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1. INTRODUCTION

Spatio-temporal databases have received considerable attention [Kollios
et al. 1999; Agarwal et al. 2000; Pfoser et al. 2000; Saltenis et al. 2000;
Hadjieleftheriou et al. 2002; Saltenis and Jensen 2002; Tao and Papadias 2003]
in recent years due to the emergence of numerous applications (e.g., traffic su-
pervision, flight control, weather forecast, etc.) that require management of con-
tinuously moving objects. An important operation in these systems is to predict
objects’ future location based on information at the current time. For this pur-
pose, object movement is usually represented as a linear function of time. For
example, given the location o(0) of object o at the current time 0 and its velocity
oy, its position at some future time t can be computed as o(t) = 0(0) + oy - t.
Instead of location information, the system stores the function parameters
so that an update to the database is necessary only when some parameter
(i.e., oy) changes.

A spatio-temporal window query (STWQ) specifies a (static or moving) region
gs, a future time interval g7, and retrieves all data objects that will intersect
(or will be covered by) gs during gt (e.g., “Based on its current motion, find all
residential areas that will be covered by the typhoon in an hour”). A spatio-
temporal k-nearest neighbor (STKNN) query returns the k objects that will be
closest to qs during gr, where the distance between two objects during gr
is defined as the minimum of their distances at all timestamps t € gr (e.g.,
“According to the ship’s present movement, which will be its 2 nearest ports
tomorrow 9-11 am?”). Given two datasets S;, S,, a spatio-temporal (“within-
distance”) join (STJ) obtains all pairs of objects (01, 02) in the cartesian product
S; x S, such that the distance between o3, 0, during gt is smaller than a
constant d (e.g., “Find all pairs of flights that will come closer than 1 km from
each other within the next 10 minutes”). The special case of d = 0 corresponds
to intersection joins.

The above queries have been extensively studied in spatial databases, where
objects and queries are static, and gt corresponds to the current time. Existing
analysis on window queries (spatial joins) focuses on estimating the selectivity
[Kamel and Faloutsos 1993; Huang et al. 1997; Belussi and Faloutsos 1995;
Acharya et al. 1999; Theodoridis et al. 2000], which is defined as the number
of retrieved objects (object pairs) divided by the dataset cardinality (the size of
the cartesian product). For KNN retrieval, where the concept of selectivity is
not relevant (i.e., the output size is simply k), the goal of analysis is to compute
the nearest distance (NDy) from the query point to the farthest (kth) retrieved
neighbor [Berchtold et al. 1997; Bohm 2000; Berchtold et al. 2001]. In addition
to their significance as stand-alone measures in several applications (e.g., in
air-traffic control systems it is important to know the expected distance of the
nearest airport at any time, or the pairs of airplanes within collision course),
selectivity and nearest distance are crucial for query optimization, due to their
close connection with the query costs. The results derived for static data, how-
ever, are not applicable in dynamic environments, where the problems are more
complex (intuitively, spatial databases constitute a special case where objects
and queries have zero velocities). Related research in spatio-temporal databases
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is scarce and limited to STWQ selectivity; currently, there does not exist any
published work on STKNN and STJ.

This article addresses these problems by presenting a comprehensive prob-
abilistic study for spatio-temporal queries that covers (i) all common queries,
(ii) all query/object mobility combinations (i.e., moving objects, moving query, or
both), and (iii) arbitrary types of data (points or rectangles) in any dimensional-
ity. Specifically, starting with uniform data, we first propose accurate cost mod-
els that estimate the query selectivity (for STWQ, STJ) and nearest distance
(for STKNN), during a (future) query time interval using the current location
and velocity information. Our analysis is based on a novel reduction technique,
which transforms complex problems (e.g., involving moving rectangle data) to
simpler ones (i.e., involving only static points). As a second step, we devise
specialized spatio-temporal histograms to deal with nonuniform datasets. The
proposed equations provide significant insight into the behavior of alternative
guery types, and are directly applicable to query optimization.

The underlying assumption of our techniques is that the current locations
and velocities are known, and there are no updates between the current and
the future query time. Applications that satisfy these conditions involve objects
(ships, airplanes, weather patterns) moving in unobstructed spaces. Obviously,
the prediction horizon depends on the (velocity) update rate. For instance, given
that ships move with slow, linear movements for long periods, it is meaningful to
estimate queries that refer to several hours in the future. For air traffic control,
the prediction horizon should be in the order of minutes. On the other hand,
velocity-based prediction is meaningless in applications, such as road network
databases, where objects update their speed or direction of movement within
very short time intervals (i.e., a car must turn or stop when it reaches the end of
the current road segment). This point will be elaborated further in the sequel.

The rest of the article is organized as follows. Section 2 surveys the existing
methods for estimating the selectivity and nearest distance. Section 3 provides
the basic definitions used in our analysis. Then, Section 4 presents cost models
for STWQ selectivity estimation, while Sections 5, 6 discuss STKNN and STJ,
respectively. Section 7 develops a new spatio-temporal histogram for nonuni-
form data that supports incremental updates. Section 8 contains an extensive
experimental evaluation to verify the accuracy of the proposed technique. Fi-
nally, Section 9 concludes the paper with directions for future work.

2. RELATED WORK

In this section, we review the previous work directly related to ours. Section 2.1
focuses on spatial databases, introducing methods for predicting the selectiv-
ity and nearest distance. Then, Section 2.2 discusses the selectivity of spatio-
temporal window queries.

2.1 Selectivity and Nearest Distance in Spatial Databases

e Window Query Selectivity
The first models of window query selectivity on uniform datasets appear in
Kamel and Faloutsos [1993] and Pagel et al. [1993]. Specifically, given two
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Fig. 1. Estimating the selectivity inside a histogram bucket.

m-dimensional rectangles r, g such that (i) they uniformly distribute in the
data space [Unin_i, Umax_il™ (i.e., the ith axis has range [Unmin_i, Umax_il), and
(ii) the extent of r(q) on the ith dimension (1 < i < m) has length ri(q;),
then the probability that r intersects q equals (1/Uyo) [, (ri + Gi), where
Uyl = Him:l(umaxj — Unin_i) is the volume of the data space. Hence, for a
uniform dataset with cardinality N, the number of objects intersecting query
q is (N/Uvol) H?;l(ri + Cli)-

Query selectivity for nonuniform (rectangular) data can be estimated by
maintaining a histogram that partitions the data space into a set of buckets, and
assuming that object distribution in each bucket is (almost) uniform. Specifi-
cally, each bucket b contains (i) the number b.num of objects whose centroids
fall in b, and (ii) the average extent b.len of such objects. Figure 1 illustrates an
example in the 2D space, where the gray area corresponds to the intersection
between b and the extended query region, obtained by enlarging each edge of
g with distance b.len/2. Following the analysis on uniform data (i.e., results of
[Kamel and Faloutsos 1993; Pagel et al. 1993] as described earlier), the expected
number of qualifying objects in b is approximately b.num-1.area/b.area, where
l.area and b.area are the areas of the intersection region and b, respectively
[Acharya et al. 1999]. The total number of objects intersecting q is predicted by
summing the results of all buckets. Evidently, satisfactory estimation accuracy
depends on the degree of uniformity of objects’ distributions in the buckets. This
can be maximized using various algorithms [Muralikrishna and DeWitt 1988;
Poosala and loannidis 1997; Acharya et al. 1999; Gunopulos et al. 2000; Jin
et al. 2000; Bruno et al. 2001], which differ in the way that buckets are struc-
tured. For example, in Muralikrishna and DeWitt [1988] buckets have similar
sizes (i.e., “equi-width”) or cover approximately the same number of objects
(i.e., “equi-depth”), while in Poosala and loannidis [1997] and Acharya et al.
[1999] bucket extents minimize the so-called “spatial skew.” Jin et al. [2000]
adopt the density file, which is similar to the histograms in Muralikrishna and
DeWitt [1988] but is augmented with additional statistics. In the above meth-
ods, bucket extents are disjoint, while Gunopulos et al. [2000] and Bruno et al.
[2001] relax this constraint with specialized algorithms.

In addition to the previous techniques, window query selectivity on non-
uniform data can be estimated using fractals and power laws [Belussi and
Faloutsos 1995; Proietti and Faloutsos 1998, 2001], sampling [Olken and Rotem
1990; Palmer and Faloutsos 2000; Chaudhuri et al. 2001; Wu et al. 2001], ker-
nel estimation [Blohsfeld et al. 1999], single value decomposition [Poosala and
loannidis 1997], compressed histograms [Matias et al. 1998, 2000; Lee et al.
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Fig. 2. Relation between the nearest distance and the cost of a NN query.

1999; Thaper et al. 2002], maximal independence [Deshpande et al. 2001], Euler
formula [Sun et al. 2002b], etc. Furthermore, Aboulnaga and Naughton [2000]
discusses the problem on general polygon objects.

e Nearest Neighbor Distance

The cost of a KNN query is closely related to the nearest distance NDy between
the query and its k-th NN. Figure 2 shows a set of static points (a, b,..., m)
indexed by an R-tree [Guttman 1984; Beckmann et al. 1990] with three levels,
the minimum bounding rectangles (MBR) of the tree nodes, and a single near-
est neighbor query g (whose NN is point j). As shown in [Papadopoulos and
Manolopoulos 1997; Berchtold et al. 1997], an optimal kNN algorithm (e.g., the
one in Hjaltason and Samet [1999]) must visit those nodes whose MBR intersect
the vicinity circle that centers at q with radius NDy. To answer the single NN
qguery in Figure 2, for example, the algorithm must access nodes (i.e., the root,
N1, N2, and Ng), overlapping the circle centered at g with radius equal to the
distance of g and j. Consequently, deriving the expected value of NDy is a vi-
tal step in the KNN analysis [Papadopoulos and Manolopoulos 1997; Berchtold
et al. 1997; Ciaccia et al. 1998; Weber et al. 1998; Beyer et al. 1999; Bohm
2000].

Focusing on single NN queries, Berchtold et al. [1997] derives the nearest
neighbor distance ND; by first computing the probability Pgingie(I) that an object
is within distance | from q. Since ND; is less than |, if and only if, at least one
object is within distance | from q, the probability Pyp1(1) that ND; < | equals
1 — (1 — Psingie(1))N (wWhere N is the dataset cardinality). Let p(ND; = I) be the
probability density function of Pyps(l) (i.e., taking its derivative with respect to
1); ND; can then be solved as ND; = fo°°l - p(ND; = I)dl. Bohm [2000] genera-
lizes the derivation to KNN queries.

e Spatial Join Selectivity

The analysis of (intersection) spatial joins is usually based on that of window
gueries, because a join (involving datasets S; and S,) can be regarded as a
set of window queries (each corresponding to an object in S;) performed on S,.
Specifically, as suggested in Aref and Samet [1994] and Huang et al. [1997], for
uniform distribution the number of qualifying object pairs can be estimated as
(N1 - N2/Uyo) TTim, (S1i + S2i), where (i) N1, Ny are the cardinalities, (ii) sii, Si
the object extents of the participating datasets (on the ith dimension), and (iii)
Uyo the volume of the data space. Theodoridis et al. [1998, 2000] utilize this
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Fig. 3. Window queries in one- and two-dimensional spaces.

equation for nonuniform data, by considering bucket pairs from the histograms
of the join datasets (in a way similar to Figure 1). An et al. [2001] maintains
statistics about objects’ edges and corners, while Belussi and Faloutsos [1998]
and Faloutsos et al. [2000] apply power laws. Sun et al. [2002a] studies join
selectivity restricted in a part of the data-space, and Mamoulis and Papadias
[2001] addresses multi-way spatial join selectivity.

2.2 STWQ Selectivity Estimation

None of the previous methods is applicable in spatio-temporal databases, where
the volatile nature of objects and/or queries invalidates their basic assumptions.
Choi and Chung [2002] discusses the selectivity of STWQ for moving point data
and static queries (i.e., the query region remains fixed). Starting from the one-
dimensional case, where the spatial universe is a line segment [Umin, Umax],
the model predicts the number of points that will intersect the query extent qs
during the query interval g = [gr-,971+] (0 < g1~ < OT4, the current time is
0). Figure 3(a) shows gs and the positions p(gr_) and p(gr.) of a data point
p at the starting gr_ and ending gt timestamps of gr, respectively (velocity
directions are indicated with arrows). The distance between p(qr_) and p(qr+)
depends on the velocity py of p, which distributes uniformly in the range [Vnin,
Vmax]. Clearly, point p satisfies the query if and only if the segment connecting
p(gr-) and p(gr) intersects gs. Assuming that the location of p at the current
time 0O follows uniform distribution in [Unmin, Umax], the probability (i.e., also the
selectivity of q) that a data point qualifies q is a function of Umin, Umax, Vmin,
Vmax, and the query parameters [Choi and Chung 2002].

The multidimensional version of the problem is converted to the 1D case
by projecting objects and queries onto individual dimensions [Choi and Chung
2002]. In particular, the probability that p satisfies q is computed as H{';l Sel;,
where m is the dimensionality and Sel; is the 1D selectivity (i.e., the probability
that the projection p; of point p on the ith dimension intersects the projection
g; of the query during interval gt). This, however, is inaccurate due to the fact
that, a data point may still violate a query g, even if its projection intersects
that of g on every dimension. For instance, in Figure 3(b), p is not a qualifying
point because it never appears in the region gs. However, the projections of its
trajectory (during gr) on both dimensions intersect the corresponding projec-
tions of gs (i.e., segments gsx and gsy). Therefore, ], Sel; overestimates the
actual probability.
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In general, an object o satisfies a spatio-temporal window query q if (i) the
trajectory projection of o intersects that of q on each dimension (i.e., the spa-
tial condition), and (ii) the intersection time intervals on all dimensions must
overlap (i.e., the temporal condition). Let T5 and Tg be the timestamps when p
reaches location A and B in Figure 3(b); then, the y-intersection interval (i.e.,
the period when y-projections of p and g intersect) is [qr_, Ta], while that on the
x-dimension is [Tg, gt.]. Point p does not satisfy the query because the two in-
tersection intervals are disjoint, violating condition (ii). The estimation in Choi
and Chung [2002] ignores the temporal condition (hence, in the sequel we refer
to the method as the time-oblivious approach), which may lead to significant
estimation error.

Hadjieleftheriou et al. [2003] proposes two alternative solutions for STWQ
selectivity estimation on point objects. Using the duality transformation
[Kollios et al. 1999], the first method converts the (linear) trajectory of each
object to a point in the 4D dual space, which permits the direct employment
of conventional multidimensional histograms (e.g., minskew [Acharya et al.
1999]). Accordingly, a query is transformed to a simplex search region in the
dual space; the objective is to predict, using the histogram, the number of data
points in this simplex query region. The second approach, instead of building a
separate histogram, utilizes the extents of the leaf nodes of an underlying index
(e.g., R-tree) as the histogram buckets. Although this method supports dynamic
maintenance (by resorting to the index), it incurs high space consumption and
large error, as shown in the experiments of Hadjieleftheriou et al. [2003].

3. DEFINITIONS

For all query types, we assume that either the data objects and/or the
qguery are moving. Let r be a moving rectangle in the m-dimensional space.
The extent of r at the current time 0 is a 2m-dimensional vector rg =

{rs1_, rsiy,so—, so4, ..., 'sm—, r3m+}, where [rSi_, I'sj.;,.] is the extent along the
ith dimension (1 < i < m). The spatial length of r on each axis is r.L; =
Isi+ — I'sj—. Vector ry = {ryi_, rvit,hvo—, rvo4, ..., P'vm—, rvms} represents the

velocities of r, such that ry;_(rvi,) is the velocity of the lower (upper) boundary
of rontheithdimension (1 < i < m).Similartor.L;, wedefiner.LV; = ryi, —rvj_
as the velocity length. In the sequel, we assume that the spatial and velocity
lengths are always nonnegative (which implies that a rectangle does not dis-
appear in some future time). The extent rs(t) (also a 2m-dimensional vector) of
r at some future time t can be computed fromrs and ry as: rs(t) =rs+t-ry
(rs(0) =rg). A point pis represented in a similar way: ps = {Ps1, Ps2, . .-, Psm}
and pyv = {pv1, Pva2,..., Pvm} are the coordinates and velocities on the m di-
mensions, respectively; the spatial and velocity lengths of p are zero on each
axis. In all cases, we follow the common assumption in the literature that an
object’s velocity remains constant until explicitly updated.

For the ith dimension (1 < i < m), the data space has extent [Umin_i, Umax_il
and possible velocity values fall in the range [Vmin_i, Vmax_i] (i.€., the velocity
space). In case of uniform datasets: (i) the spatial (velocity) length of each object
has the same value L; (LV;) on the ith axis, (ii) the coordinate rs;_ (or ps; of
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a point p) of the lower boundary uniformly distributes in [Umin_i, Umax_i —
L;], (iii) the velocity ryi— (or py; of a point p) uniformly distributes in [Vmin_i,
Vmax_i — LVi], and (iv) all dimensions are independent. These assumptions will
be later removed for non-uniform datasets. We discuss spatio-temporal versions
of window queries, nearest neighbors and joins:

—Given a set of objects, a STWQ q (i) specifies a rectangle (with current extent
gs and velocity vector qy) and a future time interval qr = [g7-,d7.](0 <
dt- < Jt4), and (ii) retrieves all objects o that intersect q during g, or more
formally, there exists some timestamp t € [gt_, gr+] such that os(t) intersects
gs(t).

—A STKNN q returns the k objects that are closest to qs during gr. Specifi-
cally, the distance dist(o, g, gr) between objects o, g is the minimum of their
distances during g1, or more formally: dist(o, q, gt) = min {|lo(t), q(t)|| for all
t € gt }, where ||o(t), q(t)| represents the Euclidean distance between o(t), q(t)
at timestamp t.! Let onnt, Onng, - - - » Onnk b€ the k NN of g (in ascending order
of their distances to q); then, the nearest distance NDy of q corresponds to
dist(onnk, 9, g7)-

—Given two sets S3, S, of objects, STJ outputs all pairs of objects (rq, rz) from
the Cartesian product S; x S, such that their distance dist(ry, rz, g7) is not
larger than a constant d, where gt and d are the join parameters. If d = 0,
the join condition degenerates to intersection.

A query (STWQ, STKNN, STJ) is called current, if gr_ (the starting times-
tamp of gr) equals O (i.e., the current time). When gr_ = gt., the query con-
stitutes a timestamp query; otherwise, it is an interval query. The goal of our
analysis is to represent the selectivity (for STWQ and STJ) and expected nearest
distance (for STKNN) as a function of universe constants Umin_i, Umax_i» Vmin_i»
Vmax_i, data properties L;, LV;, and the query parameters. Focusing on uniform
datasets, the next section discusses STWQ, while Sections 5 and 6 solve the
problems for STKNN and STJ, respectively. Section 7 extends the techniques
to arbitrary distributions with the aid of spatio-temporal histograms. Table |
summarizes the main symbols that will appear in our derivation.

4. SPATIO-TEMPORAL WINDOW QUERY SELECTIVITY

We derive the selectivity of STWQ based on the observation that any instance
of the problem can be reduced to predicting the selectivity of a moving rectangle
query on a set of static points. Section 4.1 studies this basic problem, and then,
Sections 4.2 and 4.3 illustrate the reduction of other cases to the basic problem.
Section 4.4 quantifies the error of the time-oblivious approach.

4.1 Static Point Data

A static point p satisfies a moving query window q, if p lies inside gs(t) at
some timestamp t € gr. For the sake of simplicity, we first focus on current

1The distance between a point and a rectangle can be computed as shown in Roussopoulos et al.
[1995]; distance computation between two rectangles is discussed in Corral et al. [2000].
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Table I. Frequent Symbols in the Analysis

Symbol Description
m dimensionality of the data space
Uyol volume of the data space
[Umin_i, Umax_i] extent of the space on the ith dimension
[Vmin_is Vmax_i] velocity range on the ith dimension
rs ={rsi—,rsi+,rs2—,rs2¢, ..., Fsm—, r'sms+} | extent of moving rectangle r at the current time
rv ={rvi-, rvis, frva—,rva+, ..., r'vm—, r'vms+} | Vvelocity vector of moving rectangle r
Ps = {Ps1, Ps2s - -+ Psm} coordinates of moving point p at the current time
pv = {pv1, Pv2, ..., Pvm} velocities of moving point p
L; spatial length of an object on the ith dimension
LV; velocity length of an object on the ith dimension
ds query extent vector at the current time (for STWQ, STKNN)
Qv query velocity vector (for STWQ, STKNN)
gr=[ar-, qr+] query time interval
dist(o, g, gr) minimum distance between o and q during interval gt
d distance parameter for STJ
CX(q) convex hull of corner points of qs(qr-) and gs(gr+)
ECX(q, I) extended convex hull of corner points of gs(gr-) and gs(gr+)
Sel selectivity of a query (for STWQ, STJ)
ND nearest distance of STKNN
N cardinality of the dataset (only used in STKNN)
i___B' A B’ Al ’
gs(qr-) A B A p ar
’ s(qr+ ST+
y B D’ c s | P> asiqr+) d b
s ™ D C + C
D/ C! D Cr

(a) Summing 2 trapezoids (b) Summing 3 trapezoids (c) Summing 4 trapezoids

Fig. 4. All cases in calculating the area of CX(q).

queries (i.e., qr_ = 0). Figure 4(a) shows a 2D moving query g, where gs and
gs(gr4) (i.e., rectangles ABCD and A'B’C’'D’) indicate the positions of q at
the starting (0) and ending time (gr4) of qr, respectively. Let CX(q) be the
convex hull of all the corner points of gs and gs(qr+) (i.e., polygon ADCC’'B’A’
in Figure 4(a)). CX(q) corresponds to the region that is “swept” by g during g,
and consequently, a data point p will be retrieved if and only if it lies in CX(q).

Since the data distribution is uniform, the probability for a point to fall inside
CX(q) is the ratio between the area (volume in higher dimensions) of CX(q) and
that of the spatial universe, which is also the selectivity Selstatic_pt Of q:?

volume(CX(q))
Uvol

The area (volume) of CX(q) depends on the velocity directions of gqy. In

Figure 4(a), for example, qvi- and qvi; have the same direction along all di-

mensions, in which case the area of CX(q) is the sum of rectangle ABCD (i.e.,
guery’s extent at the current time), and two trapezoids ABB’A’ and BCC'B'.

Selgtatic_pt (dsi—» dsi+» Qvi—, Qvit, OT) = 4.1)

2In Eq. (4.1), the subscript “i” denotes that the corresponding parameter of Selgiatic. pt ranges over
all dimensions; similar notations are adopted in subsequent formulas.
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Algorithm compute_CX_vol (¢)

1. sum=H;11 [gsi(gr)—qs{qr)] /* [gsi- (gr), gsi- (qr-)] is the extent of gg at time gr_ */

2. for each dimension 1<i<m

3 if ¢1:<0 and qy;.<0 then, sum=sumtvolume(Trapezoidio.r ;) (as in equation 4-2)

4, if ¢1:2>0 and qy;.>0 then, sum=sum+ volume (Trapezoid,yp: ;) (as in equation 4-3)

5 if ¢1:<0 and g3.>0 then, sum=sum+ volume (Irapezoidioer )+ volume (Trapezoid,pper ;)
6. return sum

End compute_CX_vol

Fig. 5. Algorithm for computing the volume of CX(q).

Trapezoid ABB’A’ (BCC'B’) is the region swept by segment AB (BC) during qr.
Figure 4b shows another case where qyx_ and qyx. still have the same direction,
while gvy— and gvy, are opposite. Then, the area of CX(q) is the sum of rectangle
ABCD, and three trapezoids ABB’A’, BCC'B’, and DD'C’C (swept by segments
AB, BC, CD, respectively). Figure 4c illustrates a third case, where velocities
on all dimensions have opposite directions, and the area of CX(q) is the sum of
rectangle ABCD and four trapezoids ABB'A’, BCC'B’, DD'C'C, AA'D’'D (swept
by segments AB, BC, CD, DA).

Computing the area of a single trapezoid is straightforward. Consider, for
example, trapezoid ABB’A’, where the lengths of AB and A'B’ are (sx+ — Jsx—)
and (gsx+ — Qsx—) + (Qvx+ — Qvx—) - (QT+ — dT1-), respectively. Furthermore, note
that the vertical distance between AB and A'B’ is Qvy-+ - (01+ — gr-); thus, the
area of trapezoid ABB’ A’ is given by?®:

! i 1
area(ABB'A) = 5[2(q5x+ — Osx—) + (Avx+ — Avx=)(AO1+ — A1-)] - Avy4+ (AT — OT-)

In general m-dimensional spaces, each trapezoid is the region swept by a
boundary of gs, which is a (m — 1)-dimensional hyper-rectangle. Specifically,
the trapezoid volumes decided by the lower and upper boundaries on the
ith dimension (1 < i < m) can be calculated using Egs. (4.2) and (4.3),
respectively:

. 1
volume(Trapezoidoper_i) = 5{ [T@si+ —asi-) + [ ]I(@si+ —asj-)
J# J#

+ (Qvj+ — Ovj-)(OT+ — qT-)]} lavi- |0+ —ar-), (4.2)
volume(Trapezoid,pper_i) = ;{ H(qu+ —Osj-) + H[(qu+ —Jsj-)
j#i ji
+ (Qvj+ — Avj-) @1+ — QT)]} IQvi @1+ —ar-). (4.3)

Figure 5 shows the algorithm for computing the volume of CX(q) in m-
dimensional spaces, after which the selectivity of the query can be obtained

3The area of a trapezoid equals /> times the product of the sum of parallel edges, and the distance
between them.
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Fig. 6. Intersection area computation when CX(q) is not completely in DS.

using Eq. (4.1). The handling of noncurrent queries (i.e., qr_ > 0) is straight-
forward. The only difference is that CX(q) should be the convex hull of the
corner points of rectangles qs(gr_) and gs(gr-). The volume of CX(q) can still
be calculated using the algorithm of Figure 5.

So far we have assumed that CX(q) lies entirely in the spatial universe DS,
while it is possible that the query moves out of DS during gt as shown in
Figure 6. In such cases, the probability that a data point satisfies g corresponds
to the area of the intersection between CX(q) and DS. In Figure 6, for example,
the intersection region is hexagon AEFGCD, which can be obtained using a
standard polygon intersection algorithm [Berg et al. 1997]. In particular, for 2-
dimensional spaces the computation time is O(1), due to the fact that CX(q) and
DS have constant complexities (i.e., they contain at most 6 and exactly 4 edges,
respectively). After obtaining the intersection polygon, its area can be computed
by decomposing the polygon into a set of trapezoids, and then summing their
areas. The hexagon AEFGCD in Figure 6, for instance, is divided into three
trapezoids ADCH, HCIE, EIGF. Note that this algorithm also has constant
computation time, because the intersection polygon contains at most 6 edges
(i.e., the complexity of CX(Qq)).

Generalizing the above approach to compute the intersection volume be-
tween CX(q) and DS in higher dimensional spaces, however, results in exces-
sively complex equations that require expensive evaluation. Instead, we adopt
the Monte-Carlo method. First, a set of « points (in our experiments, « = 2000)
are generated uniformly in the spatial universe. Then, we count the number
B of points that fall in CX(q), and the intersection volume is approximated as
Bla-Uyo, where Uy is the volume of the data space. Deciding if a static point
p lies in CX(q) can be achieved using an algorithm proposed in Saltenis et al.
[2000] for determining whether two moving rectangles intersect each other dur-
ing a time interval (i.e., p is in CX(q) if and only if there exists a timestamp
t € gt such that p is in gs(t)).

4.2 Moving Point Data

In this section, we discuss selectivity estimation for moving data points, where
the location ps;j and velocity py; of each point p along the ith (1 <i < m) dimen-
sion distributes uniformly in [Umin_i, Umax_i] and [Vmin_i» Vmax_il, respectively.
Given a moving query g, we aim at deriving the probability P(ug, uy, ..., um)
that a point p satisfies g when its velocity pyi takes a specific value u;
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(1 <i < m). Once P(ug, uy,...,un) has been derived, the query selectivity
Selmoving_pt Can be obtained by integrating all possible values of py;:

Selmoving_pt(dsi-» dsi+» Avi—» Qvi+ AT)

Vmax 1 Vmax_2 Vmax,m
/ / / P(ug, Uz, ...,um) f(u, Uz, ..., Uy)duy - - - dusdus.
min_m

me 1 len -2
(4.4)
where f(ug, up,...,un) is the joint probability density function* of uy,
Uy, ..., Uny. Since all dimensions are independent and u; uniformly distributes

iN [Vmin_i, Vmax-1], we have:
il 1
F(U3, Uz, oy Um) = F(UD) - F (U)o FQum) =] ] (v—v)
i=1 max_l1 min_i
Hence, Eq. (4.4) can be written as:

Selmoving,pt(qsi—y Qsi+s Qvi—s Qvi+; QT)

7 Vmax_i (Vmax_2 Vmax_m
= P(ui, us, ..., Un)duy - - - dusdu;.
E(Vmax i — Vimin_ ,) / / (ug, uz m) dun »duy

len -1 VI’T'III’\ 2 len m
(4.5)

The derivation of P(uy, uy, ..., uy) can be reduced to the case of static points
based on the following lemma:

Lemma 4.1. Let p be a m-dimensional point whose current location is ps
and velocity vector is py = {pv1, Pvz,-.., Pvm}. Given a moving query q, we
formulate another query g’ such that (i) its current extent qg and time interval
gy are the same as s and qgr, and (ii) d;_ = Qvi— — Pvi, Oy, = Gvi+ — Pvi- Then,
p satisfies q, if and only if, query g’ covers the static point ps at some (future)
timestamp t € gr.

Proor. Here we prove an even stronger statement: for any future t > 0, q(t)
covers p(t) on any dimension i(1 < i < m) if and only if q'(t) covers static point
ps on the same dimension. Notice that, q(t) covering p(t) on dimension i means
gsi(t) < psi(t) < gsi+(t), or equivalently: gsi- + Qvi- -t < psi + pvi -t < Gsiy +
Qvit+ - t. This inequality can be re-written as: gsi— + (Qvi— — pvi) -t < psi < Osi+ +
(avi+— pvi)-t. Note that, gvi— — pvi and qvi+ — pvi are exactly the velocities gy, and
v, of the transformed query q'. In other words, we have: qg; _(t) < psi < qg;, (t),
which completes the proof. O

Lemma 4.1 indicates that deciding whether a moving point p intersects a
moving rectangle g can be achieved by examining the intersection between a
static point ps and a moving rectangle q’, where ps is the current location of p,
and ¢’ is formulated as described above. Intuitively, g’ captures the “relative”
movement between p and g, or equivalently, g’ can be regarded as the represen-
tation of g in acoordinate system that remains static to p (i.e., this system moves

ax-1 [ Vmax_2 . Vmax_m

4Namely, f\ym f(ug, up, ..., Um) dupm - - - duyduy = 1.
mi

n_1 Vimin_2 Vmin_m
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Fig. 7. Hlustration of Lemma 4.1.

at the same speed and direction as p). To illustrate this, consider Figure 7(a)
which shows two moving points A, B and a moving query g with time interval
gt = [0, 1].As(1), Bs(1), gs(1) correspond to the locations of points A, B, and
guery g at time 1, respectively. It is clear that A satisfies g, while B does not.

Figure 7(b) shows the formulated query g’ in order to decide the intersection
of A (observe how the velocities of g’ change from those of q). In accordance with
Lemma 4.1, the fact that A is a qualifying object guarantees that g’ must cover
static point As during g7, which is indeed the case as shown in Figure 7(b). In
general, given a data point p and a query g, the relative positions between pg(t)
and gs(t) are always the same as those between static point ps and the extent
gs/(t) of the transformed query g’ at any future time t. Figure 7(c) demonstrates
the formulated query g’ with respect to point B (notice that the y-velocities of
g’ are 0). Since B does not intersect q, by Lemma 4.1 we can infer that g’ does
not cover Bs.

Therefore, the probability P(ug, us,...,uy) for a moving point p with ve-
locities ug, Uy, ..., Uy to intersect a query q equals the probability that the
corresponding formulated query q’ covers the static point ps. Specifically,
P(ug, Uy, ..., uy) can be represented as:

P(Ul, u21 DR | um) = Selstatic_pt(q/si,, q’si+1 q\//ify q\//l+q—,|—)
Selstatic_pt(dsi—, Usi+, Qvi- — Ui, Qvi+ — Ui, gt), (4.6)

where Selstaiic pr 1S given by Eq (4.1). As discussed earlier, after solving
P(ug, Uy, ..., um), Eq (4.5) estimates the selectivity of spatio-temporal window
gueries on moving points. Since Eq. (4.5) involves an integral of several lay-
ers, we evaluate it numerically using the “trapezoidal rule” described in Press
et al. [2002]. Specifically, to evaluate a general one-layer integral fabf (x) dx,
the trapezoidal rule calculates the function values f(x;) at regular positions
xi =a+i(b—a)/c(0 <i <c), where c is a constant (equal to 100 in our experi-
ments) of the integral range [a, b]. Then, the integral value can be approximated
as % ic;é[f (xi) + f(xi+1)]- Extending the trapezoidal rule to multilayer in-
tegrals is straightforward, by integrating individual layers recursively. It is
worth mentioning that the case of static queries over moving points discussed
in Choi and Chung [2002] is merely a special instance of the problem solved
above.
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4.3 Moving Rectangle Data

This section analyzes moving data rectangles whose spatial length is L;, ve-
locity length equals LV;, and the location and velocity of the lower boundary
on each dimension i uniformly distributes in [Umin_i, Umax.i — Li] and
[Vmin_i» Vmax_i — LVi], respectively. Similar to the analysis for moving points, we
aim at deriving the probability P(uq, u,, ..., uy) that a rectangle r, whose ry;_
takes specific a value u; (1 < i < m), satisfies the query. Once P(uy, Uz, ..., Un)
is available, Sel;,. can be obtained by Eq. (4.7) (notice the changes in the upper
limits of the integrals compared with Eq. (4.4)):

Selrec(dsi-, dsi+ Avi—, Qvi+, AT)

Vmax,lf LVl Vmaxl* LVZ Vmax,m* LVm
=/ / / P(ug, Uy, ...,um) f(ug, Uy, ..., uy)duny

Vmin_l Vmin_2 Vmin_m
-+ duydu;. (47)
Since u; distributes uniformly in [Vmin_i, Vmax_i — LVil, we have:
m
1
f 3 3oy == f . f e et f =
(Us, Uz, ..., Um) = F(ur) - F(u2) (um) =1 (vmaxi —ivi = Vmi)

i=1
Thus, Eq. (4.7) becomes:
Selrec(dsi—, si+» Avi—s Qvit, AT)

ﬁ ( 1 ) /Vmax_l—l—vl /Vmax_z—l—vz /Vmaxm—l—vm
i=1 Vmax_i - LV' - Vmin—i Vmin_1 Vmin_2 Vmin_m

P(ui, ug, ..., Upn)duy - - - duydug. (4.8)

The following lemma reduces the intersection examination between two moving
rectangles r and g to that between a static point and a transformed moving
rectangle g’ (in a way similar to Lemma 4.1).

LeEmmA 4.2. Letr be a m-dimensional rectangle whose current extentisrg =

{rsi-, Fs1+,Fs2—, rs24+, ..., Fsm—, 'sms+} and velocity vector is ry = {ryi-, rvi,
rve—, f'va4, -, f'vm-, fvm+}. Given a moving query q with s = {gsi-, gs1+,
Qs2—, 0Us2+s - - -» Gsm—, Osm+}, @nd dv = {Qvi-, Qvi+, AQv2—, Qv+ - - -5 Qvm—) Qvm+},
we formulate another query g’ such that (i) gt = gr, (ii) 95;_ = 0si— — (rsi+ —
rsi-), dsiy = Osit, and (iii) g;_ = Avi— — vy, QUi = Qvip — Mvi—. Then, r satisfies
g, if and only if g’ covers the static point p = (rs;_,rs>_, ..., 'sm_) (i.€., a corner

point of rs) during time interval gr.

Proor. Similar to the proof of Lemma 4.1, we prove a stronger statement:
for any future t > 0, q(t) intersects r(t) on any dimension i (1 < i < m)
if and only if g'(t) covers static point (rsi_,rs>_,...,rsm—) on the same di-
mension. Notice that, q(t) intersects p(t) on dimension i means max{gsj_(t),
rsi-(t)} <min{gsi:+(t), rsi+(t)}, or equivalently: gsi_(t) — (rsi+(t) — rsi—(t)) =<
rsi—(t) < gsi+(t). This can be rewritten as:

Osi— +t - Qi — [(rsi+ — rsi—) + (fviq — viz) - t] < rsi- +t-ryi- < dsit +t- Quiyt
< [gsi- — (rsi+ — rsi-)] + (Qvi— — rvig) - t < rsi- < Qsiy + @iy — Mvio) - t
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Since, gg;_ = Osi- — (I'si+ — I'si-), &y;_ = Qvi- — M'vi+ and gy;, = Qvi+ — I'vi—, We

have: gg;_(t) < rsi- < dg;, (t), which completes the proof. O

Consider Figure 8(a), which shows data rectangles A, B, query q (with inter-
val gr = [0, 1]), and their extents at time 1. Notice that A intersects q during
gr, while B does not. Figure 8(b) shows the transformed query g’ with respect
to A, as well as the lower-left corner point P of As. The current extent qg of g’
is obtained by enlarging qs with the size of As on each dimension. The value
(—5) of gy,,_ is computed by subtracting Avx (3) from gqux— (—2). Since g’ covers
static point P, during g, by Lemma 4.2 we can assert that the original rectan-
gle A satisfies q. Similarly Figure 8(c) demonstrates the formulated query q’ for
B, which does not cover point Pg (lower-left corner of Bs) during gr, indicating
that B does not qualify q.

Hence, the probability P(uy, u,, ..., uy) thatamoving rectangle r withry;_ =
Ui (1< i < m) satisfies g can be represented as:

P(ula uz, ..., Um) = Selstatic,pt(q/si_, q/si-‘r! q\//i_y q\//i+a q-/r)
= Selstatic_pt(dsi— — Li, Osi+» Avi—- — Ui — LVj, Quig — Ui, OT)
(4.9

where Selgtatic_pt 1S shown in Eq. (4.1), except that the volume of the universe
should be modified to H?ll(umax_i — Lij — Unin_i) (i.e., the lower boundary of
a data rectangle ranges in [Umin_i, Umax_i — Lil). Since we have solved P (u;,
Uz, ..., Um), EQ. (4.8) can be used to estimate the selectivity for moving rectan-
gles. Notice that, Lemmas 4.1 and 4.2 offer a general methodology of reducing
complex STWQ selectivity estimation problems to simple ones; for example,
their application to the time-oblivious approach [Choi and Chung 2002] auto-
matically yields another method able to capture moving queries and rectangle
objects. In the next section, however, we point out that this approach is erro-
neous in practice, by quantifying its error.

4.4 Error of the Time-Oblivious Approach

As discussed in Section 2.2, the time-oblivious approach estimates the selectiv-
ity Sel by simply taking the product of the qualifying probability Sel; on each
dimension (1 < i < m). Note that Sel; can also be obtained from our derivation
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(i.e., the dimensionality equals 1); hence, by comparing the difference between
Sel and [, Sel; we can quantify the error of the time-oblivious approach. To
illustrate the factors that affect the error, in the sequel we consider the case
(moving points and static queries) targeted in Choi and Chong [2002], for which
the resulting equations are simplest and can be solved into closed form. Specif-
ically, given (i) a set S of 2D points such that, for each point p € S, psj and pyi
(i.e., its location/velocity on each dimension) uniformly distribute in [0, U] and
[0, V], respectively, and (ii) a static query g whose extent is qs and interval is
[0, gr4] (i.e., a current query), the actual selectivity Sel follows Eq. (4.5), except
that in this case the integral can be solved into the following closed form:

Sel — an (Asx+ — QSX—)(qSy+ - qSy—)
PVE U2

The qualifying probability Sel; on each dimension (1< i < m) can be obtained
with similar analysis:

[(dsx+ — dsx-) + (Asy+ — dsy-)] + (4.10)

Osi+ —Osi- . VOr,
li = . 4.11
Sel; g + 2U (4.11)
Thus, the estimation Sel’ obtained by the time-oblivious approach is:
, V
Sel’ = Sel - Sely = = [(Gscr — Gsx) + (dsys — dsy-)]
2
(Gsx+ — dsx)(@sy+ —Asy-) | V2ars
+ 02 + 02 (4.12)
Comparing Egs. (4.12) and (4.10), the relative error Err of Sel’ is:
Sel’ — Sel
Err = ——
a Sel
_ vgr,”
2V g7 [(Asx+ — dsx—) + (Asy+ — dsy—)] + 4(Asx+ — Gsx—)(Asy+ — Osy-)

(4.13)

Note that (qsxs — dsx-) + (Gsy+ — Asy-) @nd (Qscs — Asx—) - (Gsy+ — dsy-) correspond
to the perimeter and area of gs, respectively. It is clear that the time-oblivious
approach is accurate only when the query length g, = 0, because for times-
tamp queries ignoring the temporal condition does not cause any error: if an
object satisfies a query q, then the intersection intervals on all dimensions are
the same and consist of a single timestamp. The error grows, however, quadrat-
ically with gr., and the length of the velocity space V. On the other hand, the
error is smaller for queries with larger extents gs. Also, notice that the error is
not affected by the length of the spatial universe.

5. NEAREST DISTANCE FOR SPATIO-TEMPORAL KNN SEARCH

In this section, we discuss the expected nearest distance for STKNN queries
assuming again uniform distribution (nonuniform data are collectively handled
in Section 7.2). Adopting a methodology similar to the last section, Section 5.1
first solves the problem on static point data, and then Section 5.2 settles the
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Fig. 9. All cases of extended convex hulls ECX(q, I).

general problem involving moving rectangles using reductions. Unlike previous
studies (on spatial KNN) that discuss only point queries, our analysis also covers
rectangle queries.

5.1 Static Point Data

Before solving general kNN queries, we consider a current rectangle query q
(with interval gt = [0, g1.]) that retrieves a single nearest neighbor. To derive
the expected nearest distance ND,, we adopt the common paradigm [Berchtold
et al. 1997; Bohm 2000] of spatial kNN analysis (reviewed in Section 2.1). We
first obtain the probability Pstatic_pt{dist < I} that the minimum distance be-
tween a random data point p and a given query rectangle g during gr (i.e.,
dist(p, g, qr)) is smaller than a constant I. For this purpose, let us define, in
the same way as Figure 4, CX(q) as the convex hull of the vertices of qs(0)
and gs(gt4), which are the extents of q at the current time 0 and g1, respec-
tively. Further, we introduce the concept of the extended convex hull ECX(q, I)
which enlarges CX(q) with length I on all directions. The extended convex hull
is motivated by the Minkowski sum, a well-studied concept in computational
geometry [Berg et al. 1997], which is popular in query analysis [Kamel and
Faloutsos 1993; Pagel et al. 1993; Berchtold et al. 1997; Bohm 2000]. A use-
ful property of the Minkowski sum is that it facilitates the adaptation of the
proposed (i.e., Euclidean) solutions to other metrics.

Figure 9 shows the three types of ECX that correspond to the possible shapes
of CX illustrated in Figure 4. In Figure 9(a), ECX(q, ) consists of (i) CX(q), (ii)
rectangles ADST, AlJB, GFMN, HGOP (we call them side extensions because
they are extended from edges of qs(0) or qs(gr4)), (iii) rectangles BKLF, RDHQ
(we call them trajectory extensions because they are extended from the tra-
jectories of the corner points B, D), and (iv) a circle with radius | (which is
the composition of six separate arcs with the same radius but centering at A,
B, F, G, H, D, respectively). Similarly, ECX(q, I) in Figure 9(b) consists of (i)
CX(q), (ii) side extensions AlJB, FMNG, HGOP, REHQ, (iii) trajectory exten-
sions STAE, BKLF, and (iv) a circle with radius |. On the other hand, ECX(q, I)
in Figure 9(c) does not contain any trajectory extension (i.e., it involves CX(q),
side extensions EIJF, FKLG, GMNH, OPEH, and a circle).
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Algorithm compute_ ECX_area(q, /) Algorithm compute_traj_ext(g, /)
1. sum=compute_CX_vol(q) 1. sum=0

/* invoke the function in Figure 5 */ 2. il (gy;>0, g4 20, and g4, <0) or
2. sum=sum+compute_side_ext(q./) (q11=<0, g;»=>0, and g, =0)

3. sum=sumtcompute_traj_ext(q,/)

= (ar —dr ) 2 2
4. sum=sum+m[* /* the area of the circle */ 3. Sum=sumqr = 41y \q,, " + G5
5. return sum 4. if(gs4.20, g¢;,=>0, and g, =0) or
End compute ECX_area (q11<0, g <0, and g;,_<0)
_ . 2 2
Algorithm compute_side_ext(q, /) 3. sum=sum+1(qr 4y \[qy1,” +qy
1. sum=0 6. if (g, 20, ¢;2<0, and ¢;».<0) or
2. for each dimension 1<i<2 (q17=<0, q,, <0, and g, >20)
3. J=2—i 2 2
= —+[(ar+ —a+ )
4. it (1:-<0 & 13 <0) or (g5;20 & g5 20) 7 sum=sumthq =1 NG+ Gy,
3. sum=sum+l-[2-qy —2-qg; + 8. if (g;1-=0, gy 20, and g, 20) or
gy —qiz{gr —qr-) (g11-<0, q1,<0, and gy, <0)
6. if ¢17<0 and ¢;;.>0 9. sum=sum+1-(q; —q;.y qm_z +q”+2

sum=sum+2-I'[qy. —qy+
9y =gy — q7-)]

7. return sum

End compute_side_ext

10. return sum
End compute_traj ext

Fig. 10. Computing the area of ECX(q, I) (for two-dimensional space).

A crucial observation is that, dist(p, q, qr) < I, if and only if, p falls in
ECX(g, I) and hence, for uniform data, the probability Pstatic_pt{dist < |} equals
the area of ECX(q, ) divided by U, (i.e., that of the data space). Figure 10
illustrates the algorithms for computing this area in 2D space which, although
seemingly complex, can be written as a closed quadratic function of I. Specif-
ically, function compute_side_ext (compute_traj_ext) returns the total area of all
the side (trajectory) extensions, which is a linear function of I, while the total
area of ECX(q, I) also includes those of CX(q) (independent of I) and a circle
(quadratic with I).

ECX(q, I) in higher dimensionality, however, is more complicated, and the
derivation of its volume leads to complex analysis beyond the scope of this
article. Instead, we once again resort to the Monte-Carlo method, by first gen-
erating « uniform points in the universe (in our experiments, « = 2000), and
then counting the number g of points that fall in ECX. In particular, a point
is in ECX, if and only if, its distance to qs(t) is smaller than | for some time
t € g7, which can be decided using the algorithm in Benetis et al. [2002]. Then,
the volume of ECX(q, ) is computed as 8/« - U,q. Similar to Figure 6, if part
of ECX(q, ) falls outside the spatial universe, only the intersection region (be-
tween ECX(q, I) and DS) should be considered. In this case, the Monte-Carlo
method is always invoked.

Having computed Psgatic_pt{dist < 1}, we proceed to derive Psatic_pt{ND1 < 1},
the probability that the nearest distance ND; of g is smaller than I, or equiva-
lently, there exists at least one data point p such that dist(p, q, gr) < I. Assum-
ing that the dataset contains N points, Psaric_pe{ND1 < I} can be derived as:

Pstatic,pt{NDl =< I} =1- (1 - F’static,pt{diSt < I})N . (5-1)
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Taking the derivative of Psaic ptfND1 < I} (with respect to I), we can obtain
its probability density function psatic pt(ND1 = 1). As a result, the expected
nearest distance ND; can be represented as:

NDl = / l- pstatic_pt(NDl = I)d|~ (5'2)
JO

This equation can also be evaluated numerically using the “trapezoidal rule”
described in Section 4.2. The above analysis can be extended to kNN retrieval
(k > 1). The difference is that the nearest distance NDy < I, if and only if, there
exist at least k objects such that their distances to g during gqr are smaller
than |. To derive Pgtatic_pt{NDk < 1} (again, from Psgatic_pe{dist < 1}), we consider
the complementary probability Pgtatic_pt{NDi > 1}, which equals the probability
that at most k—1 objects are within distance | to g. Towards this, we further
distinguish k cases where there are exactly 0, 1, . .., k—1 objects within distance
I, respectively; Pstatic_pt{NDx > 1} corresponds to sum of the probabilities of
all cases. Specifically, the probability for exactly i objects (0 < i < k —1) is
(’?)(Pstatic,pt{diSt =< I})I(l - Pstatic,pt{dist =< I})Nil; thUS, Pstatic,pt{NDk > I} and
Pstatic_pt{NDk < 1} are given by:

k—1

N A B } .
Pstatic_pt{NDk > 1} = Z {( i > (Pstatic_pt{dist < 1})'(1 — Pstatic_pt{dist < ”)NI}
i=0
(5.3)
Pstatic_pt{NDk < 1} = 1 — Pstatic_pt{NDx > 1}. (5.4)

Then, NDy is derived as in Eq. (5.2), except that P{ND; < I} and p(ND; = 1)
should be replaced with P{NDy < I} and p(NDk = I), respectively. Finally, the
above discussion also applies to noncurrent queries (i.e., gt— # 0), where ECX
should be computed based on gs(qr-) and qs(gt4).

5.2 Moving Rectangles

In this section, we discuss the expected nearest distance NDy of a kNN query for
general moving rectangle objects, by reducing the problem to the basic case (on
static points) solved in the previous section. Specifically, we start from single NN
retrieval, and focus on deriving the probability P.{dist < 1} that dist(r, q, qr)
is smaller than constant |, based on the assumption that the lower boundary
velocity ry;_ of a data rectangle r is uniform in the range [Vmin_i» Vmax_i — LVi]
on the ith dimension (where LV; is the velocity length). Towards this, we first
calculate the probability P(ui, uy, ..., uy) that dist(r, q, gr) is smaller than I,
given that ry;_ takes a specific value u;. Once P(uy, Uy, ..., Uy) is available, the
overall probability P {dist < I}, which considers all velocity values for ry;_,
can be represented as (similar to Eq. (4.8)):

A m 1 Vmax_1—LV1 Vmax_2—LV2
Prec{d|5t = I} - H (Vmaxi - I—Vi - Vmini) / /

i=1 Vmin_1 Vmin_2

Vmax_m_l—vm
/ P(ug, Uy, ..., Uy)dupy - - -duydus. (5.5)

Vmin_m
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The analysis of P(uq, Uy, ..., Uy) can be reduced to the static problem as indi-
cated in the following lemma (analogous to Lemmas 4.1 and 4.2):

Lemma 5.1. Letr be a m-dimensional rectangle whose current extentisrg =

{rsi_, rsit,s2—,'sa4, ..., 'sm—, r3m+} and velocity vector is ry = {rvi_,rvis,
rva—, 'vz4, ..., f'vm—, f'vmy }. Given amoving query g with ds = {ds1-, gs1+, Os2-,
q52+1 e QSmfr qu+}r and qV = {qu,, qV1+! qV271 qV2+! R | qufr quJr}v we
formulate another query g’ such that (i) g = qr, (ii) 95, = 0si- — (rsi+ —

rsi-), dsi. = Osi+, and (iii) gy;_ = Qvi- — 'vit, QY. = Ovit+ — Mvi—. Then, the mini-
mum distance between r and g is smaller than | at some timet € gr, if and only
if, the static point p = (rs1_, rs>—, ..., rsm_) (i.e., a corner point of rg) is within
distance | from g'(t) at time t.

Proor. We briefly review the computation of the distance between two m-
dimensional rectangles rs and gs, since it is fundamental to the proof for the
lemma. The distance distj(rs, gs) between rs and gs on the ith dimension (1 <
i < m) is defined as [Roussopoulos et al. 1995]:

(@si- —rsiy) if dsi- > Isiy
disti(rsi, gsi) = ¢ (rsi- —0si+) If siy < rsi- (5.6)
0 otherwise
where [rsi_, rsii] denotes the extent of rs on the ith dimension (similarly,

[asi-, gsi+] represents the same information for qs). Thus, the distance between
rs and gs is obtained as [>;(disti(rsi, gsi))?]*/2.

Given a transformed query ', we prove a stronger statement: for any future
t > 0, the distance distj(rs;i(t), gsi(t)) between rs;j(t) and gs;j(t) on any dimension i
(1 < i < m)equals that (denoted as dist;(rsi—, gg;(t))) between qg;(t) and rs;_(i.e.,
the ith coordinate of static point (rsi_,rs>—, ..., rsm-)). For this purpose, we
write dist;(rsi(t), gsi(t)) as follows (in accordance with Eq. (5.6)):
(@si-(t) — rsiv (1)) if dsi-(t) > rsi(t)
disti(rsi(t), gsi(t)) = ¢ (rsi-(t) —gsi+(t)) if dsit(t) <rsi-(t)
0 otherwise.

distj(rsi(t), gsi(t))
(Osi- + Qui— -t —rsiy — it - t) if dsi- +Qui- -t > Isiy + iy - t
= ¢ (rsi- +vi- -t —0siy — Qi+ - t) if rsio +rvie -t > Gsiy + it -t (5.7)
0 otherwise.
In the same way, dist;(rsj_, gsi’(t)) can be written as follows:
(q/Si— + Q\//i_ -t - r'Si—) if q/si— + q\//i_ -t > rsi—
disti(rsi—, dg;(t)) = { (rsi- —dgi. — Gy 1) if rsio > dg, + 0, -t (5.8)
0 otherwise.

It is easy to verify that, by substituting q' with q as stated in the lemma,
Egs. (5-7) and (5-8) turn out to be exactly the same, which completes the
proof. O
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Fig. 11. Illustration of Lemma 5.1 (distance constant | = 1).

Figure 11 illustrates the lemma with moving rectangles A, B, and query
g, assuming that gr = [0, 1] and | = 1. As shown in Figure 11(a), at time 1
the minimum distance between As(1) and gs(1) equals 1, while the distance
between Bgs(t) and gs(t) is larger than 1 at any t € gr. Figure 11(b) shows
the transformed query g’ for A together with the corresponding ECX(q’) (ob-
tained from the vertices of qg(0) and gg(1) in the same way as Figure 9). Since
dist(A, g, qr) < 1, according to the lemma we can assert that ECX(q’) covers
the corner P of As (which is indeed the case as shown in the figure). Simi-
larly, Figure 11(c) demonstrates the formulated query g’ for B. Notice that in
this case ECX(Q’) does not cover the corner Pg of Bs, confirming the fact that
dist(B, g, qr) > 1.

Lemma 5.1 converts the minimum distance computation between two mov-
ing rectangles, to that between a static point and a transformed moving rect-
angle. Consequently, given a data rectangle r whose ry;_ takes specific value
uj, the probability P(uy, us, ..., uy) (that dist(r, g, gr) is smaller than I) can be
computed as:

P(ui, Uz, ..., Un) = Pstatic_pt{dist <1, asi_» q/si+' Qvi_» Q\,/i+’ ar}
= Psatic_pt{dist <1, gsi— — L;, Osi+, Qvi—- — Uj — LV;,
Qvi+ — Ui, at}, (5.9)
where g’ is obtained as described in the lemma, and Pstatic pt{dist<I1} is
computed as in Figure 10. Having derived P(ui, Up,...,Un), we can solve

Prec{dist <1} using Eq. (5.5), and then obtain the expected nearest distance ND;
with Egs. (5.1) and (5.2). The extension of the above analysis to general STKNN
(k > 1) is trivial: we only need to substitute Pggtic_pi{dist <1} in Eq. (5.3) with
Prec{dist <1} (computed by Eg. (5.5)).

6. SELECTIVITY ESTIMATION FOR SPATIO-TEMPORAL JOIN (STJ)

Given two m-dimensional datasets Si, S, a constant d and an interval qr, STJ
reports all object pairs (01, 0) from S; x S5, such that dist(o;, 05, 97) < d. The
data and velocity spaces for S; (Sz) are [Ugmin_i» Uz,max_i] ([U2min_i» Uz max_il)
and [V1 min_i» Vmax_i]l ([V2min_i» V2.max_i]) (i.e., we allow datasets with different
universes), and each object of S; (S;) has spatial length L; ; (L2 ;) and velocity
length LV ; (LV2,;) along the ith dimension. The goal of our analysis is to derive
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Fig. 12. Calculating P (uj, vi, i) for pointdata (d = 1, qr = 1).

the selectivity of the join, which also corresponds to the probability that a pair
of objects (01, 0,) satisfies the join predicate. In the sequel, we first discuss
the case where (i) the query interval gy starts from the current time O (i.e., a
current join) and (ii) S; and S; consist of only point data (i.e., L1j = L2 =0,
and LV ; = LV,; = 0); then we solve the general problem involving rectangles
and arbitrary qr.

Consider a pair of points (p1, p2) € S1 x S, such that the velocities of p; and p;
take specific values (uy, Uy, ..., Um), (V1, V2, ..., Vm), respectively, and the initial
position of p, is fixed to (y1, Y2, ..., Ym), While that of p; uniformly distributes
in the data space. To compute the probability P (u;, vi, yi) that (p1, p;) satisfies
the join predicate, we convert p, to another point p, such that (i) the current
location of p; is the same as p, and (ii) P, ; = P2,vi — Pvi (i.€., we subtract the
velocity of p;) on the ith dimension. Then, based on Lemma 5.1, we assert that
dist(p1, pz2, gr) < dif and only if the distance between p; (t) and a static point
p1,s(0) (i.e., the current location of p;) is smaller than d at some timestamp t
during qr. Figure 12(a) illustrates an example where d = 1,qr = [0, 1], and
p1, p2 satisfy the join predicate because at gt their distance is 1. Figure 12(b)
shows the transformed point p,, whose distance from the static point p; s is
alsolatqr,.

The implication is that, (p1, p2) is a result pair if and only if the current
location of p; lies in the extended area EA(p;) of p,, which is obtained by
enlarging the trajectory of p, (during gr) with length d (the shaded area in
Figure 12(b)). Since the location of p; uniformly distributes in the data space,
the probability P (uj, vi, vi) (that (p1, p2) qualifies the join condition) equals the
area of EA(p;) divided by U,q (the volume of the data space). In 2D, the area
of EA(p,) is the sum of a rectangle and a circle. In 3D, the volume of EA(p) is
the sum of a cylinder and a sphere. In arbitrary dimensionality m, the volume
of EA(p,) can be computed as:

m m-1 m
Volume[E A(p,)] = F(rr://zi- 1)dm+ = (; + 1) dam-t. (QT+—QT—)W

(6.1)
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where®

Nz

'x+1)=x-T'(x), I'1) =1, F(%)

For 2D, the above equation can be simplified into:

Area[EA(p,)] = 7d® +2d - (qr+ — QTf)\/(p,z,vﬂz + (P52 (6.2)

So far we have assumed that EA(p;) lies completely in the data space of Sy, in
which case EA(p;) does not depend on the location of py. If part of EA(p,) falls
outside the universe, we should compute the intersection between EA(p5) and
the universe.

Remember that P (uj, vi, yi) only captures the probability that (pi1, p2) sat-
isfies the join when the velocities of p;, p, and the location of p, take specific
values (while the location distribution of p; is uniform). The overall probability
that an arbitrary point pair satisfies the join predicate equals the average of
P (ui, vi, Vi) over all possible values of u;, vij, and y;. This probability also corre-
sponds to the selectivity Sel; of STJ, and can be formally represented by Eq. 6.3
(V2,max_i denotes the maximum velocity on dimension i for dataset Sy, V2 min_i
the minimum velocity, etc.).

1T (G )] [T ()|

i=1 i=1

m
ie1 V2,max_i - V2,min_i
/UZ,maxl /UZ max_m Vl,max m /Vl,max m /VZ max_1 /Vz,maxm
UZ,min_l u2 min_m Vl min_m V1 min_m VZ min_1 VZ,min_m

P(ui, Vi, i) dvy - - - dviduy, - - - dusdy,, - - - dy;.

Selpt ==

(6.3)

Next we discuss STJ for moving rectangles. Similar to the point case, we first
consider an object pair (r1, r2) € S; x S, such that (i) r; uniformly distributes in
the data space, while ryi_ (i.e., the lower boundary coordinate of r, on the ith
axis) is fixed to yj, and (ii) the lower boundary velocities of r; and r, take specific
values (uy, Uz, ..., Uyn) and (vi, Vo, ..., Vm), respectively. Let P(u;, vj, yi) be the
probability that (rq, rp) satisfies the join predicate under these conditions. To
derive P (uj, vi, ¥i), we formulate another object r; such that (i) r; has the same
current extent as r,, and (ii) r2 vig = M2vir — Mvie ,r2 vie = F2vie — rvig. By
Lemma 5.1, dist(ry, rz, g1) < d if and only if the distance between r; S(t) and
the static point (r; si—, ri,s>—, ..., r.sm—) (i.e., a corner point of ry, 3(0)) is less
than d for some time t € gr. Thus P (ui, vi, Yi) equals the volume of ECX(r})
divided by U, . After obtaining P (u;, vi, Yi), the join selectivity Sel., can be

5T is a common function used to describe the volume of a sphere in arbitary dimensionality [Bohm
2000].
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computed by integrating all possible values for u;, vj, yi, or specifically:

A 1 A 1
Selye = | | | |
e (Uz,max_i - U2,min_i - I—2,i> o (Vl,max_i - V1,min_i - I—Vl,i>
i=1

i=1

(e —
V2,max,i - V2,min,i - I—Vl,i

i=1

6.4
/UZ,max_l_Lz,l /Uz‘max_m_l—z.m /Vl.max_m_l—vl,l /Vl‘max_m_l—vl.m /VZ.max_l_I—VZ.l ( )
U2,min,1 U2,min,m Vl,min,l Vl,min,m Vz,min,l

V2,max,m*|—v2,m
/ P (ui, vi, vi)dve - - -dviduy, - - - dusdy,, - - - dy;.

V2,min_m

Finally, the above discussion can be easily extended to queries whose time
intervals do not start from the current time, in which case the areas of the
extended regions (for point data) and extended convex hulls (for rectangle data)
should be computed based on gs(gt-).

7. SPATIO-TEMPORAL HISTOGRAMS AND NONUNIFORM ESTIMATION

Next we extend the results to nonuniform data using spatio-temporal his-
tograms (STHS). Specifically, Section 7.1 introduces the STH and discusses its
incremental maintenance. Section 7.2 explains nonuniform estimation for each

query type.

7.1 Incremental Spatio-Temporal Histograms

The objective of a histogram is to partition the data space into a set of buckets
by, by, ..., by (his the number of buckets) such that the data distribution inside
each bucket is uniform. Abucketb;j (1 < j < h) hasspatial extents b;.MBR, and
velocity ranges b;.VBR (where VBR stands for velocity bounding rectangle). In
general, a m-dimensional dataset requires a 2m-dimensional STH. Figure 13(a)
illustrates a STH with 4 buckets, assuming that the data space contains only
one dimension (i.e., m = 1). The MBR of by, for example, is [0, 40], while its VBR
covers velocities [—20, 20] (i.e., the minimum and maximum velocity among all
points in the bucket). Point p belongs to b,, because its coordinate ps = 30
and velocity py = 25 fall in b,.MBR and b,.VBR, respectively. Moving inter-
vals (hyper-rectangles in higher dimensions), on the other hand, are assigned
according to the coordinates and velocities of their centroids. For instance, in-
terval r (with spatial extent [30, 60] and velocity extent [10, 20]) is allocated to
bucket by, which contains the coordinate 45 and velocity 15 of its centroid.

In addition to MBR and VBR, each bucket b; also stores (i) the number
b;.num of assigned objects, and (ii) for hyper-rectangles, the sum of spatial bj.L;
and velocity bj.LV; lengths of these objects along each dimension (1 <i < m).
Similar to moving objects, the MBR of b; also grows according to its VBR,
and in the sequel we denote its MBR at future timestamp t as b;.MBR(t).
Such a STH can be constructed using any existing algorithm for conventional
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Fig. 13. The spatio-temporal histogram and its update.

multidimensional histograms, by treating a m-dimensional moving object as
a 2m-dimensional box. Finally, note that STH differs from the histogram pre-
sented in Choi and Chung [2002] (see Section 2.2), which constructs the buckets
by considering only objects’ spatial MBRs. As shown in Tao et al. [2003b], ignor-
ing the velocities during partitioning, leads to significant error. Further, STH
generalizes the solution of Hadjieleftheriou et al. [2003] because it (i) supports
also rectangle objects (Hadjieleftheriou et al. [2003] only considers point data),
and (ii) can be incrementally maintained (Hadjieleftheriou et al. [2003] does
not address dynamic maintenance) discussed as follows.

Assume that the histogram of Figure 13(a) is constructed at time 0, and point
p updates its velocity (from 25 to —10) at some future time t (when its position
is p(t)). After the change p does not belong to bucket b, any more, because its
new velocity falls out of b,.VBR [20, 30]. Furthermore, p cannot be inserted
to the bucket that contains its current position p(t) and velocity (—10), since
the histogram is based on information at time 0 (meaning that future object
positions are calculated based on the time elapsed with respect to time 0). To
decide the new bucket for p, we must find its projection point p’ at the histogram
construction time (0), such that p’ will reach the same position p(t) with the
updated velocity. To illustrate this, consider Figure 13(b), where the velocity of
a point is represented as the slope of its trajectory. The projection point p’ is the
intersection of the spatial axis and the line with slope 10 that crosses p(t), which
spatially belongs to buckets bz and by, but only b;.VBR covers the new velocity
value.® To reflect the change, we should update b,.num (= b,.num — 1) and
b,.LV (= b,.LV — 25), and modify bz accordingly (bs.num+ = 1, bs.LV— = 10).

In some cases a projection point may fall outside the spatial universe lead-
ing to the enlargement of a boundary bucket. As an example, consider that in
Figure 13 another point g also changes its velocity (from 25 to —10) at time t.
Then, the MBR of bs must be expanded to cover the projection point g’ (of q)
as in Figure 13(b). Such bucket expansion will occur more frequently as the

SHere we assume the bucket extents are disjoint, which holds for many histograms (e.g., minskew
[Acharya et al. 1999] used in our experiments), so that the bucket containing the projection point is
unique. For histograms without this property, there may be multiple candidate buckets, in which
case the final bucket can be selected randomly.
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time progresses further. This is illustrated in Figure 14, where points p1, p2, ps3
change their velocities (to the same value) at the same spatial location, but at
different timestamps t; < t, < t3, respectively. Notice that, although the projec-
tion p; (of py) lies inside the data space, p, and pj fall outside. This indicates
that, after a sufficiently long period, most projection points will be outside the
space, in which case the buckets covering inner areas become useless and the
histogram efficiency drops. To avoid this, the histogram must be rebuilt peri-
odically to reduce the difference between the current time and the histogram
construction time.

Instead of performing a physical rebuild that needs detailed information
about all objects, we propose a logical rebuild algorithm that creates a new
histogram STHyey by only reading the original histogram STHgq (i.e., without
scanning the data file). Specifically, the MBRs and VBRs of the buckets in
STHyew are the same as those in STHg 4 except that, if a MBR (in STH;4) has
been expanded, the part outside the data space is discarded (i.e., the bucket
MBRs in STHy, are the same as in the initial histogram at time 0). Then,
the algorithm estimates the new statistics for each bucket in STHy, at the
current time T¢. To derive the number b;.num of objects in bucket by € STHpey,
for example, we examine each bucket b, in the original histogram STH4, and
compute the number Npmig(b1, bo, Tc) of objects that are originally in by, but
covered by b; at time Tc (we say these objects migrate from b, to b;). Then,
b;.num is the sum of Npmig(b1, b, Tc) for all buckets b, € STHgg. Similarly,
b;.L; and b;.LV; (i.e., the sum of spatial and velocity lengths of objects in b;) are
estimated as the weighted sum in lines 10-11 of the logical rebuild algorithm
shown in Figure 15.

Next we derive the expected number Npig(b1, b2, Tc) of objects migrated to by
from b,. In particular, we focus on the probability Pmig(b1, b2, Tc) that an object
in b, can migrate tob;. Let [by si—, b1 si+] ([b1 vi—, b1 vi+]) be the extent of b .MBR
(b;.VBR) on the ith dimension (similar notation is used for b,). We say that a ob-
jectoin by partially migrates on the ith axis at time Tc if 0si(Tc) €[b1 si—, b1 sit]
and oy; € [b1 vi, b1 vi+]. Notice that an object migrates if and only if it partially
migrates along all dimensions. Hence, let Pyg_i(by, by, Tc) be the probability of
partial migration on the ith axis; Pmig(b1, b2, Tc) can be represented as:

m
Pmig(b1, b2, Tc) = H Pmig_i (b1, b2, Tc). (7.1)
i=1
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Algorithm logical_rebuild (STH,;, T()
/* this function creates a new histogram S77/,.,. at the current time 7;- from the previous histogram
STH,,;; constructed at time 0 */
1. for each bucket STH,,,,,.b;
STH,.b,MBR= STH ., MBR NDS;
STH,.b,VBR = STH,, ;. b, VBR
for each bucket b, in STH,,,,
b;.num=0; b;.L=0; b,;.LV~0
for each bucket b, in STH,;
compute b, MBR(7) based on b,.VBR
if 5>, MBR(T}) intersects ;. MBR
by.num= b.num+N_mig(b,. by, T¢) /* see the derivation of N, (0,02, T¢) */
10. b/.L,':bj.Lﬁ’[bz.Lﬁ’(bg.L V,)' T(v]'N_mig (b[, b_7, T( ~)/b2.mtm;
11. b,LV,Zb,LV,+(b2LV,)N_mig (b/, bg, T() /bg.ﬂl{f’n;
12.  return STH,,.,.
End logical_rebuild

e

Fig. 15. The logical re-build algorithm for STHs.
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Fig. 16. Derivation of Ppig fix_i(u, by, by, Tc).

To derive Pmig_i(b1, b2, Tc), we consider the probability Pmigfix_i(U, b1, b2, Tc)
that o partially migrates if its velocity oy; takes specific value u. Obviously,
Pmig fix_i(U, by, b2, Tc) = 0, if u ¢ [by,vi—, b1 vit] (i.e., the velocity of o does not fall
into b;.VBR). Figure 16 illustrates the case where u € [by vi—, b1 vi+]. Since the
location os; of o uniformly distributes in [by si—, bz si+] (and oy; is fixed), it has
equal probability to arrive at any position in segment [C, D] at time T, where
C (D) is the location reached by o if it is currently at by si— (b2 siy).

Since o partially migrates if it appears in segment [A, B] (i.e., the spatial
MBR of by), Pmig_fix.i(U, b1, b2, Tc) equals the ratio between lengths of segments
[B, C] and [C, D]. In general, Pnigfix_i(U, b1, bz, Tc) is given by:

Prmig fix_i(U, by, b2, Tc)

0 if(u ¢[byviebrvie]) vV (bosis +u-Te < bysio) v (b2si- +u-Te > by siy)
= § min(bz sit +u- Tc, by sit) — max(bzsi- +u- Te, by si-)

otherwise.
b2,siy — b2si-

(7.2)

Hence, Pmig_i(b1, b2, Tc) (the probability that an object o with any velocity in by
partially migrates) can be computed by integrating over all values of u:

1 b, Vi
Pmig_i(1, b2, Tc) = v — baie / Pmig fix_i(U, b1, bz, Tc) du. (7.3)
Vi — M2 Vi- . bz‘Vif
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Having derived Pmig_i(b1, b2, Tc), the probability Pmig(by, b2, Tc) that an ob-
ject migrates from b, to b; can be computed as Eq. (7.1). Given that bucket b,
contains by.num objects, the number Npmig(bs1, bz, Tc) of migrated objects equals
(b2.num)- Pig(b1, b2, Tc). Note that, since bucket allocation for rectangles is
based on their centroids, the above analysis also applies to rectangle objects.

Whenever the system receives an object update, the new information is in-
tercepted to modify the histogram accordingly. Further, the histogram is, pe-
riodically, logically re-rebuilt using the algorithm in Figure 15. Although the
incremental updating reduces the maintenance cost significantly, since the log-
ical re-building only updates the statistics without changing the original buck-
ets extents (created at time 0), the uniformity inside the buckets (which is the
precondition for efficient estimation) may gradually deteriorate as the data (lo-
cation and velocity) distributions vary. When such changes have accumulated
considerably (which, as evaluated in the experiments, happens only after a
very long period), a physical rebuild is still necessary to maintain satisfactory
performance.

7.2 Nonuniform Estimation with Spatio-Temporal Histograms

STHs allow the application of uniform models inside each bucket, by regarding
its MBR and VBR as the data and velocity space, respectively. Given a STWQ
g, for each bucket b; in STH, we estimate the selectivity b;.Sel for objects in bj,
by replacing [Umin_ia Umax_i], [Vmin_i: Vmax_i]y L;i, LViin Eq. (4.8) with bj .MBR,
bj.VBR, bj.L;, bj.LV;j, respectively. Then, the number of objects in b; satisfying
g can be estimated as b;.Sel-b;.num, and the overall selectivity of g can be
computed from the results of all buckets:

>4 (bj.Sel - bj.num)
N

where h is the number of buckets in STH, and N the cardinality of the dataset.
Notice that we do not compute the selectivity for those buckets that cannot
contain any qualifying objects. Figure 17 shows the extents b; .MBR, b,.MBR of
buckets by, b, for point objects and a query (gt_ = 0) with currentextentgs. The
shaded rectangles represent the extents b; . MBR(gt.), b..MBR(g14), s(gt.) of
by, by, and g at time qr ., respectively. Estimation can be avoided for by, because
its MBR does not intersect that of g during any time in gr, indicating that none
of the objects inside it can possibly satisfy the query. Bucket by, on the other
hand, must be considered (i.e., a qualifying bucket). Thus, for estimation of
STWQ, we scan the STH to identify the qualifying buckets and then evaluate
the cost model for each one of them.

For STKNN queries, we need to evaluate Eq. (5.2) by substituting variables
[Umin_i» Umax_il, [Vmin_i» Vmax_il: Li, LVi, N with the data properties around the
query’s trajectory. Specifically, we first identify the set of buckets {b;, by, ..., bs}
(s is the number of such buckets) whose spatial MBRs intersect query region gs
during query time gr. Then, Unin_i, Umax_i(Vmin_i» Vmax_i) are set to the mini-
mum and maximum spatial (velocity) boundaries of these bucketsb; (1 < j <'s),
respectively, L; and LV; equal the average spatial and velocity lengths of the

(7.4)

Selstwo(q) =
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Fig. 17. Filtering buckets for selectivity estimation.

objects inside the buckets, and N is computed as the weighted sum of bj.num
(weights are decided based on buckets’ volumes):

Umin_i = min{bj »Si—(l =< J =< S)}' Umax_i = maX{bj-Si+(1 = ] = S)},
Viin_i = Min{bj.vi-(1 < j < 9)}, Vmax_i = max{bj.vir (1 < j <s)}
b ySoibpnum’ T T S by.num’ '

[Zs] =1 bj ~num] . H:nzl(umax_i - Umin_i)

N =
>-5-1 vol(b;.MBR)

where [bj si—, bj si+]([bj,vi—. bjvi+]) is the spatial (velocity) extent of bj.MBR
(b;.VBR) on the ith dimension, and vol(bj.MBR) corresponds to the volume of
b;.MBR. To ensure satisfactory estimation accuracy, we must guarantee that
the buckets invoked in Eq. (7.5), contain enough objects. For example, if the
path of g crosses only those buckets with b;.num = 0 (i.e., these buckets cover
areas with zero data density), N is set to 0 and Eq. (5.2) yields nearest dis-
tance 0 (which is clearly unreasonable). Intuitively, in such cases, the nearest
neighbor of q does not lie in the buckets intersecting its path; hence, we need to
compute the statistics by including more distant buckets, or specifically identi-
fying buckets whose MBRs are within some positive distance | from the query
path. If the set of buckets thus obtained contains fewer than N, objects (i.e.,
Zﬁ:l bj.num < N,), we increase | (by certain constant) and repeat the process.
The threshold N, should be large enough to ensure that the vicinity of the query
contains a sufficient number of data points. In the experimental evaluation we
set | to 1% of the axis length of the data space, and N, to 0.1% of the dataset car-
dinality. These values offer satisfactory estimation accuracy without incurring
significant overhead.

For computing the selectivity of STJ assume that STH;, STH, are the his-
tograms for the participating datasets. Given a pair of buckets (b, by)(b1 €
STHi, b, € STHy), a partial selectivity Sel;, can be obtained from Eqg. (6.4),
treating b;.MBR (b:.VBR) and b,.MBR (b,.VBR) as the data (velocity) spaces.
Then, the number of objects in (by, b,) satisfying the join predicate can be esti-
mated as Seli, - by.num-b,.num, and the overall selectivity is:

S ?Zzl(Selij -bj.num.bj.num)
N7 - N2
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Similar to the case of STWQ, we only apply the model for qualifying bucket
pairs, that is, pairs that may contain objects satisfying the join condition.

8. EXPERIMENTS

This section experimentally evaluates the proposed cost models on a
Pentium 111 1 Ghz CPU with 256 Mbytes RAM, using both uniform and nonuni-
form data in the two-dimensional space where each axis has range [0, 10000].
A uniform rectangle dataset UNI,,. contains 1 million moving rectangles, such
thatontheithdimension (1 <i < 2), (i) the spatial length L; and velocity length
LV; of each rectangle r are fixed to 0.5 and 0, respectively (i.e., the extent size of
an object remains fixed as it moves), and (ii) the coordinate rg;_ (velocity ry;_)
of its lower boundary, is uniform in the range [0, 10000 — L;] ([-10, 10 — LV;]).
From UNI e, we create a uniform point dataset UN I, by taking the coordinates
and velocities of each rectangle’s centroid.

Due to the lack of real-world spatio-temporal data, we generate two non-
uniform datasets CA and LA using a common methodology in the literature
[Pfoser et al. 2000; Theodoridis et al. 1999; Tao and Papadias 2003; Choi and
Chung 2002]. Specifically, for CA (LA), objects’ locations (MBRs) are taken from
a real spatial dataset (the Tiger collection [Tiger] of US Census Bureau) con-
taining 2.2 (1.3) million points (rectangles) corresponding to places in California
(Los Angeles). Then, each point (rectangle) o is associated with a velocity vector
oy such that on the ith dimension (1 < i < 2), (i) the absolute value of ovi(ovi-)
follows a Zipf distribution in [0, 10] ([0, 10 — 0.LV;]) (skewed towards O with
biased coefficient 0.8), and (ii) ovi(ovi—) has equal probability to be positive or
negative. For rectangle objects the velocity length o0.LV; follows Zipf (skewed to-
wards 0, coefficient 0.8) in [0, 5] (i.e., objects’ extent sizes can change at different
rates). Note that object velocities on the two dimensions are independent (i.e.,
the moving direction is arbitrary) in the above datasets. For each nonuniform
dataset, we create a (4-dimensional) spatio-temporal histogram using minskew
[Acharya et al. 1999], fixing the number of buckets to 2000 such that each
histogram consumes around 15 kbytes memory.

We evaluate our techniques on (i) prediction accuracy, (ii) computational
overhead, and (iii) performance deterioration along with time (due to object
updates). For comparison, we also demonstrate the results of Choi and Chung
[2002] (referred to CC in the sequel) on STWQ selectivity estimation (no previ-
ous work exists for KNN and STJ estimation). The prediction accuracy is mea-
sured as the average error in answering a query workload of 200 queries with
the same parameters (elaborated shortly for concrete query types). Specifically,
let act; and est; be the actual and estimated values (i.e., selectivity for STWQ,
STJ, nearest distance for STKNN) of the ith query (1 < i < 200) in the workload;
we adopt the following workload error definition [Acharya et al. 1999]:

izicl’ lest; — act; |)
(Eizg? aCti)

We use the above definition, instead of another common metric Wlo > il(esti —
actj)/act;], because the latter is often dominated by the large error of “small”

Errworkioad = (81)
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gueries (i.e., those with low act;). As with previous work [Acharya et al. 1999;
Gunopulos et al. 2000; Bruno et al. 2001], we aim at evaluating performance for
relatively “large” queries, since in practice query optimization for small queries
is trivial (i.e., index search, rather than sequential scan, should always be used).
Itis worth mentioning, however, that our solutions consistently outperform that
of Choi and Chung [2002] under both error definitions.

8.1 STWQ Selectivity Estimation

The spatial extent gqs of each STWQ query is a square with side length q._ (e.g.,
if g = 1000, then the query window covers 1% of the space) whose distribution
follows that of the corresponding dataset. The lower boundary velocity gyi_ on
the ith (1 < i < 2) axis is generated uniformly in [-10, 10 — q.v], where the
velocity length q,v is fixed for all dimensions. The starting timestamp of the
query interval gt is uniform in [0, 100 — q. 1], where q.7 is the length of gr.
Thus, a query workload involves parameters g, , quy, and q,r.

The first set of experiments verifies the correctness of the probabilistic
derivation for STWQ selectivity and compares our model (denoted as TSP)
with CC. Since the original CC only captures static queries over moving ob-
jects, we apply our reduction techniques (i.e., Lemmas 4.1 and 4.2) to obtain the
corresponding formulas for moving queries and rectangle objects. Figure 18a
measures, for UNIy (uniform point dataset), the error rates by fixing gvy, g.t to
10, 50, respectively and varying the query (spatial) length g, from 200 to 1000
(note that the y-axis is in logarithmic scale). TSP yields extremely accurate pre-
diction (with maximum error less than 1%), while CC leads to substantial errors
(greater than 100%), indicating that the temporal intersection condition cannot
be ignored. The error rates of both methods are lower for larger query windows,
a finding that is consistent with the previous studies on spatial window selec-
tivity [Acharya et al. 1999; Jin et al. 2000; Theodoridis et al. 2000] (in general,
probabilistic analysis achieves better accuracy as the output size increases).
Figure 18(b) shows the error rate with respect to various velocity lengths gy
(ranging from 0 to 20), fixing q_ = 600 and g_t = 50. Again our model is precise
whereas CC produces around 100% error. In Figure 18(c), we fix q_ and qpv,
and increase the interval length q.t from O (i.e., timestamp queries) to 100. Itis
clear that CC is accurate only for gt = O (i.e., timestamp queries) and its error
rate increases very fast with g., as predicted by Eq. (4.13). Figures 18(d), 18(e),
18(f) repeat the experiments for rectangle dataset UNI ., confirming the above
observations. Since CC is erroneous in almost all cases, we omit this technique
in the following experiments.

Figure 19(a) plots, for dataset CA, the estimated and actual selectivity (av-
eraged over all queries in a workload) as a function of the query length q,
fixing gLy, qut to their median values. The numbers below the estimated curve
indicate the corresponding workload error. The output size increases with q,
because higher g, leads to greater area of CX(q) (the convex hull of the ver-
tices of gs(gr-) and gs(gt.)), as discussed in Section 4. Figures 19(b) and 19(c)
show the selectivity with respect to the velocity (q.y) and interval length (q.T),
respectively. The output size also increases with gy (qut), which, similar to
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Fig. 18. Accuracy of STWQ selectivity estimation (uniform data).

Figure 18, improves precision. The maximum estimation error is about 12%.
Figures 19(d), 19(e), and 19(f) evaluate the models for nonuniform rectangles
using dataset LA confirming similar observations. LA incurs larger error than
CA because objects in LA have different spatial and velocity lengths, while each
bucket stores only the average values, thus, incurring additional inaccuracy.

The above results are consistent with the recent evaluation in Hadjieleft-
heriou et al. [2003]. If we do not consider object updates, for point data the
histogram in Hadjieleftheriou et al. [2003] achieves the same performance as
our solution, since they are based on similar rationale and both adopt minskew.
However, our approach is incrementally maintainable, which, as shown in Sec-
tion 8.5, reduces the overhead significantly by avoiding frequent (physical) re-
building. Furthermore, we cover all query types, while they focus explicitly on
window queries.

It is worth mentioning that Hadjieleftheriou et al. [2003] also perform exper-
iments using objects moving on road networks. Since the underlying assump-
tion of their (and our) technique is that there is no update between now and the
ending time of the query interval, they measure the “actual” query results by
assuming that the objects maintain their velocities, even after they reach the
end of the road segments (that they were on). In other words, for estimation pur-
poses objects do not really move on a road network, but on a set of infinite lines
defined by the original road segments. We do not include such experiments’

"We actually performed experiments, using the spatio-temporal generator of Brinkhoff [2002], sim-
ulating 500,000 objects (vehicles, pedestrians) moving on the road network of Oldenburg city (6105
nodes, 7035 edges). We found that, under typical settings of the generator (downloadable at the
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Fig. 19. STWAQ selectivity estimation and its accuracy (CA, LA).

in this article because our models, and velocity-based prediction methods in
general (including Choi and Chung [2002] and Hadjieleftheriou et al. [2003]),
are not suitable for road networks, or any application where updates must oc-
cur before the query time. For such cases, conventional forecasting methods,
like exponential smoothing [Gardner 1985], can estimate future results using
only location (but not velocity) information about the present and the recent
past (provided that historical information is available). The main idea is that
although individual object velocities may change abruptly, the overall data dis-
tribution varies smoothly with time due to the continuity of movement; thus,
the recent history can, presumably, predict the immediate future.

8.2 STKNN Nearest Distance Prediction

Next we evaluate the formulas estimating the nearest distances (ND) for
STKNN. We distinguish between point and rectangle queries (i.e., with extents)
because, as shown shortly, they have different characteristics. As with STWQ
workloads, the location of a point query g is decided according to the spatial
distribution of the underlying dataset. Its velocities gy, Qvy 0N the x- and y-
dimensions are set to |qy |-cos6 and |qy | - sin @, respectively, where 6 (randomly
generated in [0, 27)) is the angle between the query’'s movement and the posi-
tive direction of the x-axis, and |qv |(= (97, + a§,)"/%) corresponds to the move-
ment speed. The starting timestamp of the query interval gr follows uniform

following URL: www.fh-oow.de/institute/iapg/personen/brinkhoff/generator.shtml), the percentage
of objects that issue updates per timestamp is about 95% that is, prediction is not useful even for
the next timestamp.
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Fig. 20. STKNN nearest distance estimation and its accuracy (point queries, uniform data).

distribution in [0, 100 — q.], where gt is the length of gt. A rectangle query is
created similarly, except that (i) the query extent is a square with side length
gL, and (ii) the velocity length is zero on all dimensions (the size of a query
remains constant as it moves). Thus, a STKNN workload involves parameters
k, lgv|, qut (for all queries), and q, (for rectangle queries).

Figure 20(a) shows the actual and estimated ND (again, averaged over all the
gueries in the workload), together with the error rate (Eqg. (8.1)), as a function
of the number k of neighbors to be retrieved for point dataset UNIp (Jqv | = 25
and qur = 50). As expected, the value of ND is very small for single NN, and
increases with k (up to around 1 for 100 NN). Figure 20(b) measures ND for var-
ious movement speeds |qy |. Obviously, the nearest distance is lower for queries
that move with high speed, because a faster query travels longer distance and
has a higher chance to encounter objects closer to its path. Figure 20(c) plots ND
(for 50 NN) as a function of the query interval length q.t (Jgv | = 25). When gt
equals 0, the corresponding ND indicates the distance from the query to its kth
NN at the query timestamp. As in the case of travel speed, increasing the query
interval length causes the decrease of ND. The estimated values are very accu-
rate in all cases, yielding maximum error 7.7%. Furthermore, observe that the
errors decrease when the nearest distance becomes larger (similar to Figures 18
and 19, where the error decreases with the output size). Figures 20(d), 20(e),
20(f) demonstrate the results for rectangle dataset UNI ., validating the above
findings. As expected, the nearest distances for rectangle data are smaller than
those for points. Particularly, in Figure 20(d), the nearest distance for k = 1 is
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Fig. 21. STKNN nearest distance estimation and its accuracy (rectangle queries, uniform data).

zero (i.e., at least one object intersects the query extent gs during qr), in which
case the error rate (Eq. (8.1)) is not defined.

In order to examine the accuracy of the model on rectangle queries, we fix
K, laqv|, qLT to 50, 25, 50, respectively, and vary q_ (i.e., the side length of the
guery window) from 0 to 5. Figure 21(a) shows the estimated and actual nearest
distances for point data UNI ;. Observe that, the nearest distance already drops
to 0 when g, equals 3, implying that there are more than k(=50) objects inter-
secting the query window gs at some point during the interval gr. Figure 21(b)
illustrates the nearest distances for rectangle objects UNI., where the ex-
pected ND is even lower. Notice that although the distances are very small, our
model still provides fairly accurate estimation (maximum error below 15%).

Next we illustrate the results of point queries for datasets CA (Figures 22(a),
22(b), and 22(c)) and LA (Figures 22(d), 22(e), and 22(f)). Comparing with uni-
form data (Figure 20), the values of ND are lower, because in these datasets the
data distributions are skewed, and hence, the nearest neighbors of a query lie
in closer vicinity (recall that the query distribution follows that of the dataset).
Rectangle queries are omitted because even with small query extent (q_ < 1),
the expected ND becomes zero.

8.3 STJ Selectivity Estimation

The next set of experiments evaluates the cost models for spatio-temporal join
selectivity. The two query parameters that we consider are: (i) the maximum
distance d between the retrieved objects, and (ii) the query time interval [0, g, 1]
(the starting timestamp is always at the current time). Figure 23(a) shows the
actual and estimated (from Eq. (6.3)) selectivity of the self-join UNIp: < UNIy,
as a function of d (qut = 50). In Figure 23(b), the distance threshold d is fixed
to 250, and the selectivity is measured with respect to q.r (which ranges from
0 to 100).

The chance for two objects to move within distance d from each other in-
creases with both d and g, 1. The self-join for UNI,. produces almost the same
selectivity and prediction error as UN I (hence, we omit the diagrams), because
the object extents (0.5) are significantly smaller than d (>100) and do not affect
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Fig. 22. STKNN nearest distance estimation and its accuracy (point queries, CA, LA).
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the performance. Figure 24 repeats the experiments for CA o< LA (where the
estimated values are obtained from Eg. (6.4)), illustrating similar phenomena.

8.4 Estimation Costs

Having demonstrated the accuracy of the models, we now evaluate their compu-
tation costs, starting with STWQ. Figures 25(a), 25(b), and 25(c) demonstrate
the CPU time for obtaining an estimated value as a function of the query length
(qu), velocity length (quv), and interval length (q_t) for dataset CA. The cost is
very small (up to 300 ms) in all cases, and increases with each query parameter
because we apply the model only for those histogram buckets that intersect the
guery window during the query interval. Higher q.(g.y, or g.t) increases the
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Fig. 25. STWAQ estimation time (CA).

number of qualifying buckets, and consequently, the number of applications of
the model.

For STKNN, the time to estimate ND is negligible (around 10 ms) in all cases
because, as discussed in Section 7.2, we first identify the set of buckets that
intersect the query path, and then execute the uniform model only once using
the data properties obtained from these buckets. On the other hand selectivity
estimation for joins is expensive. Figures 26(a) and 26(b) demonstrate the cost
as a function of d and q., respectively (CA =< LA). Since, we examine only
those buckets (from the histograms of the joined datasets) that can contain
qualifying object pairs, the cost increases with the number of qualifying pairs,
which grows with d and q,_t. Despite the fact that the estimation time can reach
up to 40 seconds, the model is still applicable for optimization since the CPU
time of the corresponding actual join (using TPR-trees [Saltenis et al. 2000]) is
more than 20 minutes.

8.5 Performance Deterioration with Time

The last set of experiments examines the effectiveness of the proposed logical
rebuild algorithm (shown in Figure 15) for maintaining spatio-temporal his-
tograms. The initial histogram is constructed at timestamp 0 from a nonuni-
form dataset. Then, for LA and CA, at each of the subsequent 2000 timestamps,
approximately 1% of the objects (e.g., for CA the total number of changes is
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Fig. 27. Deterioration of STWQ selectivity estimation with time (q_ = 600, g,y = 10, q 1 = 50).

around 40 million) are randomly selected to update their velocities, such that
each velocity offset is uniformly distributed in [—1, 1]. Datasets generated this
way incur gradual distribution changes. For each update, the histogram is mod-
ified as described in Section 7.1, and is logically rebuilt every 50 timestamps
(a rebuild takes less than one second). We perform estimation on each dataset
every 200 timestamps using the most updated histogram (at the query time),
and compare the error with that obtained by using a histogram that is never
re-built.

Figure 27 demonstrates the error rate of selectivity estimation as a function
of elapsed time for STWQ (q. = 600, quv = 10, gt = 50). Figures 28(a) (CA)
and 28(b) (LA) illustrate the error rate of estimating the expected distance
for STKNN, where k = 50, |[qy| = 25, qur = 50. Finally, Figure 29 shows the
error of selectivity estimation for STJ (CAr<LA) (d = 50,qg.r = 50). In all
cases, the performance of the rebuilt histograms degrades (due to the change of
distributions) very slowly. For example, if the tolerable maximum error rate is
35%, then physical rebuilding is unnecessary for all types of queries until 2000
timestamps after the initial construction. The precision of histograms that do
not apply logical rebuilding drops much faster and eventually their error rates
double those of the rebuilt histograms.

As a summary of this section, the experimental results suggest that the pro-
posed formulas are very accurate and compare favorably with those of the corre-
sponding analysis in spatial (static) databases although our problem is substan-
tially harder. In addition, our models and spatio-temporal histograms are highly
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Fig. 29. Deterioration of STJ selectivity estimation with time (d = 50, g, = 50).

applicable in practice, since they incur small overhead (compared to the pro-
cessing time required for the actual queries), and permit effective maintenance.

9. CONCLUSION

This article provides a comprehensive study of predictive spatio-temporal
queries that covers the most common query types (i.e., window queries, k-
nearest neighbors, and spatio-temporal joins), and any object/query mobility
combination. Particularly, we present formulas for selectivity estimation of win-
dow queries and joins, as well as, the nearest distance for nearest neighbor
gueries. Our methodology is based on the reduction of complex problems into
simple ones which involve only static objects and thus, can be efficiently solved.
We also propose incremental spatio-temporal histograms that involve mini-
mal maintenance cost and enable estimation for arbitrary location and velocity
distributions. The efficiency of our techniques is confirmed through extensive
experiments.

Although we focus on individual query types, our results can also support
complex queries such as combinations of joins and window queries (e.g., retrieve
all join pairs that will appear in a query window). The proposed models also
constitute the theoretical foundation for analyzing the performance (in terms
of the number of page accesses during query processing) of spatio-temporal
access methods. Furthermore, they significantly enhance the understanding of
spatio-temporal queries, which may motivate the development of novel index
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structures and processing algorithms. For instance, the model for window
queries led us to the development of the TPR*-tree [Tao et al. 2003a], an
optimized version of the TPR-tree [Saltenis et al. 2000]. In the future, we plan
to investigate alternative forecasting methods (e.g., exponential smoothing)
for applications, where velocity-based prediction is unsuitable due to intensive
updates.
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