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Abstract: Wearable devices and smartphones that are used to monitor the activity and the state of
the driver collect a lot of sensitive data such as audio, video, location and even health data. The
analysis and processing of such data require observing the strict legal requirements for personal
data security and privacy. The federated learning (FL) computation paradigm has been proposed
as a privacy-preserving computational model that allows securing the privacy of the data owner.
However, it still has no formal proof of privacy guarantees, and recent research showed that the
attacks targeted both the model integrity and privacy of the data owners could be performed at all
stages of the FL process. This paper focuses on the analysis of the privacy-preserving techniques
adopted for FL and presents a comparative review and analysis of their implementations in the
open-source FL frameworks. The authors evaluated their impact on the overall training process
in terms of global model accuracy, training time and network traffic generated during the training
process in order to assess their applicability to driver’s state and behaviour monitoring. As the
usage scenario, the authors considered the case of the driver’s activity monitoring using the data
from smartphone sensors. The experiments showed that the current implementation of the privacy-
preserving techniques in open-source FL frameworks limits the practical application of FL to cross-
silo settings.

Keywords: privacy; federated learning; driver activity monitoring; open-source federated learning
frameworks; differential privacy; homomorphic encryption; secure multi-party computations

1. Introduction

To detect potentially dangerous driver activities or states such as distraction or drowsi-
ness, modern driver monitoring systems make use of different data sources such as in-
vehicle sensors, smartphones and wearable devices. Such devices collect a lot of sensitive
data such as video, audio, location etc. The processing and analysis of these data are
regulated by special legislative regulations such as GDPR [1] and PDPA [2], which define
strict requirements to data owner’s privacy and security.

In this paper, the authors focus on the case of commercial vehicle activity monitoring
based on the data from smartphone sensors. These data include readings from gyroscopes,
accelerometers, GPS and other smartphone sensors, and describe the driver’s behaviour
via the vehicle state. The analysis of such data contributes not only to the traffic safety
and driver’s security but also to optimizing business processes as they allow enhancing
simulation models for technological, construction and/or logistic processes [3]. Considering
the fact that there is not much annotated data from commercial vehicles such as dumpers
or excavators [4], the collaboration of the different data owners in this field is the possible
solution. The recently introduced federated learning (FL) paradigm proposes a practical
solution for this task. It allows decomposing machine learning processes and performing
part of computations relating to data processing locally by data owners [5]. Only results
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of such processing are transmitted in the network to produce the aggregated analysis
model [6].

Another attractive feature of the FL paradigm is a decrease in network traffic because
model parameters only are transferred, and they are usually significantly smaller than the
initial training data. Thus, FL proposes an attractive computational model for distributed
machine learning that could be used when designing information systems such as driver
monitoring systems that require processing sensitive and personal data.

However, despite these observable privacy improvements in distributed machine
learning, there are no formal proofs of the privacy level guaranteed by federated learning
settings [5]. Recent research on the security and privacy of the proposed FL algorithms
has shown that attacks could be performed at all stages of the FL process and target all
FL elements—data owners (clients), aggregating server (servers) and local and global
models [5,7,8].

In this paper, the authors analyse the privacy mechanisms developed for FL systems
and investigate what privacy-preserving technologies are implemented in the open-source
FL frameworks such as:

• TensorFlow Federated (TFF) [9];
• Federated AI Technology Enabler (FATE) [10];
• Paddle Federated Learning (PFL) [11];
• Federated Learning and Differential Privacy (FL & DP) [12];
• FEDn [13].

The focus of this paper is privacy-preserving mechanisms implemented in these frame-
works and their impact on the overall training process, i.e., global model accuracy, training
time and network traffic generated during the training process for the driver’s or vehicle
state recognition task. These parameters allow assessing the applicability of FL frameworks
to different FL settings that are different in resource requirements, client’s behaviour and
communication topology. Though there are a number of surveys devoted to different
aspects of federated learning including privacy issues, they do not assess the application of
privacy-preserving techniques to practical analysis tasks. For example, Kairouz et al. [5]
presented the most comprehensive survey on open problems and challenges in FL includ-
ing privacy issues but they focus on theoretical aspects of the FL paradigm. In [14], the
authors investigate architectures and protocols used to deploy federated learning systems
and provide examples of possible applications that may benefit from the usage of the
FL paradigm. In [15], the authors discuss security and privacy issues in federated learn-
ing and review possible security and privacy-aware solutions, however, the survey does
not contain information about the state-of-the-art privacy mechanisms implemented in
the existing FL frameworks. Other research papers analyse particular attacks on privacy
and integrity of machine learning processes in federated learning settings, for example,
Shokri et al. [16] studied basic membership inference attacks. In [17], the authors focused
on targeted data poisoning attacks, evaluated attack longevity, the impact of malicious
participant availability etc.

Thus, the main contributions of this paper are as follows:

1. analysis and systematization of the privacy-preserving mechanisms developed for
the FL systems;

2. analysis of the privacy-preserving mechanisms available to the users in the open-
source FL frameworks;

3. assessment of their impact on overall training performance of FL systems.

The novelty of the paper consists in that all privacy mechanisms are reviewed in
terms of the properties of FL systems such as computational topology, data partition,
requirements to the computational resources and ability to treat drop-outs of the clients.
This allowed the authors to identify an existing challenge in adopting a privacy mechanism
in de-centralized cross-device settings where clients are represented by the IoT devices.
The analysis results of the privacy-preserving mechanisms implemented in the open-source
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federated learning frameworks will be helpful when choosing a privacy mechanism as well
as the framework that implements it, considering their limitations and capabilities.

The paper is structured as follows. Section 2 reviews and systematizes privacy mecha-
nisms proposed for FL. Section 3 outlines privacy mechanisms implemented in the open-
source FL systems, while Section 4 presents a detailed analysis of the privacy mechanisms
supported by FL systems with the highest readiness level—FATE [10] and PFL [11]. The
paper ends with conclusions and a definition of the directions of future works.

2. Privacy Mechanisms for Federated Learning

The privacy in driver’s behaviour and vehicle state recognition systems based on smart
device sensing includes the privacy of the information that could be extracted from sensors’
readings and the privacy of the data that describes how the driver interacts with the system
and its sensing components [3,18]. E. Mantouka et al. identified that existing approaches
tend to “address one specific privacy threat at a time, and none of them addresses the
problem of privacy in total” [3] (p. 269). The federated learning paradigm proposes a
solution that guarantees not only “immediate” privacy in terms of location, current context
or person’s state, but the whole analysis process starting from data processing, analysis
and model deployment. It solves the problem of privacy-preserving computations by
suggesting a distributed computational paradigm in which data are processed locally by
data owners. Currently, the security of the proposed federated machine learning algorithms
is an active research area, and it has been already shown that attacks could be performed
on all stages of the FL process, and all FL elements—clients, servers and models—could be
used as attack entry points.

The driver’s behaviour recognition and monitoring systems require analysis of a
wide range of personal data, from location data to health data. The threat model for
the federated learning includes such attacker characteristics as type, their capabilities,
goals and knowledge [19]. The attackers could be classified as insiders or outsiders based
on their participation in the FL process. Thus, the insiders are usually represented by
collaborating clients and aggregating servers, while the outsiders are malefactors that
could gain unauthorized access to the communication channel between collaborating
entities and/or their information systems. In a driver or vehicle activity recognition
system the insider could be represented, for example, by a dishonest driver who wants
to hide fraudulent or illegitimate activity by making manipulations with sensing devices.
Cybercriminals could serve as an example of outsider attackers. They could target training
data in order to extract sensitive or personal data of the driver or could corrupt the model
preventing it from convergence or creating a backdoor to hide some specific activity.
Obviously, the capabilities of the insider are much wider, as they could manipulate data,
labels as well as model parameters and their local updates. Moreover, they could have
more knowledge about the FL system, for example, they could know about features used
to train the model and the learning algorithm and its parameters.

The attacks could be performed during the training phase or the inference phase.
Evasion attacks are implemented during the inference phase, and they assume crafting

adversarial samples that target to deceive the system. This is the most common attack on
machine learning-based systems.

The target of the attacks in the training phase is the FL model itself, and depending on
the attack goal, the attacker may try to learn, influence or corrupt it. It is possible to outline
two generic types of attacks implemented during the training phase, they are inference
attacks and poisoning attacks. The attacker can run data or model poisoning attacks to
create a backdoor for future attacks by corrupting the integrity of training data set collection
or the integrity of the learning process.

Inference attacks target an individual participant’s update or an aggregate of updates
from all participants, and their primary goal is the privacy of data owners participating in
the FL process. The application of the machine learning techniques often involves analysis
of sensitive data such as health data and financial information and it has been shown that
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trained analysis models may be used to reveal information about the used training dataset,
and therefore, impact the data owner’s privacy [16,20,21]. Based on their target, inference
attacks could be classified into five categories [22]:

• class representative attacks that allow an adversary to recreate samples like the samples
of the original training dataset;

• membership inference attacks that target to determine if a given sample was used in
the training process;

• property inference attacks that target to learn patterns and important properties of the
training dataset such as class balance in the dataset;

• sample/label inference attacks that allow an adversary to obtain not only training
samples but also labels with it;

• source membership attack [23].

Figure 1 shows FL components and attack entry points during the training phase.
The entry points of the attacks are shown by an attacker icon, while its colour is used to
represent different types of the attack. The key distinction of the FL systems from traditional
machine learning ones in terms of security of the training process is a wider range of the
attacker’s capabilities to perform different types of attacks. This fact is explained by a larger
number of participants who are actively involved in the training process. The malicious
clients could not only corrupt data but model parameters as well, they could collude to
perform more effective inference or backdoor attacks. The malicious server could not only
corrupt the global model but also make inferences about the client’s data. In this paper, the
authors focus only on inference attacks that target the privacy of the data owner.

Figure 1. FL components and attack entry points during the training phase.

Xu et al. suggest differentiating between the privacy of the input and privacy of
computation in federated learning settings [24]. The privacy of input data relates to
the protection of the inputs against leakage of information about training data, while
the privacy of computation refers to the protection of data during computation as FL
assumes the collaboration of many parties that could be malicious. Though the federated
learning paradigm may provide a certain level of privacy, it is necessary to apply additional
privacy-preserving mechanisms for both individual input and computation. Currently, the
following types of privacy-preserving mechanisms are suggested:

• differential privacy (DP) mechanisms;
• data and model encryption techniques that include multi-party secure computations

(MPC) and homomorphic encryption (HE);
• trusted execution environment (TEE).
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Figure 2 gives an overview of privacy-preserving approaches adopted for FL. These
mechanisms are reviewed in detail in the subsections below. When analysing them, the
authors analysed their ability to tolerate client dropouts and the requirements of computa-
tional resources.

The authors also considered a security model that is supported by different privacy-
preserving approaches. The security model includes a type of adversary that is used to
evaluate the protocol and number of clients that could be corrupted. There are two types of
adversaries:

• a semi-honest adversary that could corrupt parties but follows the protocol as specified,
such adversaries are also referred to as honest-but-curious);

• a malicious adversary that can arbitrarily deviate from the protocol specification, such
adversaries are often called active ones.

The ability of the protocol to operate in malicious adversary settings provides stricter
security guarantees than in the semi-honest adversary model. For some protocols, the
number of clients that could be corrupted is an essential security parameter. If such a
number is greater than a half of collaborating clients then such settings are referred to as
malicious majority, the rest of the cases are referred to as honest majority.

Figure 2. Overview of privacy-preserving mechanisms adopted for FL.

2.1. Differential Privacy (DP)

Differential privacy (DP) is a formal privacy-preserving model with mathematical
proof [25]. The idea of DP is to mask the input data of a particular data owner by adding
random noise to them.

Differentially private algorithms are characterized by two parameters: ε and δ. Pa-
rameter ε is a quantitative privacy metric, usually denoted as privacy loss or privacy
budget. It lies in the range [0; ∞), the smaller value of ε corresponds to more secure private
data. Parameter δ defines a probability that privacy loss ε will be exceeded. If δ = 0, the
differentially private algorithm provides stricter privacy guarantees.

The application of the DP mechanisms to secure data privacy requires the adoption
of a particular machine learning algorithm. Gong et al. [26] showed that currently there
are DP variants for almost all types of the analysis models—clustering, shallow and deep
classification models.

Kariouz et al. [5] outline two models of DP in FL settings: local and distributed ones.
The local model of differential privacy assumes that random noise is added locally before
parameters of the local model are sent to the aggregating server. This approach is widely
used by large companies such as Google and Apple when collecting statistics on device
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activity [27,28]. A number of research papers study privacy issues of the local DP model.
For example, in [29], the authors suggested an approach that allows participants to set
privacy budget ε locally based on their requirements. Shokri et al. [30] suggested the
distributed differentially private stochastic gradient descent (DP-SGD) algorithm with
a selective gradient update procedure that depends on gradient values and some given
threshold. However, the local DP model suffers from critical practical issues that relate to
the choice of privacy budget ε, as the magnitude of noise has to be chosen in consideration of
the magnitude of parameters’ values across datasets belonging to all data owners requiring
thus additional collaboration between clients or usage of a trusted server that may result in
privacy leakage [5].

The distributed DP model is aimed to solve these problems by introducing encoding
and/or shuffling techniques that add additional privacy guarantees to locally differentially
private inputs of the clients. Most of them [31–33] are based on the encode, shuffle, and
analyse (ESA) model proposed by Bitau et al. [34] that guarantees the privacy through
anonymization. For example, in [31], the authors present Federated Learning in the Shuffle
Model (FLAME) which is based on the ESA model and uses subsampling of input data to
amplify privacy guarantees. In [33], the subsampling procedure is applied not only to data
but also to clients, the authors show that this allows constructing communication-efficient
FL protocols based on stochastic gradient descent with the same privacy and optimization
performance level as in other recently proposed approaches [32,35].

For completeness, it is necessary to remark that differentially private algorithms are
elaborated primarily for the horizontal data partition. This conclusion follows directly
from the definition of differential privacy that operates with datasets differing in the
record but not in the set of attributes. Currently, there is not much research devoted to
the differentially private algorithms for vertically partitioned data. Existing solutions use
either a semi-trusted party that assists in generating synthetic integrated databases, like
in [36] or combine differentially private mechanisms and encryption techniques [37].

2.2. Model and Data Encryption Techniques

Secure computations is a set of approaches and technologies that aim to provide
opportunities to preserve the privacy of input data when computing some function jointly.
Currently, there are three different cryptography-based approaches to secure sensitive
data processing:

• multi-party computation (MPC);
• homomorphic encryption (HE);
• functional encryption.

All these three approaches have different properties and usage scenarios, but all of
them are applicable to the federated machine learning paradigm. For example, in MPC,
two or more parties jointly compute some function F depending on their inputs without
revealing their secret inputs. The key idea of HE is to perform computations on encrypted
data. Functional encryption is a public-key cryptosystem that allows parties to encrypt
their data, meanwhile, an external entity can compute a specific function on the ciphertext
without learning anything additional from the underlying plaintext data [24]. The latter
is achieved by the generation of the special secret key. Though there are few solutions to
secure computations based on functional encryption even for federated machine learning,
they are still proof-of-concept [24].

Application of the MPC protocols in FL settings assumes usage of the server-aided
scheme with several servers. The clients who own data provide their data (encrypted
or masked) to a set of servers to perform computations. Current implementations of the
MPC protocols that could be used in real-world applications are limited in the number of
collaborating computational servers—two [38], three [39] or four [40,41]. MPC protocols
preserve the privacy of computations, but not of the outputs. This means that nothing will
be revealed during the computations; however, the output of the function being computed
may reveal sensitive information.
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The key distinctive feature of the HE is that it allows the third party (e.g., cloud, service
provider) to apply certain computable functions on the encrypted data while preserving
the features of the function and format of the encrypted data.

In the FL setting, the application of HE limits the amount of information that other
participants or aggregating servers can infer from observing the training process and model
parameters.

Similarly to the MPC mechanisms, HE algorithms need to be adapted to machine
learning models, aggregating function [42–44] and data partition [44,45]. For example,
in [45], the authors presented an approach for the secure aggregation of decision tree
parameters for two parties that have vertically partitioned data.

Another critical issue that needs to be considered when applying the HE protocols in
FL settings is that almost all well-known schemes [46,47] allow performing computations
on the data that are encrypted using one single key pair. This leads to a weaker security
model because all participants have to share the same key pair, and if a client colludes with
the aggregator all updates can be decrypted. For example, in [48] the authors proposed a
solution that secures clients against the curious aggregating server. To do this, the clients
elaborate on one joint secret key and corresponding public key and use them to encrypt
model updates using an additively homomorphic encryption scheme. The aggregating
server performs computations over encrypted model weights, thus having no assess to the
input data. However, this approach suggests honest and non-colluding clients as, otherwise,
they could easily reveal each other’s inputs. Currently, the most widely used solution to
overcome these problems is based on distributed schemes of key generation [42,49].

Both MPC and HE protocols are characterized by significant computational and
communicational costs, because encryption and/or decryption involve multiple modular
multiplications and exponentiation operations with a large exponent and modulus (usu-
ally longer than 512 bits), making them extremely expensive to compute. Thus, the main
challenge in the application of MPC and HE to secure the privacy of FL is in accelerating
computation and reducing communication overhead [50–52]. For example, in [52], the au-
thors suggested a software solution to reduce the encryption and communication overhead
of HE-based aggregation, it uses a batch encryption technique that is based on the idea of
joining gradients together as possible to form a long plaintext. There are also hardware-
accelerated HE solutions that use a graphics processing unit (GPU), application-specific
integrated circuit (ASIC) and field-programmable gate array (FPGA).

Nowadays, HE is often used as a building block of MPC protocols. Mixing MPC
with additive homomorphic encryption allows constructing secure and computational
efficient solutions [53]. Usage of HE to secure shares that computing parties are constantly
exchanging allows designing computational efficient protocols for the settings with a mali-
cious adversary and dishonest majority. The computational efficiency is achieved because
authentication is done not for each exchanged share but for a secret being shared. For
example, in [54] the authors presented a privacy framework for FL settings that adaptively
combines different privacy-preserving approaches—fully homomorphic encryption (FHE),
MPC, or secure two-party computation (STPC). Depending on the security requirements,
the framework could be initialized with FHE protocol (one aggregating semi-honest server)
or with MPC/STPC protocol (multiple aggregation servers). The choice of MPC/STPC
depends on the possible malicious behaviour of the servers. The authors proposed to
use ABY2 or MP2ML [55] for two semi-honest servers, ABY3 framework [39] for three
semi-honest servers, the MOTION [56] framework for the majority semi-honest servers, or
MP-SPDZ [53] for the majority of the malicious servers.

Thus, in general, existing encryption-based solutions, due to their performance char-
acteristics, are practically inapplicable in cross-device settings and are typically used in
cross-silo settings. They also could be used in cases when computations could be delegated
to a small set of trusted computational servers that do not collude [5].

Secure aggregation (SecAgg) [57] is a lightweight MPC protocol specifically designed
for the FL settings and could be used in cross-device settings. It implements secure
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aggregation that consists of the secure summing of the local model updates by the third
party in such a manner that the third party learns only aggregated model updates. The
communicational and computational costs of the SecAgg protocol strongly depend on the
number of clients and the size of the data vector sent by each client. Thus, the application
of secure aggregation could be inefficient when the number of clients is large.

Another factor that impacts the protocol performance is the necessity to handle clients
dropouts and the potential malicious behaviour of the aggregation server. The latter
problem could be solved by applying public-key cryptography. To optimize the com-
municational costs associated with the usage of cryptographic protocols, some recently
suggested approaches use the idea of replacing complete communication graph with ran-
dom subgroups of clients and application of secret sharing only for a subset of clients rather
than all pairs of clients [58–61].

In [62], the authors adopt a novel secret sharing protocol FastShare, which is based
on the fast Fourier transform, and propose a FastSecAgg protocol that outperforms [57] in
computational efficiency. The authors show that it is robust against adaptive adversaries
where the clients can adaptively be corrupted during the execution of the protocol and
tolerate dropouts of up to 10% of clients.

2.3. Trusted Execution Environment

As defined in [63], a trusted execution environment (TEE), also referred to as a secure
enclave, is “a secure, integrity-protected processing environment, consisting of memory
and storage capabilities”. It is characterized by the following properties [64]:

• Confidentiality that guarantees that the current state of the code execution remains
confidential unless it receives the corresponding verified notification;

• Integrity that guarantees that code alteration, as well as its execution path, could not
be changed unless it receives a corresponding verified notification;

• Attestation that allows TEE to prove that code is currently executed and to demonstrate
its initial state.

N. Bouacida and P. Mohapatra [65] broaden this list of the TEE properties by adding
authentication that is used to verify not only code but the legitimacy of participating
devices; secure communication such as communication between secure enclaves is usually
protected by cryptographic protocols and private keys are stored in TEE secure environment
with strict data access rights. Thus, TEE provides an opportunity to execute code remotely
in a secure and private manner, making it attractive to use in FL environments when clients
do not trust server-aggregators. In fact, this technology may provide privacy of the inputs
and privacy of computations if both FL client and server use this technology.

Another benefit of TEE is that the code execution in a secure enclave of the untrusted de-
vice is done almost at native speed when compared to other privacy-preserving mechanisms.

In [66] the authors suggested securing layer-wise FL training on clients and aggre-
gation on the server using TEE. They also proposed to secure only the last layer of the
DNN network after training as it contains information vulnerable to membership inference
attacks. To consider memory constraints of TEE, the authors include an additional step
during FL training setup, when the server selects a DNN model suitable for the clients
equipped with TEE.

However, the current TEE environment is available only to CPU devices and is limited
in memory, thus making it impossible to take the benefits of training deep learning models
on GPUs or machine learning processors. Existing research also has shown that TEEs are
vulnerable to different types of attacks—attacks exploiting flows in the architectural solu-
tion of a particular secure enclave, side-channel attacks or attacks utilizing software flows
such as buffer overflow and bad usage of cryptographic protocols [67,68]. Kariouz et al. [5]
also outlined a problem of distribution of FL functions across secure enclaves, clients and
aggregating servers.
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Table 1 summarizes the properties of the reviewed privacy-preserving mechanisms
with respect to properties of FL such as the ability to tolerate client dropouts and the
requirements of computational resources.

Table 1. Properties of privacy mechanisms adopted to FL settings.

Privacy
Mechanism

Privacy
of

Inputs

Privacy of
Computations

Security
Model Dropouts

Support of
Vertically

Partitioned
Data *

Accuracy Specific Features
and Requirements

Local DP + −

Honest-but-
curious

aggregating
server

+ + **

Decreases due to
noise in comparison
to FL models without
any privacy-
preserving
techniques

Requires additional
collaboration when
setting privacy
budget parameters

DP with
shuffling + −

Honest-but-
curious

aggregating
server

+ − Decreases due to
noise

Requires additional
entity (shuffler),
introduces additional
costs due to extra
communication
rounds and
cryptographic
primitives for secure
shuffling and inputs
encoding

MPC + +

Honest
majority

Honest-but-
curious

computing
party itemize

+

−
Not applicable

(all
computations
are performed

by separate
computational

parties)

Comparable to the
accuracy of FL
models without MPC,
decrease due to
conversion from
floating-point
operations to
modular
computations

Requires additional
computational
entities that perform
all trusted
computations;
high computational
and resource
requirements to
computational
entities.

Secure
aggregation + −

Honest-but-
curious

aggregating
server

+ −

Similar to the
accuracy of FL
models without MPC
(input data are
treated as binary
vectors)

Time depends linear
on the number of
clients and on
cryptographic
primitives for public
key infrastructure

HE + +

Malicious
server

Requires a
trusted server

for the
generation of

the encryp-
tion
keys

−
Not

applicable
(all computa-

tions are
performed
by separate
computa-

tional
parties)

+

Comparable to the
accuracy of FL
models without MPC,
slight decrease due to
conversion from
floating-point
operations to
modular
computations

Extremely high
requirements for
computational,
memory and disc
resources of
collaborating entities.

TEE + + Trusted server + − ***

Similar to the
accuracy of FL
models without any
privacy-preserving
techniques

Adds light overhead
in CPU, memory,
energy due to specific
computational
requirements;
limits the choice of
analytical models
due to limited
computational
resources in TEE

*—the authors consider the case of vertically partitioned data as a more complicated and not widely used case. It
usually requires adoption of additional dataset alignment techniques. **—it requires creating additional data set
or application of encryption techniques. ***—this issue is not presented in the literature.



Sensors 2022, 22, 2983 10 of 27

3. Privacy-Preserving Mechanisms Implemented in Open-Source FL Frameworks

A number of FL frameworks have recently appeared. In this paper, the authors review
privacy-preserving mechanisms implemented by five open-source FL frameworks that
are currently under active development and demonstrate a relatively high technology
readiness level. They are TFF [9], FATE [10], PFL [11], FL & DP [12] and FEDn [13].

TensorFlow Federated (TFF 0.17.0) adopts two types of privacy-preserving mech-
anisms. They are a secure aggregation strategy as it is presented in [57] and DP-SGD
algorithm [69] customized for the federated environment.

FATE 1.5.0 focuses on the adoption of a variety of encryption-based techniques that are
used to secure training of vertically and horizontally partitioned data. They implement a
variety of homomorphic encryption schemes including Paillier, RSA-based and others [70].
The Diffie–Hellman key agreement protocol is used in the secure key exchange protocol.

PFL 1.1.0 supports both differentially private- and encryption-based techniques de-
signed for training NN on horizontally partitioned data and makes use of multi-party
secure computation protocol (ABY3 protocol [39]) to perform secure training on both
vertically and horizontally partitioned data.

FL & DP 0.1.0 puts forth differentially private mechanisms to preserve the privacy
of input data and implements a variety of adaptive mechanisms based on exponential,
Laplacian and Gaussian noise and sensitivity based sampling and subsampling.

FEDn 0.2.0 leverages TEEs to ensure the veracity of the model updates done by clients.
The technical challenge is to do this in a way that does not add unacceptable overhead in
computation, since the efficiency of the model updates is also essential to federated learning.

This section reviews privacy mechanisms implemented by open-source FL frameworks.
Table 2 summarizes the types of privacy-preserving mechanisms being announced and
adopted by different open-source frameworks.

Table 2. Types of privacy mechanisms implemented in open-source FL systems.

Framework and
Company

TFF 0.17.0 [9],
Google Inc

FATE 1.5.0 [10],
Webank’s AI
Department

PFL 1.1.0 [11],
Baidu

FL & DP 0.1.0 [12],
Sherpa.AI

FEDn 0.2.0 [13],
Scaleout Systems

DP X X X

HE X

MPC X X

Secure aggregation X X X

TEE X

3.1. Experiment Setup

When assessing the privacy-preserving aspects of these systems the authors investi-
gated the following aspects:

• What privacy-preserving mechanisms are implemented, and what protocols are used?
• What analysis models are they intended for?
• Are there any specific limitations on their practical application?
• How do privacy mechanisms impact the training process in terms of accuracy, time

and network traffic?

As a use case, the authors considered the task of commercial vehicle monitoring. The
authors studied the task of the dumpers’ activity analysis and tracking, the results of such
analysis could significantly contribute to the productivity as well as the sustainability of the
construction industry. Dumpers are the machines that are used to transport material such
as soil, sand and rocks from the excavation point to the storage site in an earth-moving
cycle. Smartphone sensors such as accelerometer and gyroscope in conjunction with the
GPS could be used to monitor four main activities of the dumpers: loading the material,
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transporting it to the destination point, discharging it and driving empty to the excavation
point to get loaded again. In this use case, the collaborating entities could be represented
by the companies managing construction sites who do not want to share such information
for commercial reasons and/or vehicle manufacturing companies who are interested in
providing driver and/or vehicle activity monitoring systems as an additional service.

The authors used a signal data set that also describes the movement of two vehi-
cles—dumpers of the AH and HL series. These dumpers operated at a ground remediation
site in Sweden, and the collected attributes include the timestamp, speed, gyroscope and ac-
celerometer data [71,72]. The data describe the state of the commercial vehicle—movement,
whether it is idle, loading or discharging. The data set is not balanced, as it contains a log
of more than five hours from the AH dumper and only a 75-min log from the HL dumper.
The class distribution is also unbalanced.

The following experimental settings were used. The Google Cloud virtual machines
were used as a runtime environment. Each virtual machine had the following characteristics:

• single hardware hyper-thread in 2.0–3.8 GHz core,
• RAM 6.5 GB (RW speed 24 Mb/s),
• swap: 180 GB, HDD: 30 GB (RW speed 24 Mb/s).

In the experiments, configurations with two and four virtual machines were used in
order to evaluate the impact of privacy mechanisms depending on the number of clients.

To model horizontal data partition, the original data set was divided between clients
into equal shares: each client stored ¼ of the original data set in the experiments with 2 and
4 clients, thus each data set contained approx. 420,000 samples with 7 attributes and 1 label.

To model vertical data partition, the authors split the data across the clients in the
following way:

• four clients: the first client had three attributes, the second and third—two attributes
each, and the fourth client had one attribute and one label;

• two clients: the first client had six attributes, and the second client—one attribute and
one label.

The authors also reduced the size of the data set to 10,000 samples as the duration of
the experiments lasted more than 4 days. The previous set of experiments [73] showed
that not all FL systems mentioned above are ready for production, so in the further set of
experiments the authors focus only on two FL systems—FATE 1.5.0 and PFL 1.1.0.

3.2. Detailed Analysis of the Privacy Mechanisms Available in FATE Framework

FATE 1.5.0 provides a quite wide variety of privacy-preserving algorithms for data
analysis, they include algorithms for calculating statistics for vertically distributed data,
feature selection and feature encoding. However, in this paper, the authors focus on
privacy-preserving algorithms used to train models in federated mode.

Currently, FATE 1.5.0 supports the training of neural networks of different types, linear
regression models and gradient boosting decision trees. Moreover, these models could be
trained on both horizontally and vertically partitioned data.

To protect data privacy, FATE utilizes encryption-based techniques only—secure
aggregation and different homomorphic encryption schemes. For horizontally partitioned
data, FATE supports a secure aggregation strategy that uses encryption of the client’s
updates and additive homomorphic encryption schemes for vertically partitioned data.
Table 3 summarizes privacy-preserving techniques implemented in FATE 1.5.0.
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Table 3. Privacy mechanisms implemented in FATE 1.5.0.

Data Partition Type Type of Privacy
Mechanism Analysis Model Implementation of

Privacy Mechanism

Horizontal Data encryption

NN (DNN, RNN, CNN)
Gradient Boosting Trees Secure Aggregation [57]

Logistic Regression Paillier [74]

Vertical Data encryption

NN (DNN, RNN,
CNN)

SecureNN, or Iterative
Affine, or Affine

Additive HE [75,76]
based on

Paillier scheme

Gradient Boosting Trees SecureBoost [44] based
on Paillier HE scheme

Linear regression
Logistic regression
Poisson regression

Paillier [74]

3.2.1. Secure Aggregation Strategy in FATE

This privacy mechanism is based on the algorithms proposed by the authors of [57],
and is used to secure local inputs from the clients. In FATE this strategy is used to train the
neural network and decision trees. In the first case, the local weights of the neural network
are encrypted, in the second case, the locally computed histograms (which contain the sum
of the gradient and Hessian) are encrypted.

The privacy is achieved by adding specially constructed random numbers generated
on the basis of clients’ secret keys, it uses the Diffie–Hellman key exchange protocol that is
implemented implicitly for the FATE end user.

To assess the impact of the privacy mechanisms on the training process, the authors
used FedAvg aggregation strategy [6] with similar model settings as a baseline. The
results obtained showed that both strategies demonstrated very similar behaviour; their
accuracy, training time and even network traffic generated by clients are almost similar.
Figure 3 shows these parameters for two and four collaborating clients and the number of
aggregation rounds set to 20.

Thus, the use of this privacy mechanism almost does not impact the training process.
Moreover, it does not have any limitations on the number of clients participating in fed-
erated learning, it could be considered the right choice for training neural networks or
decision trees.

(a) (b)

Figure 3. Cont.
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(c)

Figure 3. Comparison of different parameters for FedAvg and SecAgg strategies implemented in
FATE: accuracy (a), training time (b), network traffic (MB) (c).

3.2.2. Homomorphic Encryption in FATE

In FATE, homomorphic encryption is used to secure the training of neural networks,
decision trees and linear models for vertically partitioned data. Despite the certain differ-
ences in implementations, all the encryption-based aggregation strategies share one idea:
all linear computational operations such as summing are secured by additive homomorphic
encryption, while all nonlinear computations are done locally in plain text. For example,
this idea is implemented in the SecureNN algorithm [76] that is used to train the neural
network on vertically partitioned data. In this algorithm approach, each neuron of the
network is split into linear and nonlinear components that are implemented separately on
non-colluding parties. The generic architecture of the computational model is shown in
Figure 4.

The authors suggest considering the bottom (unlinear) model as the “feature extraction”
subtask, the interactive layer that is secured by additive HE and implements the role of
the simplified classifier, and the top model fine-tunes the results of the simplified classifier.
This computational model defines certain requirements for the clients (participants of
computations). One client holds data and labels, and this client trains the top model (party
B in Figure 4), the other clients do not have labels.

The current implementation of federated training of NN supports secure training NN
with two parties only. Apart from the Paillier HE scheme, FATE 1.5.0 provides two other
additive homomorphic encryption schemes—iterative affine and random iterative affine
HE schemes, that differ in key generation and encryption/decryption procedures. The
default encryption scheme is the Paillier HE scheme with the key length set to 1024.
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Figure 4. Scheme of secure NN training on vertically partitioned data implemented in the FL
framework FATE.

Table 4 shows the results of experiments with a training NN with similar settings but
on sets of different sizes and different training parameters. The accuracy does not depend
on batch size but the training time grows inversely to the size of the batch. It also strongly
depends on the size of the input data set. As was stated above, all experiments with
vertically partitioned data were performed with a data set consisting of 10,000 records. This
was done to reduce overall experiment time, as with a data set equal to 1,700,000 records
the training time reaches 24 h with batch size set to 100, while for a data set containing
only 10,000 records training the NN with similar settings takes 9.5 h. It should be noted
that implementation of secure NN training is very resource-demanding, in terms of RAM
and disc space, that is why FATE needs a lot of computational resources for installation,
requiring 16 G RAM and a 500 G hard disk.

Table 4. Parameters of NN training using additive HE scheme for different settings.

Data Set Size Batch Size Accuracy Training Time Traffic, GB

10,000 Entire data set 98.04% 1:02:03 1.71

10,000 1000 97.15% 1:20:15 1.72

10,000 100 99.58% 9:30:59 1.78

The computational model of the secure gradient boosting decision tree (SGBDT)
algorithm is quite similar to the SecureNN model. There is a party that holds data and
labels (referred to as active or guest) and implements secure aggregations, and parties
that hold only data (passive users or host) [44]. However, opposite to the SecureNN
algorithm, this model supports several passive parties. The authors detected that there
is a limitation on their number when FATE 1.6.0 runs in simulation mode, the possible
number of passive parties is 5. The security model is semi-honest, as the active party
orchestrates the encryption process, including the key agreement procedure between active
and passive parties. The encryption is applied only to secure gradients and Hessians that
are computed by all parties. After receiving the feature histograms from passive parties,
the active party decrypts them and finds the best gains. If the best-gain feature belongs
to a passive party, the active party sends the encoded parameter back to the owner party.
The current implementation of SGBDT uses the Paillier HE scheme and its modifications
referred to as iterative affine and random iterative affine HE schemes.
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To save communication and encryption costs, the Fast SecureBoost algorithm is sug-
gested and the modifications of the algorithm relate to different strategies while building
decision trees. For example, in MIX mode Fast SecureBoost limits the number of trees
constructed per party, layered mode supports only one guest party and one host party.
Developers of FATE claim that the application of Fast SecureBoost results in a 30–50%
reduction in training time. In our experiments, the authors used Fast SecureBoost and
evaluated the impacts of different encryption schemes—Paillier and iterative affine HE
schemes—on the accuracy, training time and network traffic. Figure 5 illustrates the results
of the experiments. It is obvious that the type of encryption does not affect significantly on
accuracy of models training, however, it affects considerably training time and volume of
generated network traffic. Training model with Paillier HE takes an average of 3.85 times
more time than using Iterative Additive HE, and network traffic are on average 1.6 times
larger for Pallier HE. The number of trees also influences the training time and the network
traffic. The network traffic proportionally grows with the increase in the trees’ number.

(a) (b)

(c)

Figure 5. Comparison of different parameters of training process for Fast SecureBoost strategy with
different initial settings in FATE: accuracy (a), training time (b), network traffic (GB) (c).

FATE 1.5.0 suggests several linear classification models implemented in the federated
model for vertically partitioned data: linear regression, logistic regression and Poisson
regression. These models are also secured by partially homomorphic encryption. However,
the computational model slightly differs from one used in secure training of NN and
SGBDT. It assumes three different roles assigned to clients—arbiter (aggregator), guest and
host. Arbiter is a node (server) that orchestrates not only training processes but also key
management procedures, it delivers keys to guest and host, and the guest holds data and
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labels, while hosts have only data. The computed gradients are locally encrypted by hosts
and guests and transmitted to the arbiter, who aggregates, calculates and transfers back
the final gradients to corresponding parties. To encrypt gradients, the Paillier, iterative
additive and random iterative HE are used. The default encryption scheme is Paillier with
a 1024 key size.

Experiments showed that, similarly to training other models secured with HE schemes,
training regression models regardless of their type (linear, logistic and Poisson) is a time-
consuming task. The authors evaluated training of the linear regression for two and four
clients. In both cases clients held data sets of similar size, the training was performed with
a batch size set to 1000. Table 5 shows the experiments’ settings and results obtained. The
accuracy of the regression model trained on two clients was high, however training the
model took almost 8 h, and the volume of network traffic generated by the arbiter was
11 GB. With the increase in the number of clients, the training time, as well as network
traffic, increased proportionally.

Table 5. Linear regression model: experimental settings and results obtained.

Number of
Clients

Data Set Size per Clients
(Number of Records) MSE Traffic (GB),

Arbiter Training Time

2 425,000 0.0002 11.30 7:57:312

4 425,000 1.44 65.00 13:54:18

3.3. Detailed Analysis of the Privacy Mechanisms Available in PFL Framework

Currently, PFL implements a centralized (server-aided) model for aggregating pa-
rameters of models, and almost all privacy-preserving algorithms implement a similar
computational model. As currently, PFL focuses on training neural networks of different
types in federated mode (regression models are also implemented as specific shallow net-
works with one data and one output layer) the privacy mechanisms are targeted to protect
neural network parameters and use the peculiarities of neural network (NN) training.

For horizontally partitioned data, PFL supports

• DP-SGD algorithm for differentially private NN training;
• secure aggregation, encryption-based algorithm for NN training.

For vertically partitioned data, PFL implements a pair of connected protocols ABY3 [39]
and PSI [77], where ABY3 is a three-party secure computational protocol, and PSI is used to
find the intersection of the vertically partitioned data in a private manner.

In fact, ABY3 could be applied to secure processing of horizontally partitioned data,
but firstly the data have to be prepared in a corresponding manner: they have to be masked
and shared between the three computational parties.

Table 6 shows privacy-preserving techniques implemented in PFL 1.1.0.

Table 6. Privacy mechanisms implemented in PFL 1.1.0.

Data Partition
Type Analysis Model Type of Privacy

Mechanism
Implementation of
Privacy Mechanism

Horizontal
NN

Linear regression
Logistic regression

Differential privacy DP-SGD [69]

Data encryption Secure Aggregation [57]

Verical
NN

Linear regression
Logistic regression

Data encryption PSI [77] + ABY3 [39]

To assess the impact of the privacy mechanisms on the training process, the authors
used the FedAvg aggregation strategy [6] with similar model settings as a baseline.
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3.3.1. Secure Aggregation Strategy in PFL

Experiments showed that in general case secure aggregation (SecAgg) strategy shows
results that are comparable with results obtained when training with FedAvg strategy. As
in the case of FedAvg, the PFL showed unstable behaviour when training NN with batch
size equal to 32 [73]. The experiments showed that the SecAgg strategy does not impact
model accuracy much due to the peculiarities of the cryptographic operations. However,
the authors determined interesting deviations in other parameters of the training process
such as network traffic and training time.

When the number of rounds is set to 20, traffic generated by SecAgg is almost the same
as the traffic generated by FedAvg, and is slightly higher for the case of 4 clients and batch
size set to 32. Thus, it is possible to conclude that the encryption of the model weights does
not impact the overall network load. The increase of the network traffic in case of batch
size set to 32 could be explained by the increase in communication between server and
client to monitor the training process. When the number of rounds is set to 10, the traffic
for SecAgg significantly increases. Moreover, for the case of two clients, it is possible to see
that this growth depends on the size of the batch: it grows as the batch size decreases. For
the case of four clients, there is no observable dependency. Figure 6 shows the averaged
network traffic registered during the training process for the client.

In general, the training time for both strategies is very similar, in both cases, it depends
on batch size and does not significantly depend on the number of clients and the number of
rounds. However, the authors observed two unusual bursts in time for batch size 100 and
the number of clients equal to 2. Correlating these data with the network data (Figure 6)
allows concluding that the origin of the increase in training time is not in traffic volume,
however, the training time could be affected by network capacity at the moment of the
experiment. Thus, this allows us to conclude that the application of weight encryption does
not impact the training time much. Figure 7 shows how the training time changes when
the FedAvg and SecAgg strategies are used.

(a) (b)

Figure 6. Network traffic (MB) generated by a client when training with FedAvg and SecAgg
strategies for different experiment and model settings: 20 rounds (a), 10 rounds (b).
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(a) (b)

Figure 7. Training time of FedAvg and SecAgg for different experiment and model settings: 20 rounds
(a), 10 rounds (b).

3.3.2. DP-SGD Strategy in PFL

PFL supports the DP-SGD strategy for training NNs and regression models. The
federated implementation of DP-SGD in PFL implements the local privacy model, i.e., the
data privacy protection by adding noise is done locally on the client. However, the setting
of the privacy budget is done in a centralized manner, and this parameter is the same for
all clients.

It is possible to set up the privacy budget ε as well as the probability to break it
(parameter δ). The privacy budget ε is set via parameter epsilon_step that is used to define
the noise scale added on each step of training and is inversely proportional to the budget.
Thus, the smaller values of epsilon_step correspond to the larger amount of noise added to
every step of training. In the experiments, we changed this parameter in the range from 0.1
to 1.0, and these changes do not significantly impact the overall accuracy of the analysis
model. It should be also noted that the privacy budget ε depends on the number of steps in
the training process. The number of steps in their turn depends on the batch size. Thus, the
privacy budget ε grows much quicker for smaller batch sizes than for the larger size batch.
Figure 8 shows the dependence of this parameter on batch size on trainer and epsilon_step.

The accuracy of DP-SGD turned out to be lower than the accuracy of the analy-
sis model trained using FedAvg (Figure 9). When training with default settings, i.e.,
step_epsilon = 0.1; δ = 0.00001, the accuracy is approximately 10% lower than for FedAvg,
and it falls almost twice for the case when the batch size is set to 100. The authors also de-
fined that in contrast to the FedAvg strategy the accuracy of the DP-SGD strategy depends
on the number of clients. Accuracy is 64% for the case of two clients and achieves about
75% for the case of four clients. This may be explained by the fact that the amount of data
used in training grows proportionally to the number of clients: for the case of four clients,
the amount of training data doubles in comparison with the case with two clients.



Sensors 2022, 22, 2983 19 of 27

Figure 8. Privacy budget depending on batch size and epoch number.

Figure 9. Accuracy of DPSGD strategy for two clients and round number set to 20.

Unexpectedly, the training time of DP-SGD grows drastically with an increase in the
number of clients and the batch size. When the authors assessed the network traffic
generated by DP-SGD, it was discovered that its volume significantly exceeds traffic
generated by SecAgg and FedAvg: if the traffic volume for FedAvg and SecAgg is measured
in MB (Figure 6), the traffic for DP-SGD is measured in GB, and it grows almost linearly
with the number of batches. At the moment, the authors explain this fact by the additional
communication and computations present on each training step (as noise is added at
each step).

3.3.3. MPC in PFL for Vertically Partitioned Data

PFL implements the processing of vertically partitioned data with help of MPC pro-
tocols. The generic scheme of the analysis of the vertically partitioned data is shown in
Figure 10. It consists of four major steps:

1. Definition of intersection of data sets belonging to different data owners (clients).
The implementation of this step is necessary when data sets belonging to different
clients do not have similar sets of records’ IDs. The clients’ data set alignment is



Sensors 2022, 22, 2983 20 of 27

implemented using the private set intersection (PSI) protocol, which is based on the
Naor–Pinkas oblivious transfer protocol described in [77]. This protocol requires the
usage of public key infrastructure, and current PSI implementation hides the details
of key agreement protocol from the PFL end users, i.e., they do not need to perform it
in order to set up public and secret keys in an explicit manner.

2. Secret Sharing step. Afterwards, the clients determined the common part of their
datasets, they initiate a secret sharing procedure, when they share their dataset among
computational nodes. Usage of the MPC protocol as it is described above requires hav-
ing two or three computational nodes that perform computations over masked data.
In PFL ABY3 protocol is used, it considers the usage of three computational parties.

3. Private model training process. The training of the analysis model on shared and
masked data is performed by three computational nodes using the ABY3 protocol.

4. Result reconstruction. After the result of a secure computation has been obtained,
it is necessary to reconstruct the results, as the initial input data were split among
three computational nodes. The reconstruction of the results in PFL is done based
on previously used arithmetic sharing but in reverse order aggregating the shares.
PFL allows setting the entity responsible for reconstructing results, this entity is called
Result Party, and this role could be assigned either to the Computing party, data
owner (client) or any other trusted third party.

Figure 10. Analysis pipeline using MPC protocols implemented in the PFL framework.

When assessing the efficiency of MPC-based training, the authors omitted the first
step (finding PSI) and the second step (making encrypted shares), only the time of the third
step was assessed. Currently, in PFL, not all MPC operators for setting up neural networks
are implemented. For example, PFL has batch_normalization and dropout layers, which
are not implemented in MPC. That is why the test neural network was feed-forward with
one input layer, two hidden layers (256 and 128 neurons), an activation layer and an output
layer. Apart from this, some function activation operators and operators for calculating
metrics are not implemented yet. That is why the accuracy is calculated manually as a ratio
of correct predictions to all samples.

When batch size is set to large numbers the neural network does not train properly
producing always the same result with accuracy ∼50%. The training time of NN using
MPC depends a lot on the initial size of the dataset (i.e., number of records and attributes)
and the size of the batch. Thus, for example, for a training network on a dataset consisting
of 10,000 records with a batch size of 1000, the training time equals 16 min, while a training
network with similar parameters on the same data set but of a larger size (1,700,000 records)
results in more than 27 h. Table 7 shows the obtained results.
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Table 7. Parameters of NN training using MPC for different settings.

Data Set Size Batch Size Training Time Accuracy Network Traffic (GB)

10,000

10,000 0:13:58 51.00% 35.80

1000 0:16:35 53.75% 36.40

32 2:11:39 99.00% 58.40

1,700,000 1000 27:19:22 49.67% Not measured

3.4. Discussion

The experiments showed that PFL and FATE implement almost similar privacy mecha-
nisms for protecting horizontally distributed data, PFL also supports a differentially private
strategy—DP-SGD—to train the NN. To protect vertically distributed data, PFL uses MPC
based strategies, while FATE focuses on the application of partially homomorphic encryp-
tion. The latter has allowed FATE to support more analysis models for training them in a
secured federated mode.

The secure aggregation strategy is quite similar to the FedAvg strategy in terms of
accuracy, training time and network load. In PFL the authors observed bursts in traffic that
are most likely explained by peculiarities of PFL internal implementation common to all
strategies. The observed burst time most likely depends on network performance during
experiments, and this fact has to be considered when assessing the applicability of PFL in
practice. Thus, it is possible to conclude that the implementation of secure aggregation in
FATE is more stable and almost similar to FedAvg.

The current implementation of DP-SGD in PFL looks rather raw, it suffers from
unexpectedly high traffic as well as long training time, especially when considering that
no resource consuming operations are implemented. However, it is necessary to note that
accuracy grows with the number of clients using these privacy mechanisms when the
federated learning environment assumes a quite large number of users.

All FATE privacy-preserving mechanisms based on partially homomorphic encryption
are very time and memory-consuming and are characterized by a high volume of traffic.
Searching for appropriate model parameters may result in a very long process.

Table 8 summarizes the obtained analysis results and demonstrates that the existing im-
plementations are suitable only for the cross-silo settings with centralized communication
architecture only. There are no appropriate privacy-preserving techniques for the cross-
device settings. This fact is explained by their inability to handle the dropouts of the clients,
and almost all of them except the secure aggregation strategy are resource-consuming.
This finding reveals an urgent necessity in overcoming the gap existing between practical
implementations of the privacy-preserving techniques and approaches suggested in the
scientific literature (see Table 1) to make FL more useful for training models on personal
and other sensitive data directly on mobile devices.

Another interesting finding is that all implemented privacy-preserving techniques sup-
port a centralized communication scheme that supposes the usage of a server-aggregator.
This server-aggregator has access to data or model weights. This means that parties ex-
cept party-aggregators have no possibility to make inferences about data belonging to
other clients, however, the party-aggregator has such possibility, and in case of his/her
compromise, the system becomes vulnerable to inference attacks. This establishes high
requirements for the security and trust level of the aggregating server.
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Table 8. Properties of the privacy mechanisms implemented in FATE and PFL and mapped to the FL
system properties.

Data
Partition

Clients’
Settings

Communication
Topology

Framework
and Privacy
Mechanisms

Impact on Overall Learning Process

Accuracy Training Time Network Traffic

Horizontal

Cross-silo Centralized

FATE and
Secure

Aggregation

Similar to
FedAvg strategy

in terms of
accuracy.

Similar to the
FedAvg
strategy.

Similar to the
FedAvg strategy.

FATE and
Homomorphic

encryption
(Paillier

encryption
scheme)

Similar to
FedAvg strategy.

Extremely time-
consuming

training
strategy.

Extremely high
volume of traffic.

PFL and Secure
Aggregation

Comparable to
FedAvg strategy.

Comparable to
FedAvg
strategy.

High network
traffic. There is an

observable
dependency

between training
time and network

performance.

PFL and
Differencial

privacy
(DP-SGD)

The accuracy is
lower the

accuracy in
FedAvg strategy,
but it increases
with growth of
clients’ number.

High when
compared with
similar settings
without privacy

mechanisms.

The network
traffic is

extremely high
and is measured

in GB.

De-centralized Not supported Not supported Not supported Not supported

Cross-device Centralized Not supported Not supported Not supported Not supported

De-centralized Not supported Not supported Not supported Not supported

Vertical

Cross-silo Centralized

FATE and
Homomorphic

encryption
(SecureNN,

SGBDT)

The accuracy is
comparable with

the training
model in

centralized mode.

It is a very time-
consuming

strategy.

It is characterized
by a high volume

of traffic
measured in GB.

PFL and MPC
(ABY3)

The accuracy is
comparable with
training model in
centralized mode,

however it is
significantly

lower for neural
networks when
training on large

batches.

It is a very time-
consuming

strategy.

It is characterized
by a high volume

of traffic
measured in GB.

De-centralized Not supported Not supported Not supported Not supported

Cross-device Centralized Not supported Not supported Not supported Not supported

De-centralized Not supported Not supported Not supported Not supported

The authors’ previous research [73] has shown that the accuracy of the analysis model
aimed to recognize vehicle state trained in federated learning mode is comparable to the
accuracy of the analysis model trained in centralized mode when all data are collected in
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one data warehouse. Thus, when assessing the applicability of the federated learning and
privacy-preserving techniques in particular to the task of driver’s state or vehicle activity
monitoring, the crucial issue is the computational resources of the collaborating entities.
In the case of commercial vehicle monitoring, the collaborating entities are represented
mainly by companies or organizations that could have enough computational resources.
For this case the secure aggregation strategy that is implemented both in FATE and PFL
frameworks seems the most attractive as it is comparable in accuracy, time and network
traffic with the FedAvg strategy that is the most commonly used aggregating strategy in
FL settings. However, if the local processing is done by a vehicle itself or a smartphone,
the application of such techniques is quite complicated due to high requirements for the
computations resources. Another important issue to be considered when developing a
driver or vehicle monitoring system based on federated learning is an aggregating party or
server that all other collaborating parties trust. In practice, such aggregating party could be
a state entity or a company that provides such intelligent information services.

4. Conclusions

Modern driver monitoring systems utilize data from different types of sensors such
as in-vehicle sensors, wearable devices or smartphone sensors. These data often contain
personal or other sensitive data that requires additional privacy and security protection.
Federated learning is a possible practical solution that allows finding the trade-off between
the privacy of the data owner and the efficiency of machine learning algorithms. It could
be used to design a driver or vehicle monitoring system that enables privacy-preserving
collaboration of the data owners. However, it has been shown that federated learning still
has vulnerabilities that impact input data privacy.

This paper reviews and systematizes approaches proposed to enhance the privacy of
the FL process. Their analysis is done with respect to the key features of FL systems such
as communication topology, data partition, requirements to the computational resources
and ability to treat drop-outs of the clients.

To evaluate the implemented privacy-preserving techniques in the open-source FL
frameworks, the authors used the case of commercial vehicle monitoring. The experiments
showed that while there are a number of research papers offering solutions that could deal
with client drop-out, the privacy-preserving techniques available in the open-source FL
platforms do not tolerate client drop-outs and have high requirements of computational
and memory resources and network bandwidth. This allowed the authors to conclude that
the current implementation of privacy-preserving techniques is suitable for the cross-silo
setting only. In the context of the driver or vehicle activity monitoring task, this means
that the practical application of the existing open-source FL frameworks with privacy-
preserving techniques is limited to the cases when collaborating clients have enough
computational resources. For example, it could be applied when designing commercial
vehicle activity monitoring system, when the role of the aggregating server is implemented
by trustworthy entity.

The detailed comparative analysis of the two open-source frameworks FATE and PFL
in terms of privacy-preserving techniques showed that they implement slightly different ap-
proaches to enhance the privacy of the data owners, for example, FATE uses homomorphic
encryption to secure computations and input data, while PFL uses MPC protocols to protect
the processing of vertically partitioned data and differential private strategy to train neural
networks for horizontally partitioned data. However, both of these frameworks support
a secure aggregation strategy whose computational performance is comparable to the
aggregation strategies without additional privacy mechanisms. In general, FATE shows a
much higher technological readiness level and could be used to develop privacy-preserving
FL–based driver or vehicle monitoring systems despite the high memory requirements and
long training process. The recommended privacy-preserving strategy for this task is secure
aggregation as it demonstrates similar results in accuracy and temporal performance as an
aggregation strategy without privacy protection.
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To conclude, it is necessary to note that the implemented privacy mechanisms are not
secure against poisoning attacks. Malicious clients regardless of their roles in the FL system
could manipulate their inputs or aggregated weights in order to bias the global model.
The future direction of the research includes the assessment of the impact of the poisoning
attacks on driver and vehicle activity recognition systems based on federated learning.
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DP-SGD Differentially-Private Stochastic Gradient Descent
FedAvg Federated Averaging Aggregation Function
FHE Fully Homomorphic Encryption
FL Federated Learning
FPGA Field-Programmable Gate Array
GDPR General Data Protection Regulation
GPS Global Positioning System
GPU Graphics Processing Unit
HE Homomorphic Encryption
IoT Internet of Things
MPC Multi-Party Secure Computation
NN Neural Network
PDPA Personal Data Protection Act
PSI Private Set Intersection
SecAgg Secure Aggregation
SGD Stochastic Gradient Descent
STPC Secure Two-Party Computation
TEE Trusted Execution Environment
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