tα−τα)Bu(τ)τα−1dτ,

x(0) = x0,

(9)

where

e
A
α tα =

∞∑
k=0

Aktkα

αkk!
. (10)

Proof. It will be shown that the solution (9) satisfies Eqn.
(8a). Using (5)–(7), it is easy to check that x(0) = x0 and

dαx(t)

dtα
=

dα

dtα

[
e

A
α tαx0

+

∫ t

0

e
A
α (tα−τα)Bu(τ)τα−1dτ

]

= A
[
e

A
α tαx0 +

∫ t

0

e
A
α (tα−τα)Bu(τ)τα−1dτ

]

+Bu(t)

= Ax(t) +Bu(t).

(11)

�
In the work of Abdeljawad (2015) the proof is based

on the Laplace transform.

Definition 1. The fractional linear system (8) is called
(internally) positive if x(t) ∈ R

n
+, y(t) ∈ R

p
+ for all x0 ∈

R
n
+ and any u(t) ∈ R

m
+ , t ≥ 0.

Definition 2. A matrix A = [aij ] ∈ R
n×n is called the

Metzler matrix if aij ≥ 0 for i �= j and i, j = 1, . . . , n.

Theorem 3. The fractional linear system (8) is (inter-
nally) positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(12)

Proof. First we shall show that

e
A
α tα ∈ R

n×n
+ for t ≥ 0, 0 < α < 1 (13)

if and only if A ∈ Mn.
From (10) written in the form

e
A
α tα = In +

Atα

α
+ . . . (14)

it follows that e
A
α tα ∈ R

n×n
+ for small t > 0 only if A ∈

Mn.
If A/α ∈ Mn then there exists λ > 0 such that

A/α+ Inλ ∈ R
n×n
+ and

e
A
α tα = e(

A
α+Inλ)tαe−λInt

α ∈ R
n×n
+ , t ≥ 0 (15)

since e(
A
α+Inλ)tα ∈ R

n×n
+ and e−λInt

α ∈ R
n×n
+ , t ≥ 0.

If A ∈ Mn, B ∈ R
n×m
+ , x0 ∈ R

n
+ and u(t) ∈ R

m
+ ,

t ≥ 0 then

e
A
α tαx0 ∈ R

n
+, e

A
α tαBu(t) ∈ R

n
+ for t ≥ 0 (16)

and from (9) we obtain x(t) ∈ R
n
+ for t ≥ 0.

If x(t) ∈ R
n
+ and u(t) ∈ R

m
+ , t ≥ 0 then from (8b)

we have y(t) ∈ R
p
+, t ≥ 0.
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To show the necessity, we assume that u(t) = 0, t ≥
0 and x0 = ei (the i-th column of the matrix In). The
trajectory x(t) does not leave orthant Rn

+ only if

dαx(t)

dtα

∣∣∣∣
t=0

= Aei ∈ R
n
+,

which implies aij ≥ 0 for i �= j. Therefore, we have
A ∈ Mn.

For the same reason, for x0 = 0 we have

dαx(t)

dtα

∣∣∣∣
t=0

= Bu(0) ∈ R
n
+,

what implies B ∈ R
n×m
+ since u(0) ∈ R

m
+ can be

arbitrary. From (8b) for u(t) = 0, t ≥ 0 we have
y(0) = Cx0 ∈ R

p
+ and C ∈ R

p×n
+ since x0 ∈ R

n
+ can be

arbitrary. In a similar way, we have y(0) = Du(0) ∈ R
p
+

and D ∈ R
p×m
+ since u(0) ∈ R

m
+ can be arbitrary. �

4. Stability of positive fractional linear
systems

Consider the positive fractional continuous-time linear
system

dαx(t)

dtα
= Ax(t), x(0) = x0 ∈ R

n
+, (17)

where x(t) ∈ R
n
+, t ≥ 0, A ∈ Mn.

Definition 3. (Kaczorek, 2011; Kaczorek and Rogowski,
2015) The positive fractional system (17) is called asymp-
totically stable if

lim
t→∞x(t) = 0 for any x0 ∈ R

n
+. (18)

Theorem 4. The positive fractional system (17) is asymp-
totically stable if and only if one of the following equiva-
lent conditions are satisfied:

1. There exists a strictly positive vector λT =
[ λ1 · · · λn ], λk > 0, k = 1, . . . , n such that

Aλ < 0. (19)

2. The coefficients of the characteristic polynomial of
the matrix A

det[Ins−A]

= sn + an−1s
n−1 + · · ·+ a1s+ a0 (20)

are positive, i.e., ak > 0 for k = 0, 1, . . . , n− 1.

3. The principal minors of the matrix

Ā = −A =

⎡
⎢⎣

ā11 · · · ā1n
...

. . .
...

ān1 · · · ānn

⎤
⎥⎦ (21)

are positive, i.e.,

ā11 > 0,

[
ā11 ā12
ā21 ā22

]
> 0,

. . ., det[−A] > 0. (22)

Proof. Let Iα(0, t) be the fractional integral operator of
order α, 0 < α < 1, satisfying (Abdeljawad, 2015)

Iα(0, t)
dαx(t)

dtα
= x(t) − x(0). (23)

Applying this operator to (17), for limt→∞ x(t) = 0 and
x(0) > 0 we obtain

− x(0) = AIα(0,∞) = Aλ < 0 (24)

since the fractional integral of x(t) belongs to R
n
+ and

Iα(0,∞) > 0.
Note that the dual system

dαx(t)

dtα
= ATx(t) (25)

is asymptotically stable if and only if the system (17) is
asymptotically stable.

As a Lyapunov function of the dual system we
choose

V (x) = xT (t)λ > 0 for x(t) > 0 (26)

and, using (25), we obtain

dαV (x)

dtα
=

dαxT (t)

dtα
λ = xT (t)Aλ < 0 (27)

if the condition (19) is satisfied. Therefore, the positive
fractional system (17) is asymptotically stable if and only
if Condition 1 is satisfied.

The equivalence of Conditions 1 and 2, as well as 2
and 3, has been shown by Kaczorek (2011c) and Kaczorek
and Rogowski (2015). �

Theorem 5. The positive fractional system (17) is unsta-
ble if at least one diagonal entry of the matrix A ∈ Mn is
nonnegative.

Proof. Let all entries of the i-th row of the matrix A
be nonnegative. Then there is no strictly positive vector
λ ∈ R

n
+ such that (19) holds. Therefore, by Condition 1

of Theorem 4 the system is unstable. �

Remark 1. If detA �= 0 then as the vector λ we may
choose

λ = A−1c for any c < 0, c ∈ R
n (28)

since Aλ = AA−1c < 0.
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Example 1. Consider the positive fractional system (17)
with

A =

⎡
⎣ −2 1 0

1 −3 1
1 0 −2

⎤
⎦ ∈ M3. (29)

The system is asymptotically stable since for λT =
[ 1 1 1 ] we have

Aλ =

⎡
⎣ −2 1 0

1 −3 1
1 0 −2

⎤
⎦
⎡
⎣ 1

1
1

⎤
⎦ =

⎡
⎣ −1

−1
−1

⎤
⎦ < 0.

(30)
Using (28) and (29), we obtain

λ = A−1c

=

⎡
⎣ −2 1 0

1 −3 1
1 0 −2

⎤
⎦
−1 ⎡
⎣ c1

c2
c3

⎤
⎦

= −1

9

⎡
⎣ 6c1 + 2c2 + c3

3c1 + 4c2 + 2c3
3c1 + c2 + 5c3

⎤
⎦ < 0

(31)

for any nonzero c ∈ R
3
+.

The characteristic polynomial of (29)

det[I3s−A] =

⎡
⎣ s+ 2 −1 0

−1 s+ 3 −1
−1 0 s+ 2

⎤
⎦

= s3 + 7s2 + 15s+ 9

(32)

has all positive coefficients and its zeros are s1 = −1,
s2 = s3 = −3.

Condition 2 of Theorem 4 is satisfied and the system
is asymptotically stable. Condition 3 of the same theorem
is also satisfied since the principal minors of the matrix

Ā = −A =

⎡
⎣ 2 −1 0

−1 3 −1
−1 0 2

⎤
⎦ (33)

are positive, i.e.,
ā11 = 2,∣∣∣∣ ā11 ā12

ā21 ā22

∣∣∣∣ =
∣∣∣∣ 2 −1
−1 3

∣∣∣∣ = 5,

det Ā =

∣∣∣∣∣∣
2 −1 0
−1 3 −1
−1 0 2

∣∣∣∣∣∣ = 9.

�
Comparing the asymptotic stability conditions for

the Caputo and conformable definitions, we obtain the
following corollary.

Corollary 1. The asymptotic stability conditions for pos-
itive continuous-time linear systems for the Caputo and
conformable definitions of the fractional derivative are the
same.

Fig. 1. Electrical circuit of Example 2.

5. Comparison of solutions of fractional
linear continuous-time systems based on
the Caputo and conformable derivative
definitions

In this section the solutions of the positive fractional linear
electrical circuits based on the Caputo and conformable
derivative definitions will be presented and compared.

Example 2. Consider the electrical circuit shown in
Fig. 1 with given resistances R1, R2, R3, capacitances
C1, C2 and source voltage e.

Using Kirchhoff’s laws, we may write the equations

e = R1C1
dαu1

dtα
+ u1 +R3

(
C1

dαu1

dtα
+ C2

dαu2

dtα

)
,

e = R3

(
C1

dαu1

dtα
+ C2

dαu2

dtα

)
+ u2 +R2C2

dαu2

dtα
,

(34)

which can be put down in the form

[
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

]
dα

dtα

[
u1

u2

]

=

[ −1 0
0 −1

] [
u1

u2

]
+

[
1
1

]
e. (35)

Premultiplying (35) by the inverse matrix

[
(R1 +R3)C1 R3C2

R3C1 (R2 +R3)C2

]−1

=
1

Δ

[
(R2 +R3)C2 −R3C2

−R3C1 (R1 +R3)C1

]
,

(36)

where

Δ = [R1(R2 +R3) +R2R3]C1C2

we obtain

dα

dtα

[
u1

u2

]
= A

[
u1

u2

]
+Be, (37a)
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where

A =
1

Δ

[ −(R2 +R3)C2 R3C2

R3C1 −(R1 +R3)C1

]
,

B =
1

Δ

[
R2C2

R1C1

]
. (37b)

From (37b) it follows that the electrical circuit is
positive since A ∈ M2 and B has positive entries.

For further analysis we assume α = 0.5, R1 = R2 =
10 Ω, R3 = 20 Ω, C1 = C2 = 100 mF and the constant
input e = 1 V. It is assumed that the initial conditions
x(0) = 0 and [ u1(0) u2(0) ]T = 0.

Using the Caputo definition of the fractional
derivative (Kaczorek, 2011c), we obtain the following
solution to (37):

x(t) =

∫ t

0

Φ(t− τ)B dτ

=
∞∑
k=0

(
Ak

∫ t

0

(t− τ)(k+1)α−1

Γ[(k + 1)α]
dτ

)
B

=

∞∑
k=0

Akt(k+1)α

Γ[(k + 1)α+ 1]
B

=

∞∑
k=0

t0.5(k+1)

Γ[0.5k + 1.5]

[ −0.6 0.4
0.4 −0.6

]k [
0.2
0.2

]

(38)

and, using (9),

x(t) =

∫ t

0

e
A
α (tα−τα)Bτα−1 dτ

= e
A
α tα

∫ t

0

e−
A
α τα

τα−1 dτB

=

∞∑
k=0

Aktkα

αkk!

(∫ t

0

∞∑
k=0

(−A)kτkα

αkk!
τα−1 dτ

)
B

=
∞∑
k=0

Aktkα

αkk!

( ∞∑
k=0

(−A)k

αkk!

∫ t

0

τ (k+1)α−1 dτ

)
B

=

∞∑
k=0

Aktkα

αkk!

( ∞∑
k=0

(−A)kt(k+1)α

αkk![(k + 1)α]

)
B

=

∞∑
k=0

t0.5k

0.5kk!

[ −0.6 0.4
0.4 −0.6

]k

×
( ∞∑

k=0

t0.5(k+1)

0.5kk![0.5k + 0.5]

[
0.6 −0.4
−0.4 0.6

]k)

×
[

0.2
0.2

]
.

(39)

From Fig. 2 it follows that for the conformable
definition the electrical circuit reaches its steady state in
a shorter time. �

Fig. 2. Comparison of the solutions (38) and (39).

6. Concluding remarks

The positive linear continuous-time systems have been
analyzed with the use of the conformable derivative.
Solutions to fractional linear systems has been derived
(Theorem 2). Necessary and sufficient conditions for
the positivity of the fractional linear systems have been
established (Theorem 3). Necessary and sufficient con-
ditions for the asymptotic stability of the positive linear
systems have been given (Theorem 4).

The solutions of the positive fractional linear systems
based on the Caputo and conformable definitions have
been presented and compared. The discussion has been
illustrated via an example of a positive electrical circuit.

The findings can be extended to linear systems with
delays.
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