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Abstract
Power harvesting refers to the practice of acquiring energy from the
environment which would be otherwise wasted and converting it into usable
electric energy. Much work has been done on studying the optimal AC power
output, while little has considered the AC–DC output. This article
investigates the optimal AC–DC power generation for a rectified piezoelectric
device. In contrast with estimates based on various degrees of approximation
in the recent literature, an analytic expression for the AC–DC power output is
derived under steady-state operation. It shows that the harvested power
depends on the input vibration characteristics (frequency and acceleration),
the mass of the generator, the electrical load, the natural frequency, the
mechanical damping ratio and the electromechanical coupling coefficient of
the system. An effective power normalization scheme is provided to compare
the relative performance and efficiency of devices. The theoretical predictions
are validated and found to be in good agreement with both experimental
observations and numerical simulations. Finally, several design guidelines
are suggested for devices with large coupling coefficient and quality factor.

1. Introduction

The development of wireless sensor and communication node

networks has received a great deal of interest in research

communities over the past few years. Applications envisioned

from these node networks include building structural health

monitoring and environmental control systems, smart homes

and tracking devices on animals in the wild [23, 32]. However,

as the networks increase in number and the devices decrease

in size, the proliferation of these autonomous microsensors

raises the problem of an effective power supply. The

conventional solution is to use electrochemical batteries for

power. However, batteries can not only increase the size and

weight of microsensors but also suffer from the limitations

of a brief service life and the need for constant replacement,

which is not acceptable or even possible for many practical

applications.

On the other hand, simultaneous advances in low-

power electronic design and fabrication have reduced power

requirements for individual nodes. It has been predicted that

1 Author to whom any correspondence should be addressed.

power consumption could be reduced to tens to hundreds of

microwatts depending on the application [3]. This opens the

possibility for self-powered sensor nodes, and the need to

power remote systems or embedded devices independently

has motivated many research efforts focused on harvesting

electrical energy from various ambient sources. These include

solar power, thermal gradients and vibration [37]. Among

these energy scavenging sources, mechanical vibration is a

potential power source that is abundant enough to be of use,

is easily accessible through microelectromechanical systems

(MEMS) technology for conversion to electrical energy, and

is ubiquitous in applications from small household appliances

to large infrastructures [36, 41].

Vibration energy can be converted into electrical

energy through piezoelectric, electromagnetic and capacitive

transducers. Among them, piezoelectric vibration-to-

electricity converters have received much attention, as they

have high electromechanical coupling and no external voltage

source requirement, and they are particularly attractive for

use in MEMS [13, 30, 39]. As a result, the use of

piezoelectric materials for scavenging energy from ambient

vibration sources has recently seen a dramatic rise for power
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harvesting. For example, early work at the MIT Media Lab

investigated the feasibility of harnessing energy parasitically

from various human activities [45]. It was later confirmed

that energy generated by walking can be collected using

piezoelectric ceramics [40]. Since then, piezoelectric elements

used for power harvesting in various forms of structure have

been proposed to serve specific purposes. Elvin et al [6, 7]

and Ng and Liao [27] have used the piezoelectric element

simultaneously as a power generator and a sensor. They

have evaluated the performance of the piezoelectric sensor to

power wireless transmission and validated the feasibility of the

self-powered sensor system. Roundy and Wright [38] have

analysed and developed a piezoelectric generator based on a

two-layer bending element and used it as a basis for generator

design optimization. Similar works based on cantilever-based

devices using piezoelectric materials to scavenge vibration

energy include [4, 25, 26, 51, 53].

Instead of 1-D design, Kim et al [16, 17] and Ericka

et al [8] have modeled and designed piezoelectric plates

(membranes) to harvest energy from pulsing pressure sources.

Other harvesting schemes include the use of long strips of

piezoelectric polymers (energy harvesting eel) in ocean or

river-water flows [1, 46], the use of piezoelectric ‘cymbal’

transducers operated in the {3-3} mode [14, 15] and the

use of a piezoelectric windmill for generating electric power

from wind energy [31]. Jeon et al [13] have successfully

developed the first PZT MEMS power-generating device.

Related works on modeling and design considerations for

MEMS-scale piezoelectric-based energy harvesters can be

found in [5, 24, 33].

Most published results have reported measurements of

output voltage or power, while few have quantified the

efficiency of their devices. Umeda et al [48, 49] and Goldfarb

and Jones [9] have studied the efficiency of electric power

generation with piezoelectric elements operated in the {3-

1} and {3-3} modes, respectively. Recently, Richards et al

[34] have provided an analytic formula to predict power

conversion efficiency, and showed that it depends on the

electromechanical coupling coefficient and quality factor of the

device. Roundy [35] has further provided a general theory

of the effectiveness of vibration-based energy harvesting

which can be applied to electromagnetic, piezoelectric,

magnetostrictive and electrostatic transducer technologies. In

addition, when a power harvester is applied to a system, it gives

rise to an additional damping effect. Lesieutre et al [22] have

pointed out that the damping added to a vibrating structure is

due to the removal of electrical energy from the system. They

have shown that the power harvesting system works similarly

to a shunt damping system, except that the energy is stored

instead of dissipated [20, 44].

The research works cited above focus mainly on

developing optimal energy harvesting structures. However,

the electrical outputs of these devices in many cases are too

small to power electrical devices directly. Thus, the methods

of accumulating and storing parasitic energy are also the key to

developing self-powered systems. Sodano et al [42, 43] have

investigated several piezoelectric power harvesting devices

and the methods of accumulating energy by utilizing either

a capacitor or a rechargeable battery. Ottman et al [28, 29]

have developed highly efficient electrical circuits to store the

generated charge or present it to the load circuit. They have

claimed that at high levels of excitation the power output can

be increased by as much as 400%. In contrast to the linear

load impedance adaptation by [28, 29], Guyomar et al [10]

and Lefeuvre et al [18, 19] have developed a new power flow

optimization principle based on the extraction of the electric

charge produced by a piezoelectric element, synchronized

with the mechanical vibration operated at the steady state.

They have claimed that the harvested electrical power may be

increased by as much as 900% over the standard technique.

Badel et al [2] have extended their work to the case of pulsed

excitation.

In this paper, we propose an analysis of AC–DC power

output for a rectified piezoelectric harvester. Many published

results studying the conversion of energy from the oscillating

mass to electricity have adopted a simple model proposed

by Williams and Yates [5, 13, 36, 39, 52]. It is based on

the assumption that the electrical damping term is linear and

proportional to the velocity; however, this hypothesis may

not be strictly valid in many cases. In addition, much work

has been done on studying the optimal AC power flow, while

little has considered the AC–DC power output. The former

includes [5, 24, 25, 30, 34, 38, 44], while the latter has

been studied recently in [10, 19, 28]. As the electronic load

requires a stabilized DC voltage while a vibrating piezoelectric

element generates an AC voltage, the desired output needs

to be rectified, filtered and regulated to ensure electrical

compatibility. Thus, it is of importance to investigate the

optimal AC–DC power output to reflect the real electrical

performance in many practical applications.

Specifically, we study the steady-state response of a

piezoelectric generator connected to an AC–DC rectifier

followed by a filtering capacitance and a resistor. This problem

has recently been studied by Ottman et al [28] and Guyomar

et al [10]. The former assumed that the vibration amplitude is

not affected by the load resistance while the latter hypothesized

that the periodic external excitation and the speed of mass

are in phase. In contrast with estimates based on these two

approaches, we take into account the global behaviour of

the electromechanical system and derive a completely new

analytic expression of AC–DC power output in section 2. We

show that the harvested power depends explicitly on a number

of non-dimensionless parameters. With it, an effective power

normalization scheme is provided and can be used to compare

power harvesting devices of various sizes and with different

vibration inputs to estimate efficiencies. In section 3, we

derive the criterion for optimal load and power and study the

asymptotic behaviour of power output for devices operated at

the short and open circuit resonances, respectively. We show

that selection of the correct operation frequency is important

for achieving the maximal power flow, while this effect has

been neglected in many other approaches. We next validate

our theoretical predictions by both experimental results and

numerical simulations and find good agreement in section 4.

In addition, we find that the discrepancies among these

approaches become significant when the coupling coefficient

and quality factor of the system are large. Finally, several

design guidelines are recommended from our predictions. We

conclude in section 5 with a discussion.
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Figure 1. An equivalent model for a piezoelectric vibration energy
harvesting system.

2. Harvesting model

2.1. Governing equations

A piezoelectric energy harvester is often modeled as a

mass + spring + damper + piezo structure together with

an energy storage system schematically shown in figure 1

[19, 28, 34]. It consists of a piezoelectric element coupled

to a mechanical structure and is connected to a storage circuit

system. In this approach, an effective mass M subjected to

an applied forcing function F(t) is bounded on a spring of

effective stiffness K , on a damper of coefficient η, and on a

piezoelectric element characterized by effective piezoelectric

coefficient � and capacitance Cp . For example, consider

a triple-layer bender mounted as a cantilever beam with

polarization poled along the thickness direction as shown in

figure 2. The electric field is generated through the direction

of thickness of the piezoelectric layers while strain is in

the axial direction; consequently, the transverse, or {3-1},
mode is utilized. The effective coefficients related to material

constants and structural geometry can be derived using the

modal analysis [11, 50]

M = βM(m p + mb) + ma,

K = βK S

{(

2

3

t3

L3
+

ht2

L3
+

1

2

th2

L3

)

C E
p11

+
1

12

h3

L3
C E

b11

}

,

� = β�

S(h + t)

2L
e31,

Cp = SL

2t
εS

33,

where βM , βK and β� are constants derived from the

Rayleigh–Ritz approximation, e31 and εS
33 are the piezoelectric
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Figure 2. A common piezoelectric-based power generator: a cantilever triple-layer bender operated in the {3-1} mode. The base is excited
with acceleration z̈(t).

and clamped dielectric constants, S and L are the width

and axial length of the cantilever beam, t and h, C E
p11

and

C E
b11

, m p and mb are the thicknesses, elastic moduli and

masses of the piezoelectric and central passive layers, and

ma is the attached mass. We have performed a series of

experiments on a PZT triple-layer bender with configuration

similar to figure 2 to validate our prediction in section 4.2.

Another less common piezoelectric power generator operated

in the longitudinal or {3-3} mode has been developed recently

by [13]. The advantage of utilizing this mode is that the

longitudinal piezoelectric effect is usually much larger than the

transverse effect (d33 > d31).

A vibrating piezoelectric element generates an AC voltage

while the electrochemical battery needs a stabilized DC

voltage. This requires an energy harvesting circuit to ensure

electrical compatibility. In figure 1, an AC–DC rectifier

followed by a filtering capacitance Ce is added to smooth the

DC voltage. A controller placed between the rectifier output

and the battery is included to regulate the output voltage.

A simplified energy harvesting circuit shown in figure 3 is

commonly chosen for design analysis. Note that the regulation

circuit and battery are replaced with an equivalent resistor R

and Vc is the rectified voltage across it. The rectifying bridge

is assumed to be perfect in the following study.

Let u be the displacement of the mass M and Vp the

voltage across the piezoelectric element. The governing

equations of the vibrator can be obtained by the conventional

modal analysis [5, 44]:

Mü(t) + ηu̇(t) + K u(t) + �Vp(t) = F(t), (1)

−�u̇(t) + Cp V̇p(t) = −I (t). (2)

An AC–DC harvesting circuit is connected to the power

generator, as shown in figure 3, I (t) is the current flowing into

this circuit and is related to the rectified voltage Vc by

I (t) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ce V̇c(t) +
Vc

R
if Vp = Vc,

−Ce V̇c(t) −
Vc

R
if Vp = −Vc,

0 if |Vp| < Vc.

(3)
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Figure 3. A typical AC–DC harvesting circuit.

A sinusoidal mechanical excitation

F(t) = F0 sin wt (4)

is applied to the system with F0 the constant magnitude and

w (in rad s−1) the angular frequency of vibration. Note that in

most vibration-based power harvesting systems the source of

F(t) is due to the excitation of the base with acceleration z̈(t)

as shown in figure 2.

Equation (3) is explained as follows. The rectifying bridge

is open circuited if the voltage |Vp| is smaller than the rectified

voltage Vc. As a result, the current flowing into the circuit

vanishes. On the other hand, when |Vp| reaches Vc, the bridge

conducts and the piezo voltage is kept equal to the rectified

voltage; i.e. |Vp| = Vc. Finally, the conduction in the rectifier

diodes is blocked again when the absolute value of the piezo

voltage |Vp(t)| starts decreasing.

As most applications require the output DC voltage Vc to

be stable, the common approach to achieving this is to assume

that the filter capacitor Ce is large enough so that the output

voltage Vc is essentially constant [28]. Specifically, Vc(t) =
〈Vc(t)〉 + Vripple where 〈Vc(t)〉 and Vripple are the average

and ripple of Vc(t), respectively. This average 〈Vc(t)〉 is

independent of Ce provided that the time constant RCe is much

larger than the oscillating period of the generator [10]. The

magnitude of Vripple, however, depends on Ce and is negligible

for large Ce . Under this hypothesis, Vc(t) ≈ 〈Vc(t)〉, and

therefore in the following, we use Vc, instead of 〈Vc(t)〉, to

represent the average of Vc(t) for simplicity of notation.

To solve (1)–(4) under steady-state operation, we first

determine the relation between the average value of the

rectified voltage and displacement magnitude. From (2) and (3)

the piezo voltage Vp(t) varies proportionally with respect to

the displacement u(t) if the rectifying bridge is blocked and

the outgoing piezoelectric current is zero. Therefore, solutions

of u(t) and Vp(t) are assumed to take the following forms:

u(t) = u0 sin (wt − θ), Vp(t) = g(wt − θ), (5)

where u0 is the constant magnitude of displacement and g(t)

is a periodic function with period 2π and |g(t)| � Vc. Let

T = 2π
w

be the period of vibration, and a and b be two time

instants (b − a = T
2

), such that the displacement u goes

from the minimum −u0 to the maximum u0. Assume that

V̇p � 0 during the semi-period from a to b. It follows that
∫ b

a
V̇p(t) dt = Vc − (−Vc) = 2Vc. Note that Ce V̇c(t)+ Vc

R
= 0

for a < t < t∗ during which the piezo voltage |Vp| < Vc and

the rectifier conducts when t∗ � t < b. This gives from (3)

∫ b

a

I (t) dt =
T

2

Vc

R
(6)

CpCpΘu(t)

I(t)I(t)

V (t)pV (t)p

_

+

Figure 4. An equivalent circuit for the uncoupled model.

since the average current flowing through the capacitance Ce

is zero; i.e.
∫ b

a
Ce V̇c(t) dt = 0 for steady-state operation. The

integration of (2) from time a to b is therefore

−2�u0 + 2Cp Vc = −
T

2

Vc

R
,

or

Vc =
w�R

wCp R + π
2

u0. (7)

Notice that (7) is identical to that derived by [10, 28].

The average harvested power can also be obtained in terms

of the magnitude of displacement

P =
V 2

c

R
=

w2�2 R
(

wCp R + π
2

)2
u2

0. (8)

Thus, we need to find out u0 to determine Vc and P . There

are two approaches in the literature for estimating this [10, 28].

We propose here another method for determining u0, and show

that this new estimation is more accurate than the other two

in section 4. Before showing that, we introduce the following

non-dimensionless parameters which will be used to simplify

the analysis

wn =
√

K

M
, k2

e =
�2

K Cp

, ζ =
η

2
√

K M
,

	 =
w

wn

, r = Cpwn R,

(9)

where wn is the natural frequency of short circuit, k2
e is the

alternative electromechanical coupling coefficient2, ζ is the

damping ratio and 	 and r are the normalized frequency and

electric resistance. Finally, there are two resonances for the

system since the piezoelectric structure exhibits both short

circuit and open circuit stiffness. They are defined by

	sc = 1, 	oc =
√

1 + k2
e , (10)

where 	sc and 	oc are the frequency ratios of short circuit

and open circuit, respectively. Note that the frequency shift

is pronounced if the coupling factor k2
e is large.

2.2. Uncoupled analysis

Piezoelectric devices are frequently modeled as the current

source in parallel with their internal electrode capacitance Cp

as shown in figure 4 [6, 7, 13, 27, 28]. This model is based on

2 The definition of k2
e here is slightly different from that used by [21].
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the assumption that the internal current source of the generator

is independent of the impedance of the external load. This is

equivalent to assuming that the coupling is very weak and the

term �Vp can be dropped from (1). As a result, the governing

equations (1) and (2) are simplified to be

Mü(t) + ηu̇(t) + K u(t) = F(t), (11)

−�u̇(t) + Cp V̇p(t) = −I (t). (12)

As the displacement u(t) can be solved independently

from (11) using a simple harmonic analysis, �u̇(t) can be

treated as the known current source shown schematically in

figure 4. The rectified voltage Vc and the average harvested

power P are therefore determined by (7) and (8). Finally, the

normalized displacement u0, voltage V c and power P in terms

of non-dimensionless parameters (9) are described by

u0 =
u0

F0

K

=
1

{4ζ 2	2 + (1 − 	2)2} 1
2

, (13)

V c =
Vc

F0

�

=
(

r	

r	 + π
2

)

k2
e

{4ζ 2	2 + (1 − 	2)2} 1
2

, (14)

P =
P

F2
0

wn M

= 1

(r	 + π
2
)2

k2
e	

2 r

{4ζ 2	2 + (1 − 	2)2}
. (15)

2.3. In-phase analysis

The uncoupled model assumes that the electromechanical

coupling is very weak or the vibration amplitude is independent

of the equivalent resistive load R. If the coupling is not so

weak, Guyomar et al [10] have provided a new approach for

estimating the average harvested power. Indeed, they have

assumed that the external forcing function and the velocity of

the mass are in phase. Precisely, (5) is changed to

F(t) = F0 sin wt, u̇(t) = u0w sin wt . (16)

As the derivation of the harvested power can be found in [10],

we here only list their main results for future comparison.

The normalized displacement u0, voltage V c and power P

are summarized in terms of the non-dimensionless system

parameters

u0 =
u0

F0

K

= 1
{

2ζ + 2k2
e r

(r	+ π
2
)2

}

	
, (17)

V c =
Vc

F0

�

=
(

r

r	 + π
2

)

k2
e

{

2ζ + 2k2
e r

(r	+ π
2
)2

} , (18)

P =
P

F2
0

wn M

= 1

(r	 + π
2
)2

k2
e r

{

2ζ + 2k2
e r

(r	+ π
2
)2

}2
. (19)

2.4. Analytic analysis

For a non-piezoelectric mechanical structure vibrating around

resonance, the in-phase assumption between F(t) and u̇(t) is a

fairly reasonable approximation in the case of low damping.

However, we are not aware whether this assumption still

holds when non-small electromechanical coupling is taken into

account. Hence, it is worth investigating this in detail here.

Let (1) be multiplied by u̇(t) and (2) be multiplied by

Vp(t). Integration of the addition of these two equations from

time a to b gives the equation of the energy balance
∫ b

a

F(t)u̇(t) dt =
∫ b

a

ηu̇2(t) dt +
∫ b

a

Vp(t)I (t) dt

+ 1
2

Mu̇2(t)|ba + 1
2

K u2(t)|ba + 1
2
Cp V 2

p (t)|ba . (20)

Suppose that F(t), u(t) and Vp(t) are given by (4) and (5). Let

T = 2π
w

and a and b be two time instants (b − a = T
2

) such

that the displacement u goes from the minimum −u0 to the

maximum u0. The balance of energy (20) in this case becomes
∫ b

a

F(t)u̇(t) dt =
∫ b

a

ηu̇2(t) dt +
∫ b

a

Vp(t)I (t) dt. (21)

We assume that V̇p � 0 during this semi-period from a

to b. Note that Ce V̇c(t) + Vc

R
= 0 for a < t <

t∗ during which the piezo voltage |Vp| < Vc. This

also gives (Ce V̇c(t) + Vc

R
)Vc = 0 for a < t < t∗.

The rectifier conducts later when the piezo voltage Vp

reaches the rectified voltage Vc, and from (3) Vp(t)I (t) =
Vc(Ce V̇c(t) + Vc

R
) during the conduction t∗ � t < b.

These arguments listed above suggest

∫ b

a

I (t)Vp(t) dt = V 2
c

R

T

2
(22)

for steady-state operation. Next, substituting (4) and (5) into

the equation of energy balance (21) results in

π

2
ηwu2

0 +
π

w

V 2
c

R
= π

2
F0u0 sin θ. (23)

Right now we have two equations (7) and (23) and three

unknowns u0, Vc and θ . We need a third one to solve them.

From (2), we have

�V̇p(t) =
�

Cp

[−I (t) + �u̇(t)]. (24)

Differentiating (1) with respect to time t and substituting (24)

into it, we find

M
d

dt
ü(t) + η

d

dt
u̇(t) +

(

K + �2

Cp

)

d

dt
u(t) − �

Cp

I (t)

=
d

dt
F(t). (25)

Integrating (25) with respect to time t from a to b and using (5)

and (6) provides
(

K − Mw2 + �2

Cp

)

u0 − π�

2CpwR
Vc = F0 cos θ. (26)

Finally, we are in a position to determine u0 in terms of

system parameters. Combining both (23) and (26) gives

{

ηwu0 +
2

wR

V 2
c

u0

}2

+
{(

K − Mw2 +
�2

Cp

)

u0 −
π�

2CpwR
Vc

}2

= F2
0 . (27)
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As the magnitude of displacement u0 is related to the rectified

voltage Vc by (7), the above equation (27) can be further

simplified to find u0. The result is

u0 = F0

{

(

ηw + 2w�2 R
(CpwR+ π

2
)2

)2

+
(

K − w2 M + w�2 R
CpwR+ π

2

)2
}

1
2

.

The following summarizes our main findings:

u = u0

F0

K

=
1

{

(

2ζ + 2k2
e r

(r	+ π
2
)2

)2

	2 +
(

1 − 	2 + 	k2
e r

r	+ π
2

)2
}

1
2

, (28)

V c =
Vc

F0

�

=
(

r	

r	 + π
2

)

×
k2

e
{

(

2ζ + 2k2
e r

(r	+ π
2
)2

)2

	2 +
(

1 − 	2 + 	k2
e r

r	+ π
2

)2
}

1
2

, (29)

P =
P

F2
0

wn M

= 1
(

r	 + π
2

)2

×
k2

e	
2r

{

(

2ζ + 2k2
e r

(r	+ π
2
)2

)2

	2 +
(

1 − 	2 + 	k2
e r

r	+ π
2

)2
} , (30)

where (30) is interpreted as follows. Suppose the source of

the forcing function comes from the vibration of the base

of the structure, then this gives F0 = M A where A is the

magnitude of acceleration of the exciting base. It follows that

the harvested average power per unit mass is described by

P

M
= A2

wn

P(r,	, ke, ζ ).

This shows that the harvested average power per unit mass

depends on the characteristics of the input vibration (frequency

	 and acceleration A), the normalized electric resistance r ,

the short circuit resonance wn , the mechanical damping ratio

ζ , and the overall electromechanical coupling coefficient k2
e

of the system. Thus, the scheme to optimize the power

either by tuning the electric resistance, selecting suitable

operation points or adjusting the coupling coefficient by

optimal structural design can be guided completely by (30).

3. Optimal resistance and power

Suppose 	, ke and ζ are fixed. The design criterion for

reaching the maximal power flow under steady-state operation

can be obtained by tuning the load impedance according to

∂

∂r
P(r,	, ke, ζ )|	,ke,ζ = 0. (31)

We use the notation r opt to represent the solution of (31), and

r opt = r opt(	, ke, ζ ) in general. Besides, the superscript ‘opt’

denotes functions evaluated at the optimal load resistance r opt.

For example,

P
opt = P(r opt,	, ke, ζ ); etc.

The selection of the suitable operation frequency is also

important to maximize the average harvested power, and we

will discuss this in section 3.3.

3.1. Uncoupled analysis

Substituting (15) into (31), we find the optimal load is

r opt =
π

2	
or Ropt =

π

2Cpw
. (32)

It follows from (13), (14) and (15) that the normalized

displacement, voltage and power evaluated at the optimal load

are

u
opt
0 =

u
opt
0
F0

K

= 1

{4ζ 2	2 + (1 − 	2)2} 1
2

, (33)

V
opt

c =
V

opt
c

F0

�

=
1

2

k2
e

{4ζ 2	2 + (1 − 	2)2} 1
2

, (34)

P
opt =

Popt

F2
0

wn M

=
1

2π

k2
e	

{4ζ 2	2 + (1 − 	2)2}
. (35)

In the uncoupled model the optimal harvested power flow can

be achieved by tuning the load impedance to match the internal

impedance of the piezoelectric generator, i.e. Ropt = π
2Cpw

.

In addition, the rectified voltage V
opt

c = 1
2
Voc where Voc is

the maximum voltage at the open circuit condition for the

uncoupled model [28].

3.2. In-phase analysis

Lefeuvre et al [19] have questioned the soundness of the

uncoupled model and proposed a modified estimation of the

optimal load based on the in-phase assumption. The results are

classified according to the inequality of
k2

e

ζ
−2π	 and are listed

below for future comparison.

Case 1:
k2

e

ζ
− 2π	 � 0. The optimal normalized load,

displacement, voltage and power evaluated at the optimal

condition are

r opt
o =

π

2	
, (36)

u
opt
0 =

u
opt
0
F0

K

=
1

{2ζ	 + k2
e

π
}
, (37)

V
opt

c =
V

opt
c

F0

�

= 1

2

k2
e

{2ζ	 + k2
e

π
}
, (38)

P
opt =

Popt

F2
0

wn M

= 1

2π

k2
e	

{2ζ	 + k2
e

π
}2

. (39)

Note that the optimal resistance (36) is the same as (32), and

the optimal power in (39) is close to (35) provided that
k2

e

ζ
≪ 1

and 	 ≈ 1.
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Case 2:
k2

e

ζ
− 2π	 � 0. Suppose the electromechanical

coupling factor k2
e is large and the damping is small. The

optimal resistance r
opt
o in (36) turns out to be the one

minimizing the power flow. There are two new optimal

resistances called r
opt
a and r

opt
b to maximize the power in this

case, and the corresponding normalized displacement, voltage

and power are

r opt
a = 1

2	2

⎧

⎨

⎩

(

k2
e

ζ
− π	

)

−

√

(

k2
e

ζ
− π	

)2

− (π	)2

⎫

⎬

⎭

,

(40)

r
opt
b = 1

2	2

⎧

⎨

⎩

(

k2
e

ζ
− π	

)

+

√

(

k2
e

ζ
− π	

)2

− (π	)2

⎫

⎬

⎭

.

(41)

u
opt
0 |r=r

opt
a

=
u

opt
0
F0

K

∣

∣

∣

∣

∣

r=r
opt
a

= u
opt
0 |r=r

opt
b

=
u

opt
0
F0

K

∣

∣

∣

∣

∣

r=r
opt
b

=
1

4ζ	
,

(42)

V
opt

c |r=r
opt
a

=
V

opt
c

F0

�

∣

∣

∣

∣

∣

r=r
opt
a

=
k2

e

8ζ	

⎧

⎨

⎩

1 −

√

√

√

√1 −
2π	

k2
e

ζ

⎫

⎬

⎭

, (43)

V
opt

c |r=r
opt
b

= V
opt

c

F0

�

∣

∣

∣r=r
opt
b

= k2
e

8ζ	

⎧

⎨

⎩

1 +

√

√

√

√1 − 2π	

k2
e

ζ

⎫

⎬

⎭

, (44)

P
opt|r=r

opt
a

= Popt

F2
0

wn M

∣

∣

∣

∣

∣

∣

r=r
opt
a

= P
opt|r=r

opt
b

= Popt

F2
0

wn M

∣

∣

∣

∣

∣

∣

r=r
opt
b

= 1

16ζ
. (45)

Note that r
opt
a < r

opt
o < r

opt
b . It is interesting to see

that the harvested average power has two identical maxima

and depends only on the internal damping of the generator.

Lefeuvre et al [19] have interpreted the appearance of two

optimal resistances as characteristic of a strongly coupled

system. However, this has to be taken with caution since there

are always two optimal loads for each applied frequency in the

in-phase model provided that
k2

e

ζ
− 2π	 � 0. We will discuss

it in section 3.3.

3.3. Analytic analysis

The power derived from the analytic analysis is given by (30).

Although it extensively describes the characteristics of the

harvesting system, the complicated nature of (30) makes it

difficult to derive the closed form solution of the optimal

resistance from (31). Alternatively, we discuss the functional

behaviour of (30) according to the different ranges of the

parameter
k2

e

ζ
. We study the small and medium ranges of

k2
e

ζ

in sections 4.1 and 4.2, respectively. Here we provide an

analysis to show that the harvested power can be maximized at

two different electrical loads at the respective operating points

provided that
k2

e

ζ
≫ 1. However, we are not aware under

exactly what condition there exist two optimal pairs. But if

the AC–DC harvesting circuit shown in figure 3 is changed to

an AC circuit, it can be shown that two optimal pairs appear

whenever
k2

e

ζ
� 4(ζ + 1).

Returning to the standard AC–DC circuit, our results of

numerous numerical simulations suggest

k2
e

ζ
� 10 (46)

as the rule of thumb for the appearance of two optimal pairs,

and we will use it as a criterion for designing a strongly coupled

electromechanical system.

Case 1: Short circuit resonance. The power P in (30) for

	 = 	sc = 1 can be expressed as

P

F2
0

wn M

= 1

ζ

r x

{4[(r + π
2
) + rx

(r+ π
2
)
]2 + r 2x2}

, (47)

where x = k2
e

ζ
. Suppose the parameter x ≫ 1. To optimize the

power in (47), r has to be small or proportional to the inverse

of x ; otherwise, the power will tend to zero for non-small r

while x remains extremely large. This gives

P

F2
0

wn M

≈ 1

ζ

r x

{4[π
2

+ 2
π

r x]2 + r 2x2}
(48)

for small r and x ≫ 1. The optimal power flow can be obtained

by differentiating (48) with respect to r . It follows that

r opt
sc ≈

(

π2

√
16 + π2

)

1
k2

e

ζ

if x =
k2

e

ζ
≫ 1. (49)

The corresponding normalized displacement, voltage and

power are

u
opt
0 = u

opt
0
F0

K

≈

√

16 + π2

32 + 2π2 + 8
√

16 + π2

1

2ζ
, (50)

V
opt

c = V
opt

c

F0

�

≈ π
√

32 + 2π2 + 8
√

16 + π2
, (51)

P
opt =

Popt

F2
0

wn M

≈
(

1

8 + 2
√

16 + π2

)

1

ζ
. (52)

Case 2: Open circuit resonance. We set x = k2
e

ζ
again.

The power P in (30) for the applied frequency operated at

	oc =
√

1 + k2
e can be expressed as

P

F2
0

wn M

=
1

ζ

r x	2
oc

{

4
[

(r	oc + π
2
) + rx

(r	oc+ π
2
)

]2

	2
oc + π 2

4
x2

} . (53)

To estimate the optimal power in (53) for the case of x ≫ 1,

r has to be proportional to x by examining the term r x in the

numerator and π 2

4
x2 in the denominator. This shows that r has

to be large to maximize (53). Hence, we may rewrite (53) as

P

F2
0

wn M

≈
1

ζ

r x	2
oc

{

4
[

r	oc + x
	oc

]2

	2
oc + π 2

4
x2

} (54)
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Table 1. The relation between the system parameters k2
e and ζ and

the normalized electric resistance, displacement, voltage, current and
power designed at the maximal power flow operated at the short
circuit (	sc) and open circuit (	oc) resonances. The normalized

current is defined as I = V c

r
. Note that the condition

k2
e

ζ
≫ 1 is

implied in the analysis.

Optimal conditions 	sc 	oc

Resistance ropt
sc ∝ 1

k2
e
ζ

< ropt
oc ∝ 1

(1+k2
e )

k2
e

ζ

Displacement u
opt
0 ∝ 1

ζ
> u

opt
0 ∝ 1

ζ(

√
1+k2

e )

Voltage V
opt

c ∝ 1 < V
opt

c ∝ 1√
1+k2

e

k2
e

ζ

Current I
opt ∝ k2

e

ζ
> I

opt ∝
√

1 + k2
e

Power P
opt ∝ 1

ζ
= P

opt ∝ 1
ζ

provided x ≫ 1. The optimal power flow can be obtained by

differentiating (54) with respect to r . This gives

r opt
oc ≈

√
16 + π2

4

k2
e

ζ

1 + k2
e

if x = k2
e

ζ
≫ 1. (55)

The corresponding normalized displacement, voltage and

power are

u
opt
0 =

u
opt
0
F0

K

≈

√

16 + π2

32 + 2π2 + 8
√

16 + π2

1

2ζ
√

1 + k2
e

, (56)

V
opt

c =
V

opt
c

F0

�

≈

√

16 + π2

32 + 2π2 + 8
√

16 + π2

k2
e

2ζ
√

1 + k2
e

, (57)

P
opt = Popt

F2
0

wn M

≈
(

1

8 + 2
√

16 + π2

)

1

ζ
. (58)

Discussions: In the case of large
k2

e

ζ
, we find that for each

applied frequency there is only one optimal load to maximize

the power output. In addition, we have shown that the

harvested power has two identical peaks, but is optimized at

different resistances and operation frequencies; i.e.

P(r opt
sc ,	sc, ke, ζ ) = P(r opt

oc ,	oc, ke, ζ )

provided that
k2

e

ζ
≫ 1. These results are in contrast with those

obtained by the in-phase assumption. There always exist two

optimal resistances given by (40) and (41) for every frequency

in the in-phase model whenever
k2

e

ζ
− 2π	 � 0 (see also

figure 9(f)). Besides, the in-phase model predicts the identical

displacement evaluated at two optimal loads (see (42)) while

our analytic analysis predicts unequal peaks of displacement;

c.f. (50) and (56). This result is crucial in the design of micro-

scale power generators [5].

Next, (49) and (55) suggest r
opt
sc ∝ 1

(k2
e /ζ )

≪ 1 while

r
opt
oc �

1
ζ

. Therefore, r
opt
sc can be made as small as possible

by increasing the electromechanical coupling coefficient k2
e

while r
opt
oc has an upper bound. Finally, table 1 summarizes

the relation between the system parameters k2
e and ζ and the

normalized load, displacement, voltage, current and power

designed at the maximal power flow operated either at the short

circuit (	sc) or open circuit (	oc) resonances.

4. Comparisons

We now show that in section 4.1 the various forms of

power derived from different approaches are almost the same

provided that the parameter
k2

e

ζ
is small, and we will use

examples including experimental validation to demonstrate

that the discrepancies among these analyses become large

when the parameter
k2

e

ζ
is increasing. In section 4.3 we find

that the average harvested power is maximized at two optimal

loads operated at different frequencies in the case of large
k2

e

ζ
.

4.1. Small
k2

e

ζ

Suppose that k2
e ≪ 1 and

k2
e

ζ
≪ 1. Thus, the shift in frequency

from 	sc to 	oc is not pronounced for small k2
e . Let the applied

frequency ratio 	 be operated between 	sc and 	oc. We may

set

	2 = 1 + f k2
e , 0 � f � 1.

Set x = k2
e

ζ
. The power P derived from the analytic analysis

in (30) can be expressed as

P

F2
0

wn M

=
r

4ζ
(

r	 + π
2

)2

× x
{

(

1 + xr
(r	+ π

2
)2

)2

+ x2

4	2

(

− f + 	r
r	+ π

2

)2
}

≈
r x

4ζ
(

r	 + π
2

)2
{1 + O(x)}

≈ k2
er

4ζ 2
(

r	 + π
2

)2
(59)

provided that x ≪ 1 and 	 ≈ 	sc ≈ 	oc ≈ 1. The

notation O(x) denotes the higher order terms which tend to

zero as x tends to zero. Comparing (59) with the power derived

from the uncoupled assumption (15) and that from the in-phase

assumption (19) justifies our assertion. Figures 5(a) and (b)

are the normalized rectified voltage and average harvested

power versus the normalized resistance around resonance in

the case of ke = 0.05 and ζ = 0.03. The solid, dashed

and long-dashed lines are results derived from the analytic,

in-phase and uncoupled solutions. These three lines are

almost coincident. We therefore conclude that the conventional

uncoupled solution is suitable if
k2

e

ζ
≪ 1.

4.2. Medium
k2

e

ζ

The discrepancies among these approaches become significant

when the ratio
k2

e

ζ
increases. For piezoelectric generators

operated in the {3-1} mode, k2
e can approach

e2
31

C E
11ε

S
33

if the

structure is made up entirely of piezoelectric materials [5].

Most electromechanical structures are made up of both

piezoelectric and non-piezoelectric materials. The factor k2
e

is then usually less than the theoretical value. On the other

hand, the coupling coefficient k2
e can approach its upper bound

for micro-scale devices since the contribution of piezoelectric

elements to the overall structural stiffness is significant in this
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Figure 5. Comparisons in the case of small
k2

e

ζ
. We use ke = 0.05 and ζ = 0.03 (

k2
e

ζ
= 0.083). (a) Normalized rectified voltage versus

normalized resistance. (b) Normalized harvested power versus normalized resistance.

case [5]. We then investigate it in detail here. We assume

ke = 0.4 and ζ = 0.03(
k2

e

ζ
= 5.33) in the following analysis.

The normalized displacement, voltage and power against

the normalized electric resistance are plotted in figures 6(a)–

(c) operated at the short circuit resonance and in figures 6(d)–

(f) operated at the open circuit resonance. The long-dashed,

dashed and solid lines are results calculated based on the

uncoupled, in-phase and analytic solutions. As expected,

predictions from the uncoupled analysis are far away from

those predicted by either analytic or in-phase solutions since

the electromechanical coupling is not small in this case. We

then conclude that the uncoupled solution is not suitable for

medium or even large
k2

e

ζ
.

Figure 6 also reveals substantial differences between our

analytic and the in-phase analyses. We therefore use both

simulation and experiment to determine which approaches

predict more accurate behaviour of the energy harvesting

system. Consider the numerical simulation first. Notice that (1)

and (2) can be transformed to an equivalent RLC circuit with

R = η

�2 as resistance, L = M
�2 as inductance and C = �2

K

as capacitance. We use the software PSpice to simulate this

equivalent circuit connected to the AC–DC harvesting circuit

shown in figure 3. The results are illustrated in figure 7

where we plot the normalized power versus electric resistance

at short circuit and open circuit resonances. The numerical

results are marked in figure 7 using open circles. Apparently,

the numerical simulations favor results predicted based on

our analytic solutions. In particular, our approach accurately

predicts the optimal electric load resistance maximizing the

average harvested power. The optimal load r
opt
sc (analytic) =

0.45 is smaller at 	sc while r
opt
oc (analytic) = 4.64 is larger

at 	oc. However, the optimal resistances predicted by the in-

phase solutions at 	sc and 	oc are very close: r
opt
sc (in-phase) =

1.57 and r
opt
oc (in-phase) = 1.46, and therefore are not suitable

for the design.

Finally, we validate the analytic solution by our recent

experiment. The specimen is a piezoelectric triple-layer bender

with the overall dimension 40 mm × 20 mm × 0.36 mm (L ×

S × (h + 2t)) as shown similarly in figure 2. The overall

mass of the beam is m p + mb = 2.2509 g and an attached

mass ma = 0.4207 g is put at the tip. The measured open

circuit and short circuit resonances are 52.9 and 53.7 Hz,

respectively. This gives a coupling factor ke around 0.17.

The mechanical damping ratio is measured at about 0.01, and

therefore
k2

e

ζ
= 2.89. The applied acceleration is around

1.856 m s−2 and is slightly dependent on electrical resistances.

The power harvesting circuit is chosen using the standard AC–

DC circuit illustrated in figure 3. The values of rectified voltage

Vc are measured at the open circuit resonance for various

electrical resistances and are marked in figure 8(a) using

dark circles •. The corresponding values of harvested power

are also plotted against the various electrical resistances in

figure 8(b). The optimal electrical resistance can be determined

from figure 8(b) and is around R
opt
exp ≈ 200 k	. The predicted

results from the uncoupled, in-phase and analytic solutions

are represented by long-dashed, dashed and solid lines in

figure 8. As expected, the uncoupled solutions are not able

to reflect the electrical performances of the system. The in-

phase solutions also overestimate the measured voltage and

power, and underestimate the optimal load (R
opt
in-phase ≈ 88 k	).

On the other hand, the analytic solutions are close to the

experimental observations and the predicted optimal load is

around R
opt
analytic ≈ 210 k	 which is pretty close to the measured

one. The deviations between the experimental results and the

analytic solutions are believed to be due to diode loss which

has not been incorporated in the current analysis.

4.3. Large
k2

e

ζ

The shift in frequency is significant if either the piezoelectric

constant or the contribution of the piezoelectric element

to the overall stiffness is large; i.e. k2
e is large. In

particular, a piezoelectric power generator operated in the

{3-3} (longitudinal) mode can have high coupling coefficient

k2
e approaching

e2
33

C E
33ε

S
33

if the piezoelectric element constitutes

the whole structure [5]. Besides, if the mechanical damping
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Figure 6. Comparisons for medium
k2

e

ζ
. We use ke = 0.4 and ζ = 0.03 (

k2
e

ζ
= 5.33): (a)–(c) are the normalized displacement, voltage and

power versus normalized resistance operated at 	sc while (d)–(f) are those operated at 	oc.

ratio is small, or the factor
k2

e

ζ
is large, the selection of the

correct operating frequency is very important for achieving the

maximal power. Recently, much experimental effort has been

made to fabricate small-scale piezoelectric cantilever beams

with interdigitated electrodes on the beam surface to produce

the {3-3} mode using various materials [12, 13, 47]. Some of

their chosen materials such as PZN-PT and PMN-PT relaxor

ferroelectrics can have even higher piezoelectric constants

than conventional PZT. As a result, the shift in resonance is

expected to be pronounced due to large k2
e in these micro-scale

devices, and we study this effect on power harvesting now.

We assume ke = 1.14 and ζ = 0.03. This gives

	sc = 1,	oc = 1.52,
k2

e

ζ
= 43.3. As illustrated in

section 4.2, results predicted from the uncoupled analysis are
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Figure 7. Numerical validation for medium
k2

e

ζ
. We use ke = 0.4 and ζ = 0.03 (

k2
e

ζ
= 5.33). The normalized power versus normalized

resistance is plotted in (a) operated at 	sc and in (b) operated at 	oc.
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Figure 8. Experimental validation for medium
k2

e

ζ
. The structure is excited at its open circuit resonance. The parameters ke and ζ are

measured to be 0.17 and 0.01 (
k2

e

ζ
= 2.89). (a) Rectified voltage versus resistance. (b) Harvested power versus resistance.

not realistic if
k2

e

ζ
is not small. We then omit them here.

The normalized displacement, voltage and power are plotted

against the normalized electric resistance and frequency in

figures 9(a)–(c) calculated based on the analytic solutions as

well as in figures 9(d)–(f) calculated based on the in-phase

solutions. In figure 9(c) we see clearly that the harvested

power has two optimal values of equal amount evaluated at

two different resistances and frequencies; i.e. P is maximized

at

(r
opt
1 ,	

opt
1 ) = (0.062, 1.025),

(r
opt
2 ,	

opt
2 ) = (17.299, 1.492).

(60)

Note that (60) confirms our theoretical predictions made in

section 3.3 which shows that r
opt
1 ≪ 1 and 	

opt
1 ≈ 	sc and

r
opt
2 ≫ 1 and 	

opt
2 ≈ 	oc. However, the in-phase approach

fails to predict the optimal operating frequencies since there are

always two optimal electric loads for each applied frequency

as shown in figure 9(f). The effect of the optimal selection

of operating frequency in generating the desired properties

is neglected in the in-phase analysis, which turns out to be

important in the design criterion.

Switching between these two peaks can be achieved

by varying the electric loads along the curve r opt(	, ke, ζ )

obtained from (31). The implication of this result can be

applied to enhancing the efficiency of charging a battery.

Indeed, Ottman et al [28] have shown that the efficiency of

direct charging of a battery without a suitable controller is

pretty slow. The main reason for this is that the equivalent

electrical resistance of a battery is much smaller than the

optimal electrical resistance. Turning the load impedance

needs a special power converter [29], which in turn may

consume additional extracted energy and make the circuitry

unrealistic (see the discussion of [43]). Alternatively, if the

piezoelectric generator has a pronounced frequency shift and
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(b)

(d)

(e)

(c)

Figure 9. Comparisons for large
k2

e

ζ
. We use ke = 1.14 and ζ = 0.03 (

k2
e

ζ
= 43.3). The normalized displacement, voltage and power are

plotted against the normalized electric resistance and frequency in (a)–(c) calculated based on the analytic solutions as well as in (d)–(f)
calculated based on the in-phase solutions.
(This figure is in colour only in the electronic version)

large
k2

e

ζ
, the equivalent impedance of a battery can be matched

to the optimal load by selecting a suitable operating point close

to 	sc since the harvested power has a peak around there.

Next, unlike the power, the displacement and voltage

evaluated at these two optimal conditions (60) differ

significantly (compare figures 9(a) and (b) with (c)). The

displacement has two hills with one chain concentrated at 	sc

and the other at 	oc. But unlike the power, it is larger at 	sc

than at 	oc since the overall damping of system is higher at

the open circuit resonance (see also the predictions in table 1).

The advantage of operating at the second peak close to 	oc is

space-saving if the smaller device is preferred.

Finally, figure 9(b) clearly demonstrates that the

normalized rectified voltage evaluated at (r
opt
2 ,	

opt
2 ) is one

order of magnitude higher than that evaluated at (r
opt
1 ,	

opt
1 ). It

is thus advantageous to operate at the open circuit resonance to
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overcome the minimum voltage requirement of the rectifying

bridge in the micro-scale device. On the other hand, the

steady-state current evaluated at the first peak of power around

	sc is one order of magnitude higher than that evaluated at

the second peak of power around 	oc, since P = I V and

the optimal power is identical at these two peaks. We may

apply this result to charging batteries. Indeed, optimizing the

power flowing into the battery is equivalent to maximizing the

current into it as the battery voltage is essentially constant

or only changes slowly. Hence, operating at the short circuit

resonance together with the corresponding optimal load could

enhance the efficiency of charging the battery directly without

adjustable convectors.

5. Conclusions

We study the optimal AC–DC power output for a vibrating

piezoelectric generator connected to an energy harvesting

circuit. In contrast with estimates proposed by the uncoupled

and in-phase approaches [10, 28], we show that the power

extraction depends on the input vibration characteristics

(frequency and acceleration), the mass of the generator, the

electrical load, the natural frequency, the mechanical damping

ratio, and the electromechanical coupling coefficient of the

system. An expression for average harvested power that

incorporates all of these factors is analytically developed

by (30). Thus, the scheme to optimize the power either

by tuning the electric resistance, selecting suitable operation

points, or adjusting the system coupling coefficient by optimal

structural design can be guided completely by (30). Further,

it is also highly recommended that all these parameters be

provided in all future publications to facilitate the relative

comparison of various devices.

We compare our approach to others proposed based on

the uncoupled and in-phase assumptions. We show that

the conventional uncoupled solution is suitable provided that

the ratio
k2

e

ζ
≪ 1, while the discrepancies between these

distinct approaches become significant when
k2

e

ζ
increases.

Figures 6 and 9 highlight the striking contrast in normalized

displacement, voltage and power output calculated based on

the uncoupled, in-phase and analytic solutions for non-small

ratio
k2

e

ζ
. We perform a series of experiments and numerical

simulations to evaluate these approaches. We find our analytic

solutions are in good agreement with both experiments and

simulations as shown in figures 7 and 8. The in-phase

solutions, however, overestimate the measured voltage and

power and underestimate the optimal load compared with

experimental observations.

We make a particular study of the important case when the

shift in device natural frequency is pronounced and the quality

factor of the system is large, since this has been neglected

by most current optimization schemes, as pointed out by [5].

The effect of this frequency shift is expected to be more

pronounced for micro-scale harvesters, since the contribution

of piezoelectric elements to the overall structural stiffness is

much larger than for bulk generators. In this situation, the

harvested power is shown to have two optima evaluated at

(r
opt
1 ,	

opt
1 ) and (r

opt
2 ,	

opt
2 ), where 	

opt
1 is close to 	sc and the

electric load r
opt
1 is very small, while 	

opt
2 is close to 	oc and

r
opt
2 is large. Table 1 sheds light on the conspicuous contrast

in the normalized displacement, electric resistance, voltage,

current and power evaluated at these two power optimal pairs.

Finally, for devices with strong electromechanical coupling,

several design guidelines including enhancing the efficiency of

charging a battery directly are recommended.
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