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Abstract—We propose a framework to study the impact
of stochastic active/reactive power injections on power system
dynamics with a focus on time scales involving electromechan-
ical phenomena. In this framework the active/reactive power
injections evolve according to a continuous-time Markov chain
(CTMC), while the power system dynamics are described by
the standard differential algebraic equation (DAE) model. The
DAE model is linearized around a nominal set of active/reactive
power injections; and the combination of the linearized DAE
model and the CTMC forms a stochastic process known as
a Stochastic Hybrid System (SHS). The extended generator of
the SHS yields a system of ordinary differential equations that
governs the evolution of the power system dynamic and algebraic
state moments. We illustrate the application of the framework
to the computation of long-term power system state statistics;
and to short-term probabilistic dynamic performance/reliability
assessment.

Index Terms—Continuous time Markov chains, Power system
dynamics, Stochastic Hybrid Systems.

I. INTRODUCTION

Power system operating conditions are facing increased
uncertainty due to the integration of renewable resources such
as wind energy conversion systems (WECS) and photovoltaic
energy conversion systems (PVECS), and loads such as plug-in
hybrid electric vehicles [1]. This uncertainty affects the system
across different time scales—from day-ahead scheduling to
automatic generation control and governor response [2]. In
this paper, we focus on the impact of this uncertainty on
power system dynamic performance at time scales involving
electromechanical phenomena. Within this context, the system
sees the effect of this uncertainty as a stochastic power
injection and the problem is to compute the statistics of the
system dynamic states, e.g., synchronous machines angles and
speeds, and algebraic states, e.g., bus-voltage magnitudes and
angles (in the remainder, we use the term power injection to
refer to both power generation sources and loads). To address
this problem, we propose an analytical framework that builds
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on a set of tools developed for a class of stochastic processes
referred to as Stochastic Hybrid Systems (SHS) [3].

In our framework, the power system dynamics are de-
scribed by the standard nonlinear differential algebraic (DAE)
model [4]; however, the active/reactive power injections in
certain buses of the network are uncertain and their evolution
is described by a continuous-time Markov chain (CTMC).
[Below, we will describe a wide class of power generation
resources and loads that can be described by such a model.]
Transitions between states of the CTMC correspond to changes
in active/reactive power injections. Since these changes are
stochastic, the evolution of the dynamic and algebraic states
(as described by the DAE) is also stochastic. In general, it is
not possible to analytically obtain the joint probability density
function (pdf) of the dynamic/algebraic states; furthermore,
attempting to numerically obtain the pdf is computationally
expensive. Thus, given the difficulty in obtaining the pdfs, we
propose an analytical method to compute the moments of the
power system dynamic and algebraic states. The moments can
then be used, e.g., to compute bounds on the distribution or
bounds on probabilities of different events of interest. Then,
in the context we consider here, one only needs to compute
as many moments as one needs to know for a particular
application, and this is in general much less information than
one would need to completely determine the pdf.

The proposed method casts the combination of the (lin-
earized) power system dynamic model and the CTMC-based
active/reactive power injection model as an SHS. The state
space of an SHS is comprised of: i) a discrete state that, in
the context of this paper, describes the possible values that the
active/reactive power injections take; and ii) a continuous state
that, in the context of this paper, describes the power system
dynamic states, e.g., synchronous machine angles and speeds.
The discrete state evolves according to a CTMC, and takes
values in a finite set—the elements of which we will refer to
as modes (each mode corresponds to a different combination
of active/reactive power injections). The nonlinear DAE model
is linearized around a nominal set of active/reactive power
injections; the input to this linearized system is a vector com-
prised of the mode-dependent active/reactive power injections.
In addition to the standard SHS formulation that includes the
processes that describe how discrete and continuous states
evolve, we introduce a third process that describes the evo-
lution of the power system algebraic states, i.e., bus-voltage
magnitudes and angles. Then, we formulate the SHS extended
generator, and using Dynkin’s formula, obtain the moments
of the dynamic and algebraic states [3]. It is worth noting
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that our approach to quantify the impact of uncertainty in
a nonlinear DAE system by linearizing it, and casting the
resulting affine dynamic system within the SHS framework,
may have applicability beyond the power system domain to
other application areas where SHS are utilized.

The assumptions that we make are not restrictive; indeed,
linear models are widely used to study the impact of small-
signal disturbances on power-system dynamics [5], [6]. Simi-
larly, as described next, a variety of stochastic loads and power
sources can be modeled as CTMCs. Regarding uncertain loads,
the Markovian assumption adopted in this work is consistent
with well-established power-system load models (see, e.g.,
[7]–[11] and the references therein). Earlier works have also
used SHS-like modeling formalisms to describe aggregate
models of thermostatically controlled heating/cooling loads
[12]–[15]. In these models, the dynamic states might represent
the temperature of a building, while the discrete state might
represent the operating state of the heating/cooling device.
Regarding uncertain sources, an important application of the
proposed framework is to evaluate the impact of renewable-
based generation on power system dynamics. With respect to
this, inputs to renewable energy systems (e.g., wind speeds in
WECS, and incident solar insolation in PVECS) are inherently
uncertain, and it is common to use Markov models to describe
them (see, e.g., [16], [17] for wind speed models, and [18],
[19] for solar insolation models). These models can then
be combined with standard WECS and PVECS performance
models that describe their power output (see, e.g., [20]–
[23]). The load models and renewable-based power generation
models described above can be incorporated within our frame-
work straightforwardly through state-space augmentation. For
uncertain loads, transition rates can be determined from appro-
priately defined load levels given historical load curves using
the so-called multilevel load representation method [7, pp.
128-131]. With regard to renewable resources, the transition
rates can be computed from the number of transitions between
different states (each state corresponds to a range of wind
speeds or a range of irradiance levels) over the period of
observation [16]–[19].

The SHS-based framework proposed here integrates two
disjoint bodies of work; namely the literature in hybrid-system
approaches to power system performance assessment (see,
e.g., [24]–[28] and the references therein), and the stochastic
transient stability assessment literature (see, e.g., [29]–[36]
and the references therein). In particular, our methodology
is closely related to [29], which established a framework
for probabilistic steady-state and dynamic security assessment
of power systems (see also [37], [38] for related work).
The authors in [29] consider different modes among which
the power system can transition in a stochastic fashion, and
derive a linear differential equation whose solution yields
the distribution of a performance metric—this is done from
first principles, and SHS tools are not employed. In [39]–
[41], decentralized control methods for stabilization of power
systems are presented where uncertainties are modeled using
a Markov jump linear systems framework. It is worth noting
that the models in [29], [39], [40] can all be described with
SHS formalisms; in particular, it is easy to show that Markov

jump linear systems are a type of SHS.
The remainder of this paper is organized as follows. In

Section II, we develop the stochastic model that describes the
electromechanical behavior of a power system. In Section III,
we describe an approach to obtain the moments of the dynamic
and algebraic power-system states. Finally, in order to illustrate
the ideas presented in Sections II and III, three numerical case
studies involving 3-, 9- and 145-bus test systems are presented
in Section IV. Concluding remarks and avenues for future
work are summarized in Section V.

II. STOCHASTIC POWER SYSTEM DYNAMIC MODEL

In this section, we first derive the linearized power system
dynamic model that explicitly captures active/reactive power
injections as inputs. We then combine this linearized model
with the CTMC-based stochastic power injection model to
obtain a stochastic model that describes the power system
electromechanical behavior.

A. Linearized Power System Dynamic Model

The power system electromechanical behavior can be de-
scribed by a differential algebraic equation (DAE) model:

ẋ = f(x, y), 0 = g(x, y, u), (1)

where x(t) ∈ Rn is referred to as the dynamic state
(it includes the synchronous machine angles and speeds);
y(t) ∈ Rp is referred to as the algebraic state (it in-
cludes the bus-voltage magnitudes and angles); u(t) =
[P1(t), Q1(t), . . . , Pr(t), Qr(t)]

T ∈ R2r, where Pi(t) and
Qi(t) are the (possibly) uncertain active and reactive power
injections in bus i, respectively; f : Rn+p → Rn describes
the evolution of the dynamic states, and g : Rn+p+2r → Rp
describes the power flow equations.

Let (x∗, y∗) denote some stable equilibrium point of (1)
that results from some nominal active/reactive power injec-
tion profile given by u∗ = [P ∗1 , Q

∗
1, . . . , P

∗
r , Q

∗
r ]

T. Assume
that f(·, ·) and g(·, ·, ·) in (1) are continuously differentiable
and the power-flow Jacobian evaluated at (x∗, y∗, u∗), i.e.,
∂g/∂y|(x∗,y∗,u∗), is non-singular. Then, by linearizing (1)
around (x∗, y∗, u∗), we can obtain a linear model that ap-
proximates the evolution of x(t) and y(t) as follows:

ẋ = Ax+Bu+ C,

y = Dx+ Eu+ F, (2)

where the entries of the matrices A, . . . , F are obtained from
the Jacobians of f(·, ·) and g(·, ·, ·) evaluated at (x∗, y∗, u∗).
The complete derivation of (2), including the exact expressions
for A, . . . F , is provided in Appendix A.

B. Power System Dynamics Stochastic Model

In order to completely characterize the power system dy-
namic model in (2), we need to define the stochastic model that
describes the evolution of the (uncertain) active/reactive power
injection vector u(t). To this end, beyond the nominal value u∗

of the active/reactive power injection vector that we used for
obtaining (2), we assume that: i) at each time instant t, u(t) can
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additionally take N different values, each of which is denoted
by ui =

[
P i1, Q

i
1, . . . , P

i
r , Q

i
r

]T ∈ R2r, i = 0, . . . , N (as a
matter of convention, we establish u0 = u∗); and ii) the evo-
lution of u(t) is governed by a discrete-state continuous-time
stochastic process Q(t) taking values in Q = {0, 1, . . . , N};
specifically, whenever Q(t) = i, then u(t) = ui. In subsequent
developments, we will refer to the elements of Q as modes.

Remark 1. The affine model in (2) was obtained by lin-
earizing (1) around the equilibrium point that results from
u = u∗; thus, the equilibrium point of (2) coincides with
the equilibrium point of (1) whenever u = u∗. We assume
that the change in u around u∗ is small enough so that the
linearization is accurate and, for u 6= u∗, the location of the
equilibrium point in (2) is close to the corresponding one in
(1). For example, this linearization was shown to be accurate
in [6] for a 54-state system, and variations in the entries of
u up to 50% around their nominal values. Following [26], a
different approach would consist of linearizing (1) around the
equilibrium point that results from each ui, i ∈ Q; this would
result in a collection of affine systems instead of the single one
in (2). More importantly, as highlighted in [26], this approach
would also enable the modeling of system topology changes
induced by faults, e.g., transmission line tripping events or
generator outages.

In light of the above discussion, it is important to note
that since Q(t) governs the evolution of the (uncertain)
active/reactive power injections, we can define a stochastic
process U(Q(t)) that describes the values that u(t) in (2) can
take. The power system dynamic and algebraic states x(t) and
y(t) (the evolution of which is described by (2)), are now
continuous-state continuous-time stochastic processes, which
we denote by X(t) and Y (t), respectively. Next, we provide
a formal description of the stochastic process that results from
combining Q(t), X(t), and Y (t).

Let Q+
i ⊆ Q denote the set of all modes that Q(t) can

transition to, given that Q(t) = i; we can then define two
functions

λij : Q× Rn × R+ → R+, (3)
φij : Q× Rn × R+ → Q× Rn, (4)

that govern the transitions amongst the modes. The λij’s are
the transition rates that govern the times when the system
switches from mode i to mode j, and the φij’s are the
transition reset maps that tell us how the states change after
a transition.

More specifically, we impose on the system that, given it
is in mode i at time t, i.e., Pr {Q(t) = i} = 1, then the
probability that the discrete state transitions to mode j in the
time interval [t, t+ τ) is given by

λij(Q(t), X(t), t)τ + o(τ) = λij(i,X(t), t)τ + o(τ), (5)

and the probability of a transition out of mode i is given by∑
j∈Q+

i

λij(Q(t), X(t), t)τ + o(τ). (6)

If the i→ j transition occurs, the new values of Q and X are

Figure 1. Two-mode stochastic model for the SMIB system of Example 1.

defined1 to be

(Q(t+ τ),X(t+ τ)) = φij(Q((t+ τ)−), X((t+ τ)−), t+ τ).
(7)

The probability that no transition out of state i occurs in the
time interval [t, t+ τ) is given by

1− τ
∑
k∈Q+

i

λik(i,X(t), t), (8)

and until a transition occurs, the evolution of the dynamic and
algebraic state is determined by setting u(t) = ui in (2). Thus,
the evolution of X(t) and Y (t) can be described by

dX(t) = (AX(t) +B U(Q(t)) + C) dt,

Y (t) =DX(t) + E U(Q(t)) + F. (9)

Remark 2. The definition of the transitions is slightly over-
loaded; for instance, λij should be positive only if Q(t) = i,
since the probability of the system making an i→ j transition
when Q(t) is not equal to i is zero. Thus we do not need
λij , φij to depend on q; however, we impose throughout2 that

λij(q, x, t) = δi(q)αij(x, t). (10)

This seems like an unnecessary layer of complexity at this
point; however, we will see below that this notation signifi-
cantly simplifies the calculations.

While it is certainly possible in the general SHS framework
for the maps φij to change both Q(t) and X(t) at the time of
the jump, in this work, we assume throughout that

φij(q, x) = (j, x). (11)

This means that X(t) does not undergo an instantaneous
jump at the moment of transition since power system dynamic
states do not change instantaneously with step changes in
active/reactive power injections [24].

Next, we illustrate the notation introduced so far with a
simple example.

Example 1. Figure 1 depicts a Single-Machine Infinite-Bus
(SMIB) system comprised of a synchronous generator con-
nected to bus 1 and a load connected to bus 2. Let γ1 and

1The left-hand limit of the function f(t) is denoted by f(t−), i.e.,
f(t−) := lim

s↗t
f(s).

2We use the Kronecker delta function notation: δi(q) = 1 if i = q and
δi(q) = 0 if i 6= q.
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ω1 denote the synchronous generator rotor angular position
and velocity, respectively. Let v1 and v2 denote the voltage
magnitudes of buses 1 and 2, respectively, and let θ1 and θ2
denote voltage angles of buses 1 and 2, respectively. Then the
system DAE model (assuming that the synchronous generator
is described by the classical model) is given by

γ̇1 = ω1 − ωs,

ω̇1 =
1

M

(
PM −

Ev1
XL

sin(γ1 − θ1)−D(ω1 − ωs)
)
,

0 =
Ev1
XM

sin(γ1 − θ1)− v1v2
XL

sin(θ1)− P1,

0 =
Ev1
XM

cos(θ1 − γ1)− v21
XM

+
v1v2
XL

cos(θ1)− v21
XL
−Q1, (12)

where P1, Q1 are the power injections at bus 1, ωs is the
synchronous speed (377 rad/s), M is the machine inertia
constant, XM is the synchronous generator reactance, D is
the damping coefficient, E is the generator internal voltage,
and XL is the reactance of the line connecting buses 1 and 2.

Suppose the nominal active/reactive power injections at bus
1 are given by u0 = u∗ = [P 0

1 , Q
0
1]T = [P ∗1 , Q

∗
1]T. The

corresponding equilibrium values of the system states are
denoted by γ∗1 , ω

∗
1 , v
∗
1 , and θ∗1 . Linearizing (12) around this

equilibrium point, we get an affine system of the form in
(2). Now, consider the case when the active/reactive power
injections are given by u1 = [P 1

1 , Q
1
1]T. The duration for

which the power injections are not the nominal values, is
uncertain and can be described by a random variable T , with
pdf and cdf denoted by fT (t) and FT (t), respectively. Then,
following the notation introduced earlier, Q(t) takes values in
Q = {0, 1} and there is a single transition from mode 1 to
0; this implies that Q+

0 = {1}, and Q+
1 = ∅. The transition

rate is given by the hazard rate of the distribution of T , i.e.,
λ10(q, t) = δ1(q)(fT (t)/(1 − FT (t))) =: δ1(q)α10(t). Since
γ1 and ω1 do not jump due to the transition, the reset map is
given by φ10(q, x) = (0, x). �

In large power systems, the uncertain power injections
might take a very large number of values, resulting in a very
large number of discrete states. To address the computational
challenges associated with tackling a large number of states,
model-reduction methods have been proposed for Markov
chains and jump-linear systems, which are a subset of the
more general SHS we study in this work (see, e.g., [42]–
[45]); similar techniques may be applied to the SHS framework
examined in this paper.

Instead of dedicating a mode to describe every value that
the uncertain power injections can take, the variability in
the power injections can be captured by expressing u as a
continuous-time stochastic process; the evolution of u is then
described by a stochastic differential equation (SDE). This
approach is outlined in Appendix B.

III. POWER SYSTEM DYNAMICS STOCHASTIC ANALYSIS

The stochastic process in (9) that results from combining
the stochastic power injection model (governed by Q(t)) and

the linearized power system dynamic model (as described
in (2)) belongs to a class of stochastic processes known as
stochastic hybrid systems (SHS) [3]. In the most general SHS,
the evolution of X(t) (in between transitions of Q(t)) is
governed by a nonlinear SDE. Additionally, the reset maps
can also induce jumps in X(t). In (7) we define the reset
maps φij so that only Q(t) changes once a transition occurs.

For the special case when the SDEs describing the flow
of X(t), the reset maps, and transition rates, are polynomial
functions of X(t), analytical methods have been proposed
in [3], [46] to obtain the evolution of the moments of Q(t)
and X(t). The moments in these systems are governed by an
infinite-dimensional system of ODEs, simply due to the fact
that the evolution of the pth moment depends, in general, on
moments higher than p. In this sense, any finite approximation
to the actual system will be a differential equation containing
terms on the right-hand side that do not appear on the left-
hand side, and thus the equations are not closed. Consequently,
methods to truncate the ODEs have to be applied for analysis
and simulation. These methods are commonly referred to as
moment-closure methods (see, e.g., [3], [47]).

However, we will show that for the power system SHS
model considered in this paper, the system of ODEs we obtain
when we seek to track any finite number of moments of Q(t)
and X(t) is finite-dimensional. Thus moment-closure methods
are made unnecessary. Towards this end, we first define the
extended generator of the power system SHS model, and then
following along [3], describe a general method to formulate
appropriate test functions that yield the moments of interest
by applying Dynkin’s formula.

A. Extended Generator of the Power Systems SHS Model

Consider the power systems SHS model described in Sec-
tion II-B. Let ψ : Q×Rn → R be any function (we will refer
below to this as a test function). We will also write this as
ψ(q, x), where q denotes the mode, and x denotes the power
system dynamic state.

The generator of the SHS is the linear operator defined by:

(Lψ) (q, x) =
∂

∂x
ψ(q, x) · (Ax+Buq + C)

+
∑
i,j∈Q

λij(q, x)
(
ψ(φij(q, x))− ψ(q, x)

)
. (13)

where ∂ψ/∂x ∈ R1×n denotes the gradient of ψ(q, x) with
respect to x, and λij(q, t) is the transition rate for the i → j
transition. The definition of the generator above follows from
[3], [46], [48].

The evolution of the expected value of the test function
E [ψ(Q(t), X(t))], is governed by Dynkin’s formula, which
can be stated in differential form as follows [46], [48]:

d

dt
E[ψ(Q(t), X(t))] = E[(Lψ)(Q(t), X(t))]. (14)

Said in words, (14) indicates that the rate of change of the
expected value of a test function evaluated on the stochastic
process is given by the expected value of the generator.
This makes intuitive sense: the first line in (13) captures
the total derivative of the test function with respect to time,
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and the second line captures the impact of incoming/outgoing
transitions [3], [47].

To derive this operator, one proceeds as follows. Let us first
define the operator L on the space C1∩L∞ (i.e., all bounded
and continuously-differentiable functions) to be the one that
satisfies (14). One can compute by hand that it must have
the formula in (13). Of course, the problem here is that the
generator has a differential piece, but we might want to apply
it to functions that are not differentiable (e.g., indicator func-
tions). One then extends the definition of L as follows: given
a specific target function f , if we can construct a sequence
of functions {fn}∞n=1 such that limn→∞ fn = f , then we
define Lf = limn→∞ Lfn. It can be shown that this definition
produces a computable and consistent result for all functions
in a particular set B, which we do not explicitly describe, but
which we point out contains all indicator functions (functions
of the form 1A(x) for some Borel set A) and monomials (xp

for some power p). The specific details of this construction,
and a definition of the set B, is contained in [48].

We will show that by a judicious choice of test functions,
we can use (14) to obtain ODEs that describe the evolution
of relevant conditional moments of interest. From this, the
law of total expectation will yield the desired moments of the
dynamic/algebraic states; we describe this procedure next.

B. Test Functions for the Power Systems SHS Model
For the power system SHS model where the discrete state

Q(t) takes values in the set Q, we define the following family
of test functions:

ψ
(m)
i (q, x) := δi(q)x

m =

{
xm if q = i
0 if q 6= i

,∀i ∈ Q,
(15)

where m := (m1, m2, . . . , mn) ∈ N1×n, and xm :=
xm1
1 xm2

2 . . . xmnn . We will show later that the definition of the
test functions with the aid of Kronecker delta functions greatly
eases the derivation of the ODEs governing the moments of
X(t) and Y (t). We also define the conditional moments of the
dynamic state X(t) at time t, µ(m)

i (t), ∀i ∈ Q, as follows:

µ
(m)
i (t) := E[ψ

(m)
i (q, x)] = E[X(m)(t)|Q(t) = i]πi(t), (16)

where πi(t) denotes the occupational probability of mode i,
i.e., πi(t) := Pr {Q(t) = i}. The second equality above fol-
lows straightforwardly from the definition of the test functions.

For the algebraic state, we will not need dedicated test
functions, because the conditional moments of the algebraic
state can be directly expressed as a linear function of the
conditional moments of the dynamic state. Therefore, our
strategy will be to use Dynkin’s formula to obtain ODEs
that govern the evolution of the µ

(m)
i ’s, and then use the

algebraic relation in (9) to obtain the conditional moments
of the algebraic state directly. Towards this end, define the
conditional moments of the algebraic state Y (t) at time t,
ζ
(m)
i (t), ∀i ∈ Q , as follows:

ζ
(m)
i (t) := E

[
Y (m)(t)|Q(t) = i

]
πi(t). (17)

By appropriately picking the mi’s in (16)-(17), we can isolate
any conditional moment of interest; we demonstrate this in

the context of the SMIB SHS model introduced earlier in
Example 1.

Example 2. Recall the SMIB system described in Example 1.
Associated with the two modes i = {0, 1}, define the test func-
tions ψ(m)

i (q, x) = δi(q)x
m, where m = (m1, m2) ∈ N1×2

and xm = γm1
1 ωm2

1 . Also, denote the conditional moments
of the dynamic and algebraic states by µ

(m)
i (t) and ζ

(m)
i (t),

respectively. By appropriately picking m in (16)–(17), we can
recover many conditional moments of interest. For instance,
note that choosing m = (0, 0) recovers the occupational
probabilities of the modes,

µ
(0,0)
i (t) = ζ

(0,0)
i (t) = Pr {Q(t) = i} = πi(t). (18)

Similarly, picking m = (2, 0) isolates the second-order condi-
tional moment of Γ(t) and V1(t)

µ
(2,0)
i (t) = E

[
X(2,0)(t)|Q(t) = i

]
· πi(t)

= E
[
Γ2
1(t)|Q(t) = i

]
· πi(t), (19)

ζ
(2,0)
i (t) = E

[
Y (2,0)(t)|Q(t) = i

]
· πi(t)

= E
[
V 2
1 (t)|Q(t) = i

]
· πi(t). (20)

Finally, picking m = (1, 1) yields the conditional expectation
of the product Γ(t) · Ω(t) and V1(t) ·Θ1(t)

µ
(1,1)
i (t) = E

[
X(1,1)(t)|Q(t) = i

]
· πi(t)

= E [Γ1(t)Ω1(t)|Q(t) = i] · πi(t), (21)

ζ
(1,1)
i (t) = E

[
Y (1,1)(t)|Q(t) = i

]
· πi(t)

= E [V1(t)Θ1(t)|Q(t) = i] · πi(t). (22)

Following a similar procedure to the one outlined above, we
can recover any desired moment of interest with an appropriate
choice of m. �

C. Evolution of the Dynamic- and Algebraic-State Moments

Now that we have outlined how different conditional mo-
ments can be defined, we explain how the law of total expec-
tation is applied to obtain the moments of X(t) and Y (t) from
these conditional moments. We then derive ODEs that govern
the evolution of the conditional moments of X(t), and explain
how the algebraic relationship in (9) yields the moments of
Y (t). The analysis below follows from the methods developed
in [3], [48].

Suppose we want to compute E [Xm(t)], E[Y m(t)] for some
m ∈ N1×n. Applying the law of total expectation, we see that
these are given by

E[Xm(t)] =
∑
i∈Q

E [Xm(t)|Q(t) = i]πi(t) =
∑
i∈Q

µ
(m)
i (t),

E[Y m(t)] =
∑
i∈Q

E [Y m(t)|Q(t) = i]πi(t) =
∑
i∈Q

ζ
(m)
i (t).

(23)

Therefore, at each time t, to obtain E[Xm(t)], we need to
know the conditional moments of X(t), µ(m)

i (t), ∀i ∈ Q; and
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to obtain E[Y mt)], we need to know the conditional moments
of Y (t), ζ(m)

i (t), ∀i ∈ Q. The SHS framework—particularly
Dynkin’s formula as prescribed in (14)—yields ODEs that
govern the evolution of µ(m)

i (t). Since the relationship be-
tween X(t) and Y (t) is purely algebraic, the ζ(m)

i ’s can be
obtained from the µ(m)

i ’s in a straightforward manner. Next,
we derive the ODE’s that govern the evolution of the µi’s, and
describe how the ζi’s can be obtained using (9) and the µi’s.

1) Evolution of the Dynamic-State Conditional Moments:
The evolution of µ(m)

i (t), ∀i ∈ Q, is governed by Dynkin’s
formula

µ̇
(m)
i (t) =

d

dt
E[ψ

(m)
i (q, x)] = E[(Lψ

(m)
i )(q, x)]. (24)

Given the power-system SHS model in (9) and the test
functions in (15), it turns out that E[(Lψ

(m)
i )(q, x)] can be

significantly simplified and expressed as a function of the µi’s
to recover a closed set of ODEs. Towards this end, substituting
the extended generator from (13) in Dynkin’s formula above,
and using the linearity of the expectation operator, we obtain
the following relation:

µ̇
(m)
i (t) = E

[(
Lψ

(m)
i

)
(q, x)

]
= E

[
∂

∂x
ψ
(m)
i ·

(
Ax+Bui + C

)]
+ E

[ ∑
j∈Q−

i

λji(q, t)ψ
(m)
i (φji(q, x))

]

− E
[ ∑
k∈Q+

i

λik(q, t)ψ
(m)
i (q, x)

]
, (25)

where Q−i ⊆ Q is the set of all modes from which Q(t) can
transition to mode i, and Q+

i ⊆ Q is the set of all modes
that Q(t) can transition into from mode i. Now consider the
second line in (25). We will simplify the two terms in the dot
product (∂ψi/∂x) · (Ax+Bui+C) separately. First, from the
definition of the test function in (15) we obtain

∂

∂x
ψ
(m)
i (q, x) = δi(q)

 m1x
(m1−1,m2,...,mn)

...
mnx

(m1,m2,...,mn−1)


T

= δi(q)

 m1x
m−e1

...
mnx

m−en


T

, (26)

where ei ∈ N1×n is the row vector with a 1 as the ith entry
and zero otherwise. Next, to simplify terms in (Ax+Bui+C),
denote the entry in the pth row and qth column of the matrices
A and B by apq and bpq , respectively, and the pth element of
the vectors C and Bui + C by cp and vip, respectively. We
can then express the pth entry of the vector Ax+Bui +C as

n∑
r=1

(
aprδi(q)x

m−ep+er + δi(q)x
m−epvip

)
. (27)

Taking the dot product of (26) with the vector comprised of
the entries given in (27), we get

∂

∂x
ψ
(m)
i (q, x) ·

(
Ax+Bui + C

)
=

n∑
k=1

mk

(
n∑
r=1

akrδi(q)x
m−ek+er + δi(q)x

m−ekvik

)

=

n∑
k=1

mk

(
n∑
r=1

akrψ
(m−ek+er)
i (q, x) + vikψ

(m−ek)
i (q, x)

)
.

(28)

The second equality above follows from the definition of the
test functions, i.e., ψ(m)

i (q, x) = δi(q)x
m. We go through

some effort to express the above equation in terms of the ψi’s,
as this will be useful when deriving the differential equations
that govern the conditional moments. Substituting (28) and
the transition rates from (10) into (25), and recognizing that
φji(q, x) = (i, x), we obtain

µ̇
(m)
i (t) =

E

[
n∑
p=1

mp

(
n∑
r=1

aprψ
(m−ep+er)
i (q, x) + vipψ

(m−ep)
i (q, x)

)]
+

E

[ ∑
j∈Q−

i

δj(q)αji(t)ψ
(m)
i (i, x)−

∑
k∈Q+

i

δi(q)αik(t)ψ
(m)
i (q, x)

]
.

(29)

From the definition of the test functions, we see that
δj(q)ψ

(m)
i (i, x) = δj(q)x

m, and δi(q)ψ
(m)
i (q, x) = δi(q)x

m.
This allows us to simplify (29) as follows

µ̇
(m)
i (t) =

E

[
n∑
p=1

mp

(
n∑
r=1

aprψ
(m−ep+er)
i (q, x) + vipψ

(m−ep)
i (q, x)

)]
+
∑
j∈Q−

i

αji(t)E [δj(q)x
m]−

∑
k∈Q+

i

αik(t)E [δi(q)x
m]

=

n∑
p=1

mp

(
n∑
r=1

aprE
[
ψ
(m−ep+er)
i (q, x)

]
+ vipE

[
ψ
(m−ep)
i (q, x)

])
+
∑
j∈Q−

i

αji(t)E [ψj(q, x)]−
∑
k∈Q+

i

αik(t)E [ψi(q, x)] .

(30)

Finally, from the definition of the conditional moments in
(16), we get the following set of ODEs

µ̇
(m)
i (t) =

n∑
p=1

mp

(
n∑
r=1

aprµ
(m−ep+er)
i (t) + µ

(m−ep)
i (t)vip

)
+
∑
j∈Q−

i

αji(t)µ
(m)
j (t)−

∑
k∈Q+

i

αik(t)µ
(m)
i (t), ∀i ∈ Q. (31)

Note that the terms in the second line of (31) capture the
impact of incoming and outgoing transitions (respectively)
on µ(m)

i . Additionally, the derivation above indicates that the
moment ODEs only depend on other conditional moments of



7

the same or lower order. In particular, this means that the
ODEs in (31) are effectively finite-dimensional and moment-
closure methods are unnecessary.

Remark 3. As discussed in the introduction, since the transi-
tion rates are not a function of the dynamic states, the discrete
state is a CTMC. Therefore, using (31) we can recover the
Chapman-Kolmogorov differential equations that govern the
occupational probabilities of the CTMC. Towards this end,
substitute m = (0, . . . , 0) ∈ R1×n in (31) to get

µ̇
(0,...,0)
i (t) =

∑
j∈Q−

i

αji(t)µ
(0,...,0)
j (t)−

∑
k∈Q+

i

αik(t)µ
(0,...,0)
i (t).

(32)
From (18), we know that µ(0,...,0)

i (t) = πi(t) = Pr{Q(t) = i}.
Therefore, (32) can be expressed as

π̇i(t) =
∑
j∈Q−

i

αji(t)πj(t)−
∑
k∈Q+

i

αik(t)πi(t), (33)

which are precisely the Chapman-Kolmogorov equations for
the occupational probabilities of a CTMC [49].

2) Conditional Moments of the Algebraic States : Once the
conditional moments of X(t) (and the ODEs that govern their
evolution) are in hand, we can use the algebraic relationship
in (2) to obtain the conditional moments of Y (t) as follows:

ζ
(m)
i (t) =E [Y m(t)|Q(t) = i] · πi(t)

=E [(DX(t) + EU(i) + F )m|Q(t) = i] · πi(t).
(34)

While it is difficult to simplify (34) in symbolic form, it is
clear that ζ(m)

i only depends on those µ(k)
i with |k|`1 = |m|`1

(|x|`1 denotes the one-norm of vector x), and the occupational
probabilities.

Note that the approach outlined above provides a systematic
method to obtain moments of the output, Y (t) (from a mea-
surement equation of the form in (9)), given the statistics of the
system state, X(t), and input, U(Q(t)). Next, we demonstrate
how (31) and (34) apply in practice with regard to the SMIB
SHS model introduced earlier.

Example 3. Recall that in Example 2 we demonstrated how
to obtain the conditional moments of interest in the SMIB
model by picking m = (m1, m2) ∈ R1×2 appropriately. For
a given choice of m, by applying (31), we get the following
expressions for the ODEs that govern the conditional moments
of the dynamic state:

µ̇
(m)
i (t) = (m1a11 +m2a22)µ

(m)
i (t)

+m1a12µ
(m1−1,m2+1)
i (t) +m2a21µ

(m1+1,m2−1)
i (t)

+m1

(
b11P

i
1 + b12Q

i
1 + c1

)
µ
(m1−1,m2)
i (t)

+m2

(
b21P

i
1 + b22Q

i
1 + c2

)
µ
(m1,m2−1)
i (t)

+ δi(0)
(
α10(t)µ

(m)
1 (t)

)
+ δi(1)

(
−α10(t)µ

(m)
1 (t)

)
. (35)

Suppose that we were interested in the evolution of E[Γ1(t)]
and E[Ω1(t)], i.e., the first-order moments of the generator
rotor position and angular velocity, respectively. To obtain
E[Γ1(t)], we would substitute m = (m1,m2) = (1, 0) in (31),

to get two ODEs (for i = 0, 1)

µ̇
(1,0)
i (t) = a11µ

(1,0)
i (t) + a12µ

(0,1)
i (t)

+
(
b11P

i
1 + b12Q

i
1 + c1

)
µ
(0,0)
i (t)

+ δi(0)
(
α10(t)µ

(1,0)
1 (t)

)
+ δi(1)

(
−α10(t)µ

(1,0)
1 (t)

)
.

(36)

We would recover a similar set of ODEs for E[Ω1(t)] by
substituting m = (0, 1) in (31). To solve (36) (and the
corresponding case for m = (0, 1)), we would also need
to concurrently solve ODEs for the occupational probabili-
ties (i.e., the Chapman-Kolmogorov equations) which can be
obtained from (33) as follows:

µ̇
(0,0)
1 (t) = π̇1(t) = −α10(t)µ

(0,0)
1 (t) = −α10(t)π1(t),

µ̇
(0,0)
0 (t) = π̇0(t) = +α10(t)µ

(0,0)
1 (t) = +α10(t)π1(t). (37)

In summary, we would simulate the system of ODEs
(µ̇

(0,0)
0 , µ̇

(0,0)
1 , µ̇

(1,0)
0 , µ̇

(1,0)
1 , µ̇

(0,1)
0 , µ̇

(0,1)
1 ) and then apply

E[∆1(t)] = µ
(1,0)
0 (t) + µ

(1,0)
1 (t) and E[Ω1(t)] = µ

(0,1)
0 (t) +

µ
(0,1)
1 (t) to obtain the moments of interest. Notice that the

system of ODEs we need to solve is closed, in the sense that
they do not involve second- or higher-order terms; therefore
moment-closure methods are unnecessary.

The conditional moments of the algebraic states can be
obtained from (34). Suppose we were interested in computing
E[V1(t)] and E[Θ1(t)]. We would first obtain the conditional
moments ζ(1,0)i (t) and ζ(0,1)i (t) using (34) as follows:

ζ
(1,0)
i (t) = d11µ

(1,0)
i (t) + d12µ

(0,1)
i (t)

+
(
e11P

i
1 + e12Q

i
1 + f1

)
πi(t), (38)

ζ
(0,1)
i (t) = d21µ

(1,0)
i (t) + d22µ

(0,1)
i (t)

+
(
e21P

i
1 + e22Q

i
1 + f2

)
πi(t), (39)

where we denote the entry in the p row and q column of the
matrices D and E by dpq and epq , respectively, and the p
element of the vectors f by fp. Then, applying (23), we get
E[V1(t)] = ζ

(1,0)
0 t) + ζ

(1,0)
1 (t), and E[Θ1(t)] = ζ

(0,1)
0 (t) +

ζ
(0,1)
1 (t). We will revisit this example in Section IV-A. �

D. Dynamic Reliability Assessment

With increased penetration of renewable resources and
uncertain loads, dynamic reliability/risk assessment studies
that can be performed with minimum computational burden
will become increasingly important to ensure the reliable
operation of next-generation power systems. In this section,
we explore how upper bounds on the probability that the
power-system dynamic and algebraic states satisfy certain
performance requirements can be obtained with a few of
their lower-order moments. To simplify notation, denote the
i dynamic/algebraic state of the power system at time t
by zi(t), and the corresponding stochastic process by Zi(t).
Suppose that performance requirements establish the maxi-
mum and minimum values that zi can take at any time. In
other words, the acceptable range for zi(t) is denoted by
Rzi := [zmin

i , zmax
i ], and we want to ensure that in spite
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of active/reactive power-injection disturbances in the system,
zi(t) ∈ Rzi ∀t. Acknowledging the uncertainty in power
injections, we establish the following probabilistic risk notion

ρzi(t) := Pr {Zi(t) /∈ Rzi} = 1−Pr
{
zmin
i ≤ Zi(t) ≤ zmax

i

}
.

(40)
Said in words, ρzi(t) denotes the probability that the i dy-
namic/algebraic state does not satisfy the performance require-
ments. One method to compute ρzi(t) is through repeated
Monte Carlo simulations. In each simulation, load changes
occur at random instants (based on the transition rates of the
SHS), and repeated simulations yield a histogram from which
(40) can be computed. While straightforward in conception
and implementation, this procedure is patently computation-
ally expensive. Alternatively, we can obtain the moments of
Zi(t), i.e., E[Zmi (t)], m ∈ N+, using SHS formalisms and
upper-bound ρzi(t) using moment inequalities. For example,
consider the following one-sided Chebyshev inequality (see,
e.g., [50]):

ρzi(t) ≤ 1− 4
((
E[Zi(t)]− zmin

i

)
(zmax
i − E[Zi(t)])

)
(zmax
i − zmin

i )2

−
4σ2

Zi(t)

(zmax
i − zmin

i )2
=: ρ̄zi(t), (41)

where σZi(t) is the standard deviation of Zi(t), given by

σZi(t) :=
(
E[Z2

i (t)]− (E[Zi(t)])
2
)1/2

. (42)

Essentially, (41) provides a method to compute upper bounds
to the probability that the power system states do not meet
performance requirements (i.e., the probability that they are
not within the acceptable range) simply with their first- and
second-order moments.

We want to point out that (41) is just one type of moment
inequality that can be used in conjunction with the moment
ODEs to obtain probabilisitic notions of risk of the type in
(40). Also, note that (41) is a conservative result in the
sense that the actual probability of violating a performance
objective is always lower than that obtained with the moment
inequality. Depending on the number of known moments,
different moment inequalities might yield results that are more
or less conservative than that obtained with (41). In particular,
note that more knowledge about higher-order moments can
give sharper estimates than (41) as well (see, e.g., [51, §21]).
An interesting avenue for future work would be to quantify
conventional power system reliability metrics such as loss of
load probability (see, e.g., [52]) within the proposed SHS-
based framework.

IV. CASE STUDIES

In this section, we analyze three case studies. The first one
presents numerical results for the SMIB system described in
Examples 1–3. The second case study develops an SHS model
for the standard three-machine-nine-bus Western Electricity
Coordination Council (WECC) power system [4]. The third
case study, which involves the IEEE 50-machine test system
and 145 buses, demonstrates the scalability of the proposed
SHS-based approach to the analysis of large power systems.

0s 1s 2s
−1

0

1

2

(a) E[Γ1(t)]

0s 1s 2s
−0.5

0

0.5

1

1.5

(b) E[Γ2
1(t)]

0s 1s 2s
370

375

380

385

(c) E[Ω1(t)] [rad/s]

0s 1s 2s
1.35

1.4

1.45

1.5x 10
5

(d) E[Ω2
1(t)] [(rad/s)2]

Figure 2. Moments of rotor angular position and speed. Results obtained
from averaged Monte Carlo simulations (–) and SHS (O) are super imposed.

These case studies demonstrate that the proposed SHS
framework can be utilized: i) for probabilistic dynamic per-
formance/reliability assessment, and ii) to compute the steady-
state statistics of relevant dynamic and algebraic states with
far less computational burden compared to repeated Monte
Carlo simulations. Unless stated otherwise, all quantities in
the case studies are expressed in per unit (p.u.) with respect
to an arbitrary base. As discussed in Remark 1, while the
framework developed in Sections II and III can be extended
to capture the impact of structural changes in a power system
due to faults, in the case studies that follow, we just focus on
uncertain variations in power injections that, e.g., could result
from renewable-based generation resources.

A. Single-Machine Infinite-Bus Power System

Recall that in Example 3, we demonstrated how to obtain the
ODEs that govern the moments of the dynamic and algebraic
states for the two-mode SMIB SHS model. In this case study,
we validate the accuracy of the proposed SHS framework by
comparing the results with averaged Monte Carlo simulations,
and utilize the approach outlined in Section III-D to investigate
the dynamic reliability of this system.

The machine, network, and load parameter values for the
simulations are adopted from [34], and listed in Appendix B-1.
We will assume the duration of the period over which the load
is not given by the nominal value is normally distributed with
mean mT = 0.5s, and standard deviation σT = 10

100mT . We
will further assume that the active/reactive power injections in
mode 1 are 10% of the nominal values. i.e., P 1

1 = 10
100P

0
1 and

Q1
1 = 10

100Q
0
1.

1) Comparisons with Monte Carlo Simulations: For the
SMIB system described above, Figs. 2 (a)-(d) depict the first-
and second-order moments of the dynamic states, i.e., the
rotor angular position and velocity. Figures 3 (a)-(d) depict the
first- and second-order moments of the algebraic states, i.e.,
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Figure 3. Moments of bus-voltage magnitude and angle. Results obtained
from averaged Monte Carlo simulations (–) and SHS (O) are super imposed.
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Figure 4. Dynamic performance/reliability assessment.

the bus 1 voltage magnitude and angle. The results obtained
with the SHS framework are superimposed on those obtained
by averaging the results of 1000 Monte Carlo simulations.
Note that in Example 3, we demonstrated how to obtain
the first-order moments of the dynamic and algebraic states,
i.e., E[Γ1(t)], E[Ω1(t)], E[V1(t)], and E[Θ1(t)]. Following a
similar procedure, and for the purpose of this case study, the
second-order moments of the dynamic and algebraic states
are obtained by substituting m = (m1,m2) = (2, 0) and
m = (0, 2) in (31) and (34), respectively, and using the law of
total expectation as described in (23). The SHS results match
those obtained by averaging the results of repeated simulations
perfectly. The computer execution time to obtain the first- and
second-order moments with the SHS approach was 0.189 s,
compared to 18.3 s for the repeated Monte Carlo simulations.

2) Dynamic Reliability Assessment: Suppose performance
requirements dictate that the bus 1 voltage magnitude be
constrained to the range Rv1 = [vmin

1 , vmax
2 ] = [0.8, 1].

Figure 4(a) depicts these bounds as well as the maximum and
minimum values of the bus 1 voltage magnitude obtained from
1000 Monte Carlo simulations. A scaled version of the fT (t),
is also shown for comparison. Figure 4 (b) shows: i) ρv1(t),
the probability that the bus 1 voltage magnitude is not within

Figure 5. One-line diagram of the WECC three-machine nine-bus power
system studied in Section IV-B.

the acceptable range computed numerically from the Monte
Carlo simulations, and ii) ρ̄v1(t), an upper bound to ρv1(t)
computed by substituting the first- and second-order moments
of V1(t) in (41). The results indicate the time periods where
there is a high probability of the bus 1 voltage magnitude
not meeting the performance requirements. We want to stress
that while the analytical result is obtained by the simulation
of a few ODEs, the numerical results are obtained from
1000 Monte Carlo simulations. While the analytical results
are conservative, as described in Section IV-A1, they are
computationally inexpensive to obtain.

B. Three-Machine Nine-Bus Power System

In this case study, we model stochastic variations in ac-
tive/reactive power injections in a three-machine nine-bus
power system within the SHS framework. Particularly, the
active/reactive power injections are modeled as a Markov
process; in SHS terminology, this means that the transition
rates are constant. We utilize the SHS framework to compute
the moments of the synchronous-generator dynamic states
and the bus-voltage magnitudes and angles. As with the
SMIB system examined earlier, we first compare the moments
obtained from the SHS framework with those obtained by
averaging the results of Monte Carlo simulations. Next, we
examine the impact of the transition rates and the magnitude of
the power injection in the non-nominal mode (i.e., the amount
by which the power injections diverge away from the nominal
values) on the steady-state moments of relevant dynamic and
algebraic states.

1) Electromechanical Model Description: Consider the
three-machine nine-bus system depicted in Fig. 5. We utilize
a reduced-order model for the synchronous machines in the
power system. The machine, network, and load parameter
values for the simulations are adopted from [4], and listed
in Appendix B-2. Particularly, the conventional nine-state syn-
chronous machine model—that includes mechanical equations
of motion, exciter, voltage regulator, turbine, governor, and
models for the damper windings—is reduced to a three-state
model that captures the governor dynamics and the mechanical
equations of motion [53]. For the ith synchronous machine,
the system states of interest are the rotor angular position γi,
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Figure 6. State-transition diagram for the SHS model of the WECC three-
machine nine-bus power system studied in Section IV-B.

rotor angle velocity ωi, and the turbine power ξi. The evolution
of these states is governed by

γ̇i = ωi − ωs,

ω̇i =
1

Mi

(
ξi −

EiVi
XMi

sin (γi − θi)−Di (ω − ωs)
)
,

ξ̇i =
1

Ti

(
−
(
ξi − P ref

i

)
− 1

RDiωs
(ωi − ωs)

)
, (43)

where ωs is the synchronous speed (377 rad/s), Mi is the
machine inertia constant, XMi is the machine impedance, Di

is the damping coefficient, Ei is the machine internal voltage,
Ti is the governor time constant, RDi is the slope of the
machine speed-droop characteristic, and P ref

i is a function
of the unit base-point generation [53]. The states of the i
generator are described by the vector xi = [γi, ωi, ξi]

T, and the
vector x =

[
xT
1, x

T
2, x

T
3

]T
, x ∈ R9×1 captures all the dynamic

states of the system. The power flow equations for the buses
j = 1, . . . , 9 are given by

9∑
k=1

VkVj (Gkj cos (θk − θj) +Bkj sin (θk − θj))− Pj = 0,

9∑
k=1

VkVj (Gkj sin (θk − θj)−Bkj cos (θk − θj))−Qj = 0,

(44)

where Gkj and Bkj are the conductance and susceptance,
respectively, of the transmission line between bus k and j.

2) Stochastic Active/Reactive Power-Injection Model: We
will assume that the active/reactive power injections in the
buses are uncertain. Towards this end, consider a nom-
inal mode where the active/reactive power injections at
the buses are denoted by u0 = [P 0

1 , Q
0
1, . . . , P

0
9 , Q

0
9]T =

[P ∗1 , Q
∗
1, . . . , P

∗
9 , Q

∗
9]T. Linearizing (43) and (44) about the

equilibrium point corresponding to the nominal power in-
jections, we get the system in (2). Now, consider a case
where the active/reactive power injections are given by u1 =
[P 1

1 , Q
1
1, . . . , P

1
9 , Q

1
9]T. As done in [39]–[41], we assume that

the discrete process that governs the load is described by a
Markov process. In particular, the transition rate that governs
the 0 → 1 transition is given by λ01(q, t) = δq(0)α01,
and the rate that governs the 1 → 0 transition is given by
λ10(q, t) = δq(1)α10. The above model can be cast as an

0s 1s 2s
377

378

379

380

(a) E[Ω1(t)] [rad]

0s 1s 2s
1.42

1.43

1.44

1.45x 10
5

(b) E[Ω2
1(t)] [rad2]

Figure 7. Moments of Generator 1 rotor angular speed. Results obtained
from averaged Monte Carlo simulations (–) and SHS (O) are super imposed.

0s 1s 2s

0.98

0.99

1

Bus5

Bus6

Bus8

(a) E[V5(t)], E[V6(t)], E[V8(t)]

0s 1s 2s

0.96

0.98

1

Bus5

Bus6

Bus8

(b) E[V 2
5 (t)],E[V 2
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Figure 8. Moments of voltage magnitude at buses 5, 6, and 8. Results
obtained from the SHS model (circles) are superimposed on those obtained
by averaging the results of repeated Monte Carlo simulations (solid lines).

SHS with two modes: a nominal mode q = 0 (with ac-
tive/reactive power injections given by the nominal values P 0

j ,
Q0
j , j = 1, . . . , 9), and a mode q = 1 (with the active/reactive

power injections P 1
j , Q1

j , j = 1, . . . , 9). Finally, since γi, ωi,
and ξi do not change instantaneously with transitions of the
active/reactive power injections, the reset maps are given by
φ01(q, x) = (1, x) and φ10(q, x) = (0, x). The SHS described
above is illustrated in Fig. 6.

3) Moments of Dynamic and Algebraic States: Suppose
α10 = 3/60 s−1 and α01 = 1.5/60 s−1. We will further
assume that the active/reactive power injections in mode 1
are 50% of the nominal values, i.e., P 1

i = 50
100P

0
i = 50

100P
∗
i ,

and Q1
i = 50

100Q
0
i = 50

100Q
∗
i . For the system described above,

Figs. 7(a)-(b) depict the first- and second-order moments of the
Generator 1 rotor angular speed, and Figs. 8 (a)-(b) depict the
first-and second-order moments of the voltage magnitude at
buses 5, 6, and 8 (in this case study and the next, we focus on
these buses without loss of generality because they have non-
zero power injections [4]). In both cases, the results obtained
from the SHS framework are superimposed on those obtained
by averaging the results of 4000 Monte Carlo simulations.

C. 145-Bus Case Study

In this section, we demonstrate the scalability of the pro-
posed SHS-based framework to the analysis of large power
systems. Particularly, we examine the IEEE 50-machine test
system, which consists of 145 buses and 453 lines including 52
fixed tap transformers. A detailed description of its dynamic
and static parameters can be found in [54]. To implement our
analysis method, we use the small-signal stability analysis
capability of the MATLAB-based Power Systems Toolbox
(PST) [55]. Each of the 50 generator units are modeled by
the mechanical equations of motion (2 states). Deviations in
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Figure 9. Expected values of rotor angle and frequency deviations for 145-
bus test case. States of generators 1, 31, 45, and 91 are depicted.

generator rotor angles and speeds from the nominal steady-
state values (denoted by dΓ and dΩ, respectively) are adopted
as system states. It is assumed that the real power injections in
buses 74, 78, 81, 88, and 123 are uncertain and described by
the Markov process in Fig. 6. We also ignore all reset maps for
ease of analysis. Figures 9 (a) and 9 (b) depict the first-order
moments of rotor speeds and angular velocity deviations for
generators 1, 35, 45, and 91. Results obtained by averaging
200 Monte Carlo simulations are superimposed. The computer
execution time to obtain the moments with the SHS approach
was 0.07s, compared to 16.1s for the repeated Monte Carlo
simulations.

V. CONCLUSIONS AND FUTURE WORK

This work presented a framework to analyze small-signal
active/reactive power-injections stochastic variations in power
systems. The moments of the dynamic states of the power
system (generator speeds and angles) are obtained by the
solution of ODEs formulated using Dynkin’s formula. The
moments of the algebraic states can then be recovered straight-
forwardly from the moments of the dynamic states. We
demonstrated several applications of the proposed framework
including methods for dynamic reliability/risk assessment and
steady-state analysis of relevant dynamic- and algebraic-state
moments. As part of future work, we will investigate models
where the transition rates could be a function of the dynamic
and algebraic states. Additionally, we will develop a computa-
tional platform to scale the proposed framework to large power
systems with more detailed generator dynamic models.

APPENDIX

A. Derivation of Linearized Power-System Model in (2)

Recall the standard power-system DAE model in (1). Denote
the Jacobian of f(·, ·) and g(·, ·, ·) evaluated at (x∗, y∗, u∗) by

Jf |(x∗,y∗) =

[
∂f

∂x

∣∣∣∣
(x∗,y∗)

,
∂f

∂y

∣∣∣∣
(x∗,y∗)

]T

=: [fx, fy]
T
,

(45)

Jg|(x∗,y∗,u∗) =

[
∂g

∂x

∣∣∣∣
(x∗,y∗,u∗)

,
∂g

∂y

∣∣∣∣
(x∗,y∗,u∗)

,
∂g

∂u

∣∣∣∣
(x∗,y∗,u∗)

]T

=: [gx, gy, gu]
T
. (46)

Linearizing f(·, ·) about the equilibrium point, up to first order,
we get

ẋ ≈ f(x∗, y∗) + fx (x− x∗) + fy (y − y∗)
= fxx+ fyy − fxx∗ − fyy∗, (47)

where we have used the fact f(x∗, y∗) = 0. Similarly,
linearizing g(·, ·, ·) about the equilibrium point,

0 ≈ g(x∗, y∗, u∗) + gx (x− x∗) + gy (y − y∗) + gu (u− u∗) .
Assuming that gy = ∂g/∂y|(x∗,y∗,u∗) is invertible, and recog-
nizing that g(x∗, y∗, u∗) = 0 , we get

y ≈ g−1y (−gx (x− x∗)− gu (u− u∗) + gyy
∗) . (48)

Finally, substituting for y from (48) in (47), we get the linear
system ẋ = Ax+Bu+C in (2), with A, B, and C given by

A = fx − fyg−1y gx,
B = −fyg−1y gu,
C =

(
g−1y gx − fx

)
x∗ + g−1y guu

∗.
(49)

Further, we can express y = Dx + Eu+ F , with D, E, and
F given by 

D = −g−1y gx,
E = −g−1y gu,
F = g−1y gxx

∗ + y∗ + g−1y guu
∗.

(50)

The proposed linearization approach hinges on the in-
vertibility of the power-flow Jacobian. In extenuating cases
such as voltage collapse [56]–[58], it is well known that the
power-flow Jacobian may be singular. Constructing linearized
models around such operating points is infeasible. Therefore,
the proposed method is only applicable in cases where the
power-flow solution exists, which implies that the power-flow
Jacobian is invertible.

B. Modeling Uncertain Power Injections with SDEs
To keep the size of the discrete state space manageable,

the variability in the power injections can be captured by
expressing u as a continuous stochastic process, the evolution
of which is described by an SDE. To this end, consider the
model in (9), and modify it by adding an additional driving
term V (t) as follows:

dX(t) = AX(t)dt+B (U(Q(t)) + V (t)) dt+ Cdt,

dV (t) = G(Q(t))V (t)dt+H(Q(t))dW (t), (51)

where W (t) denotes a vector of independent standard Wiener
processes, and G(Q(t)) and H(Q(t)) are matrices of appropri-
ate dimensions. The dependence of the matrices G and H on
Q(t) enables the statistics of V (t) to be different in each mode;
thus providing increased modeling flexibility. The expressions
in (51) above can be rewritten in matrix form as follows:[

dX(t)
dV (t)

]
=

[
A B
0 G(Q(t))

] [
X(t)
V (t)

]
dt

+

[
B I
0 0

] [
U(Q(t))

C

]
dt

+

[
0

H(Q(t))

]
dW (t), (52)
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which can be compactly written as

dX̃(t) =
(
Ã(Q(t))X̃(t) + B̃(Q(t))

)
dt+ C̃(Q(t))dW (t),

(53)

for appropriately defined X̃(t), Ã(Q(t)), B̃(Q(t)), and
C̃(Q(t)). The resulting extended generator is given by

(Lψ)(q, x) =
∂

∂x
ψ(q, x) ·

(
Ã(q)X̃(t) + B̃(q)

)
+

1

2

∑
α,β

(
(C̃(q)C̃T(q))α,β

∂2

∂xα∂xβ
ψ(q, x)

)
+
∑
i,j∈Q

λij(q, x) (ψ (φij (q, x))− ψ(q, x)) , (54)

where the second term in the expression above captures the
effect of the Wiener process [3], [47]. Going through the
derivation similar to (24)-(31), we would get the following
expression for the moment ODEs:

µ̇
(m)
i (t) =

n∑
p=1

mp

(
n∑
r=1

aprµ
(m−ep+er)
i (t) + µ

(m−ep)
i (t)vip

)

+
1

2

n∑
α=1

(
c̃ααma(mα − 1)µ

(m−2eα)
i (t)

+
∑
β 6=α

c̃αβmαmβµ
(m−eα−eβ)
i (t)

)
+
∑
j∈Q−

i

αji(t)µ
(m)
j (t)−

∑
k∈Q+

i

αik(t)µ
(m)
i (t), (55)

where c̃αβ is the (α, β) element of C̃C̃T.

C. Parameter Values for Case Studies
1) Single-Machine Infinite Bus System: The parameters for

this example are adopted from [34]. The synchronous speed,
ωs=377 rad/s; the machine inertia constant, M = 7/ωs;
the machine damping coefficient, D = 2/ωs, the machine
impedance, XM = 0.45; the impedance between bus 1 and
2, XL = 0.5; the machine internal voltage, E = 1.1; and the
turbine set-point PM = 0.8. For the nominal active/reactive
power injections, i.e., for P 0

1 = P ∗1 = 1, Q0
1 = Q∗1 = 0.5,

solving the power flow gives us the following nominal values
of the dynamic and algebraic states: γ∗ = 0.2701, ω∗ = 377
rad/s, v∗1 = 0.871, θ∗1 = −0.115.

2) Three-Machine Nine-Bus System: The parameters for
this example are adopted from [4]. A few relevant parameters
are provided next. The system base MVA is 100; the syn-
chronous speed, ωs=377 rad/s; the machine inertia constants,
M1 = 0.1254, M2 = 0.0340, and M3 = 0.0160; the
machine damping coefficients, D1 = 0.0125, D2 = 0.0068,
D3 = 0.0048; the machine impedances, XM1

= 0.0608,
XM2

= 0.1198, XM3
= 0.1813; the machine internal voltages,

E1 = 1.0563, E2 = 1.0499, E3 = 1.0169; and P ref
1 = 0.64,

P ref
2 = 1.63, P ref

3 = 0.85.
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