## Analysis of Probabilistic Cache Related Pre-emption Delays

Rob Davis, Luca Santinelli, Sebastian Altmeyer, Claire Maiza, and Liliana Cucu-Grosjean

## Outline

- Probabilistic real-time systems
- System model
- Random cache replacement policies (Evict-on-Access, Evict-on-Miss)
- Static Probabilistic Timing Analysis (SPTA)
- Single path programs
- Complexity
- Cache Related Pre-emption Delays
- At a specific point
- Upper bounding the effect at any point
- Multiple pre-emptions
- Extension to Multi-path programs
- Evaluation
- Case study and simulation
- Conclusions and future work


## Probabilistic Real-Time Systems

- What do we mean by a probabilistic real-time system?
- One or more parameters are described by random variables
- Example: instead of a single WCET value, we have a probabilistic Worst-Case Execution Time (pWCET)
- Characterised by a probability distribution


Common question: What does this mean?
Isn't WCET defined as the single worst-case execution time value?

## Analogy: dice and instructions

- Rolling 10 dice (only interested in how many sixes)
- WCET equates to 10 sixes
- pWCET upper bound probability distribution on number of sixes rolled


What should the budget for 'sixes' be such that we get an expected failure rate no higher than 1 per 1 million rolls of the set of dice? i.e. runs of the program. (Failure $=$ more sixes than budgeted)

## Common misunderstanding: Difference between pET and pWCET

- Analogy: two options
- 10x ordinary dice
- $3 x$ big dice that show pairs of values e.g. 2 sixes at once
- Like a program with two paths

- Different pETs for the two options (typically dependent)
- pWCET is a tight upper bound on all possible pETs (independent)
- pWCETs can be composed to get pWCRTs


## Static Probabilistic Timing Analysis (SPTA)

- Aim is to show that the probability of timing failure falls below some threshold e.g. $10^{-9}$ failures per hour: pWCET v. budget

Inputs

Random replacement policy


Probabilistic WCET (pWCET) distribution


## Cache model

- Fully associative instruction cache of $N$ blocks
- Memory blocks can be loaded into any block in cache
- Each instruction resides in a memory block
- Memory blocks may contain multiple instructions
- Instruction modelling
- When an instruction is requested its memory block may be in cache (a hit) or not (a miss)
- If it is not in cache, then it has to be fetched from main memory and loaded into the cache.
- On a miss, a random location is chosen in the cache to accommodate the new memory block (Evict-on-Miss random replacement policy)
- Each cache block has the same probability of being evicted $\mathbf{1} / \mathrm{N}$


## Evict-on-miss random replacement

Cache with memory blocks a,b,c,d,e loaded next instruction is in memory block f


## Instruction modelling

- Instructions are either:
- Cache hit or cache miss (when executed)
- Program path
- Is a sequence of instructions
- Represented by the sequence of memory blocks for those instructions e.g. a, b, a, c, d, b, c, d, a, e, b, f, e, g, a, b, h
- Re-use distance $k$
- Defined as the maximum possible number of evictions since the last access to the memory block containing the required instruction

$$
a, b^{1}, a^{1}, c, d, b^{3}, c^{2}, d^{2}, a^{5}, e, b^{4}, f, e^{2}, g, a^{5}, b^{4}, h
$$

- Can have re-use distance of zero (instructions in the same block \& EoM)
$a, a^{0}, b, b^{0}, b^{0}, b^{0}, a^{1}$,


## Probability of cache hits and misses

- Each instructions has a probability of being a cache hit or a cache miss:
- Described by a discrete random variable (PMF)

$$
\mathcal{I}=\left(\begin{array}{cc}
H & M \\
P\{h i t\} & P\{m i s s\}=1-P\{h i t\}
\end{array}\right)
$$

Note $H$ and $M$ are times for a cache Hit and cache Miss

- Example:
- Probability of a cache hit $=0.75$ with an execution time of 1
- Probability of a cache miss $=0.25$ with an execution time of 10

$$
\mathcal{I}=\left(\begin{array}{cc}
1 & 10 \\
0.75 & 0.25
\end{array}\right)
$$

For each instruction we aim to lower bound the probability of a cache hit independent of whether previous instructions were hits or misses

## Probabilistic real-time analysis

- Requires independence:
- Two random variables $x$ and $Y$ are independent if they describe two events such that the outcome of one event does not have any impact on the outcome of the other
- In our context an instruction having a particular execution time is an event
- There is a dependency between these events via the cache

諎Key idea is to conservatively model the execution times of instructions as independent random variables (which have no dependency on whether previous instructions were cache hits or cache misses)

- Actual probability of a cache hit $P\{h i t\}$ is dependent on the outcome of previous events (hits or misses) but we lower bound it with $P^{\text {nit }}$ which is independent then we can use convolution to get pWCET distribution for a sequence of instructions


## Probabilistic real-time analysis

- Summation of independent random variables is via convolution

$$
\begin{gathered}
\mathcal{C}_{j}=\mathcal{I}_{1} \otimes \mathcal{I}_{2} \otimes \ldots, \\
P\{\mathcal{Z}=z\}=\sum_{k=-\infty}^{+\infty} P\left\{\mathcal{X}_{1}=k\right\} P\left\{\mathcal{X}_{2}=z-k\right\} \\
\left(\begin{array}{cc}
1 & 10 \\
0.8 & 0.2
\end{array}\right) \otimes\left(\begin{array}{cc}
1 & 10 \\
0.7 & 0.3
\end{array}\right)=\left(\begin{array}{ccc}
2 & 11 & 20 \\
0.56 & 0.38 & 0.06
\end{array}\right)
\end{gathered}
$$

## Static Probabilistic Timing Analysis (SPTA)

- Sequence of instructions represented by their memory blocks and re-use distances
$a, b, a^{1}, c, d, b^{3}, c^{2}, d^{2}, a^{5}, e, b^{4}, f, e^{2}, g, a^{5}, b^{4}, h$
- Evict-on-miss random replacement policy
- (Recall: Fully associative cache , N cache blocks, on a cache miss we randomly choose a cache block to be evicted)
- Initial analysis by Zhou [17] 2010

$$
P^{h i t}(k)=\left(\frac{N-1}{N}\right)^{k}
$$

- Depends only on re-use distance $k$ (not on actual cache hit / miss behaviour)
Formulation is not strictly correct due to a dependency via the finite size of the cache


## Problem of Independence

- Counter example:
- Consider a cache of size $N=2$

$$
a, b, c, b^{1}, a^{3},
$$

- If the $2^{\text {nd }}$ access to $b$ is a hit, then $b$ and $c$ must be in cache at that point and so the $2^{\text {nd }}$ access to $a$ is certain to be a miss Probability that the $2^{\text {nd }}$ access to block a is a hit is not independent of whether previous instructions were hits or misses Joint probability that $2^{\text {nd }}$ accesses to both a and b are hits is zero, not 1/16 (as obtained from Zhou formula and convolution)
- Solution:
- Need to model instruction PMFs as independent (so can we can compose using convolution)
HOW? Upper bound the maximum amount of known information ( $h$ blocks that could be known to be in cache) and consider how this may reduce the effective cache size and number of possible evictions


## Static Probabilistic Timing Analysis

- Evict-on-Miss
- With $h$ intervening hits assumed (if $h \geq N$ then $P_{k i t}=0$ )

$$
P^{h i t}(k, h)=\left(\frac{N-h-1}{N-h}\right)^{k-h}
$$

- Lower bound (for all values of $h$ ) so crucially independent of previous hits / misses

$$
P_{\text {EoM }}^{\text {hit }}(k)=\left\{\begin{array}{cc}
\left(\frac{N-1}{N}\right)^{k} & k<N \\
0 & k \geq N
\end{array} \quad \begin{array}{l}
\text { Proof in } \\
\text { the paper }
\end{array}\right.
$$

- Similarly for Evict-on-Access (Cucu-Grosjean et al. [6])

$$
P_{E o A}^{h i t}(k)=\left\{\begin{array}{cc}
\left(\frac{N-(k-1)-1}{N-(k-1)}\right)^{k} & k<N \\
0 & k \geq N
\end{array}\right.
$$

Easy to see that Evict-on-Miss dominates Evict-on-Access

## Static Probabilistic Timing Analysis

- Upper bound pWCET for each instruction based on re-use distance $k$ using formula modelling independent (lower bound) probability of a cache hit
- pWCET for a single path by convolution $\mathcal{C}_{j}=\mathcal{I}_{1} \otimes \mathcal{I}_{2} \otimes \ldots$,
- Convolution is commutative and associative
- Can represent a sequence of accesses

$$
a, b, a^{1}, c, d, b^{3}, c^{2}, d^{2}, a^{5}, e, b^{4}, f, e^{2}, g, a^{5}, b^{4}, h
$$

by their re-use distances:

$$
\begin{aligned}
& \mathbb{Q}=\{-,-, 1,-,-, 3,2,2,5,-, 4,-, 2,-, 5,4,-\} \\
& \mathbb{Q}^{P R O G}=\{1,2,2,2,3,4,4,5,5,-,-,-,-,-,-,-,-\}
\end{aligned}
$$

## pWCET distribution (1-CDF)



## Complexity of SPTA

- Convolving pWCETs for $n$ instructions
- Might seem to have exponential complexity $O\left(2^{n}\right)$
(The case if each distribution had two arbitrary values)
- Max value is a small constant $M$ so after $n$ convolutions, max value is $n M$ and $2 n M$ operations are required for the ( $n+1$ )th convolution
- Complexity is pseudo-polynomial $\mathrm{O}\left(M n^{2}\right)$ where $M$ is a small constant


Problem is tractable in practice
Can also use re-sampling to reduce the size of the distributions

## Probabilistic Cache Related Pre-emption Delays (pCRPD)

- Effects of pre-emption at a single specific program point
- Pre-emption assumed to flush the cache making some re-use distances infinite
- Pre-emption after $1^{\text {st }}$ access

$$
\begin{aligned}
& \mathrm{a}, \mathrm{~b}, \mathrm{a}^{1} \mathrm{c}, \mathrm{~d}, \mathrm{~b}^{3}, \mathrm{c}^{2}, \mathrm{~d}^{2}, \mathrm{a}^{5}, \mathrm{e}, \mathrm{~b}^{4}, \mathrm{f}, \mathrm{e}^{2}, \mathrm{~g}, \mathrm{a}^{5}, \mathrm{~b}^{4}, \mathrm{~h} \\
& \mathbb{Q}_{1}=\{1\} \\
& \text { 个 }
\end{aligned}
$$

- Pre-emption after $5^{\text {th }}$ access

$$
\begin{aligned}
& a, b, a^{1}, c, d, b^{3} c^{2} d^{2} a^{5}, e, b^{4}, f, e^{2}, g, a^{5}, b^{4}, h \\
& \mathbb{Q}_{5}=\{2,2,3,5\}
\end{aligned}
$$

- Accounting for effects of pre-emption
- Remove values from representation of program (path)

$$
\begin{aligned}
& \mathbb{Q}^{P R O G}=\{1,2,2,2,3,4,4,5,5,-,-,-,-,-,-,-,-\} \\
& \mathbb{Q}_{P_{5}}^{P R O G}=\{1,2,4,4,5,-,-,-,-,-,-,-,-,-,-,-,-\}
\end{aligned}
$$

## pCRPD: Pre-emption at any point

- Effects of a single pre-emption at any program point
- Concept of a dominant virtual pre-emption point with an impact that upper bounds the impact of pre-emption at any actual program point
- Method to create virtual pre-emption point $\mathbf{P}^{*}$

$$
a, b, a^{1}, c, d, b^{3}, c^{2}, d^{2}, a^{5}, e, b^{4}, f, e^{2}, g, a^{5}, b^{4}, h
$$

- Pad representations of pre-emption effects so they are all the same length e.g $\mathbb{Q}_{1}=\{1,-,-,-\} \mathbb{Q}_{5}=\{2,2,3,5\}$
- Apply $\min ^{+}\left(\mathbb{Q}_{i}, \mathbb{Q}_{j}\right)=\left\{k_{r}=\min \left(k_{i, r}, k_{j, r}\right) \forall r \leq\left|\mathbb{Q}_{i}\right|\right\}$ So $\min ^{+}\left(\mathbb{Q}_{1}, \mathbb{Q}_{5}\right)=\{1,2,3,5\}$
- Do this for all possible pre-emption points:

$$
\mathbb{Q}^{*}=\min _{r \in\{1, \ldots, 16\}}^{+}\left\{\mathbb{Q}_{r}\right\}=\{1,2,3,5\}
$$

- Remove values from representation of program (path)

$$
\begin{aligned}
& \mathbb{Q}_{P^{*}}^{P R O G}=\operatorname{pre}\left(\mathbb{Q}^{P R O G}, \mathbb{Q}^{*}\right) \\
& \mathbb{Q}_{P^{*}}^{P R O G}=\{2,2,4,4,5,-,-,-,-,-,-,-,-,-,-,-,-\}
\end{aligned}
$$

## pWCET distribution (1-CDF)



## pCRPD: Multiple pre-emptions

- Effects of multiple pre-emptions
- Remove values multiple times

$$
\mathbb{Q}_{x P^{*}}^{P R O G}=\operatorname{pre}\left(\mathbb{Q}_{(x-1) P^{*}}^{P R O G}, \mathbb{Q}^{*}\right)
$$

- If a specific value is no longer present (this is due to pessimism in the analysis) remove next larger value (don't remove smaller ones)
- Example: $a, b, c, d, a^{3}, b^{3}, c^{3}, d^{3}, d^{0}, d^{0}, d^{0}, d^{0}, d^{0}, d^{0}$

$$
\begin{aligned}
\mathbb{Q}^{*} & =\{0,3,3,3\} \\
\mathbb{Q}_{4 P^{*}}^{P R O G} & =\{0,0,-,-,-,-,-,-,-,-,-,-,-,-\}
\end{aligned}
$$

- 4 pre-emptions are not enough to force this program to all misses


## Multi-path Programs

- Static Probabilistic Timing Analysis (SPTA) and pCRPD extended to multi-path programs
- SPTA intuition
- Upper bound re-use distances using program analysis (fixed point iteration)
- Combine \& collapse sub-paths to get a synthetic path representation that upper bounds the pWCET of any path through the program
- pCRPD intuition
- Upper bound the pre-emption effect at each program point using program analysis (on the re-use distances obtained by SPTA before collapsing)
- Combine effects for all program points into a single dominant virtual pre-emption point $\mathrm{P}^{*}$
- Apply $\mathrm{P}^{*}$ to synthetic path as in the single path case

Details in the paper

## Evaluation

- Used Malardalen Bechmarks
- FAC, FIBCALL, FDCT, JFDCINT (single path with loops)
- BS, INSERTSORT, FIR (multi-path)
- Compared Evict-on-Miss and Evict-on-Access random replacement policies
- Varied:
- Number of pre-emptions
- Cache size ( $\mathrm{N}=256,128,64,32$ )
- Memory block sizes (1, 2, 4, 8 instructions)
- Assumed $\mathrm{H}=1, \mathrm{M}=10$
- Also compared SPTA and pCRPD analysis with simulation
- Evict on Miss


## FAC Benchmark

- Memory block size = 1
- Cache size N = 128

- Evict on Miss


## FAC Benchmark

- Memory block size = 1
- Cache size N = 128

- Evict on Access


## FAC Benchmark

- Memory block size = 1
- Cache size N = 128

- Evict on Miss


## FAC Benchmark

- Memory block size = 4
- Cache size $\mathrm{N}=128$

- Evict on Access


## FAC Benchmark <br> - Memory block size = 4 <br> - Cache size $\mathrm{N}=128$



- Evict on Miss


## FAC Benchmark : Varying memory block



- Evict on Miss


## FAC Benchmark

- Varying memory block size
- and cache size



## Technical Report

- YCS-2012-477
- Find it on Rob Davis publications page:
http://www-users.cs.york.ac.uk/~robdavis/publications.html
- Results for other benchmarks
- FAC is very simple code. Others require many more pre-emptions to reduce them to all misses (e.g. > 500 pre-emptions for INSERTSORT)



## Conclusions

- Main contributions
- Revised Static Probabilistic Timing Analysis for Evict-on-Miss random cache replacement policy
- Fixed a problem with dependency
- Extended SPTA to multipath programs
- Introduced analysis of PCRPD
- Including multiple pre-emptions of multi-path programs
- Evaluations
- Method is feasible and provides results that give a useful upper bound on the pWCET
- Future work
- Improvements to the pWCET analysis via loop un-rolling
- Comparisons with deterministic analysis for systems with traditional cache replacement policies
- Reduce the pessimism in SPTA


## Questions?

