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Probabilistic Real-Time Systems

= What do we mean by a probabilistic real-time system?

= One or more parameters are described by random variables

=« Example: instead of a single WCET value, we have a probabilistic
Worst-Case Execution Time (pWCET)

=« Characterised by a probability distribution
—
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Common question: What does this mean?
Isn't WCET defined as the single worst-case execution time value?
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Analogy: dice and instructions

= Rolling 10 dice (only interested in how many sixes)
= WCET equates to 10 sixes
= pWCET upper bound probability distribution on number of sixes rolled
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What should the budget for ‘sixes’ be such that we get an expected
failure rate no higher than 1 per 1 million rolls of the set of dice? i.e.
runs of the program. (Failure = more sixes than budgeted) 4
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Common misunderstanding:
Difference between pET and pWCET

= Analogy: two options
= 10x ordinary dice
= 3X big dice that show pairs of values e.g. 2 sixes at once
= Like a program with two paths

1LEH00 e = Different pETs for
1.E-01 T the two options

T (typically dependent)
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Static Probabilistic Timing Analysis

(SPTA)

= Aim is to show that the probability of timing failure falls below
some threshold e.g. 10~ failures per hour: pWCET v. budget

Inputs - cPU
Random Instruction
replacement Cache
policy I

Memory

Probabilistic
WCET (pWCET)
distribution

111111

111111

111111

Execution time



(X RTS o

Cache model

= Fully associative instruction cache of NV blocks
= Memory blocks can be loaded into any block in cache
= Each instruction resides in a memory block
= Memory blocks may contain multiple instructions

= Instruction modelling

= When an instruction is requested its memory block may be in
cache (a hit) or not (a miss)

« If itis not in cache, then it has to be fetched from main memory
and loaded into the cache.

= On a miss, a random location is chosen in the cache to
accommodate the new memory block (Evict-on-Miss random
replacement policy)

= Each cache block has the same probability of being evicted 1/ N
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i Evict-on-miss random replacement

Cache with memory blocks a,b,c,d,e loaded next instruction is in
memory block f
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Instruction modelling

= Instructions are either:
= Cache hit or cache miss (when executed)

= Program path
= Is a sequence of instructions

= Represented by the sequence of memory blocks for those
instructionse.g. a, b, a,c,d, b,c,d, a,e b, fe g, a b, h

s Re-use distance k

= Defined as the maximum possible number of evictions since the
last access to the memory block containing the required instruction

ac2, d?, @> e, b4 f, e, g, a% b% h
= Can have re-use distance of zero (instructions in the same block &
EoM)

a, a% b, b?, be, bo, al,
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Probability of cache hits and misses

= Each instructions has a probability of being a cache hit or a
cache miss:
= Described by a discrete random variable (PMF)

g—( H M
-~ \ P{hit} P{miss} =1— P{hit}
Note A and M are times for a cache Hit and cache Miss
= Example:

= Probability of a cache hit = 0.75 with an execution time of 1
= Probability of a cache miss = 0.25 with an execution time of 10

110
i AP
£0.75 0.25)

For each instruction we aim to lower bound the probability of
a cache hit independent of whether previous instructions

were hits or misses
10



Probabilistic real-time analysis

= Requires independence:

= Two random variables X and Y are independent if they describe
two events such that the outcome of one event does not have any
impact on the outcome of the other

= In our context an instruction having a particular execution time is
an event

= There is a dependency between these events via the cache

P

N~/ Key idea is to conservatively model the execution times of
,@
¥

~ Instructions as independent random variables (which have
no dependency on whether previous instructions were
cache hits or cache misses)

= Actual probability of a cache hit P{#xit} is dependent on the
outcome of previous events (hits or misses) but we lower bound it
with P which is independent then we can use convolution to get
pWCET distribution for a sequence of instructions

11



Probabilistic real-time analysis

= Summation of independent random variables is via

convolution
Pl{Z =2} = A_ o P{ X = k}Pi&s = 2—k}

1 10 % 1 10) (2 11 20
0.8 0.2 0.7 03) (056 0.38 0.06
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Static Probabilistic Timing Analysis
(SPTA)

= Sequence of instructions represented by their memory blocks
and re-use distances

a, b,al, ¢, d, b} c? d% e, e bY f e g, @, b% h
= Evict-on-miss random replacement policy

= (Recall: Fully associative cache , NV cache blocks, on a cache miss
we randomly choose a cache block to be evicted)

= Initial analysis by Zhou [17] 2010
k
: N -1
P/’llt k —
(k) (—N j

= Depends only on re-use distance & (not on actual cache hit / miss
behaviour)

Formulation is not strictly correct due to a dependency via
the finite size of the cache

13



Problem of Independence

= Counter example:
= Consider a cache of size N =2
a, b, c,bl, @
= If the 2" access to b is a hit, then b and ¢ must be in cache at
that point and so the 2" access to a is certain to be a miss

Probability that the 2" access to block a is a hit is not
independent of whether previous instructions were hits or misses

Joint probability that 2" accesses to both a and b are hits is zero,
not 1/16 (as obtained from Zhou formula and convolution)

= Solution:

= Need to model instruction PMFs as independent (so can we can
compose using convolution)

HOW? Upper bound the maximum amount of known information (/
blocks that could be known to be in cache) and consider how this
may reduce the effective cache size and number of possible
evictions
14
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Static Probabilistic Timing Analysis

Proof in
the paper

Evict-on-Miss
= With % intervening hits assumed (|f h >N then P, = 0)
P (k,h) = N—hl
N-h
= Lower bound (for all values of %) so crucially independent of
previous hits / misses k
| N -1 F< N
P )=\ "N <
0 k>N

Similarly for Evict-on-Access (Cucu-Grosjean et al. [6])

( N-(k-1)-1

P££;<k)=<( N -

k
)

0

<N
k>N

Easy to see that Evict-on-Miss dominates Evict-on-Access 5



Static Probabilistic Timing Analysis

= Upper bound pWCET for each instruction based on re-use
distance & using formula modelling independent (lower bound)
probability of a cache hit
= pWCET for a single path by convolution C;, =7, ® o ® . ...
= Convolution is commutative and associative
= Can represent a sequence of accesses
a, b,al, ¢ d, b3 c? d? a, e b4 f, e g, a, b4 h
by their re-use distances:
Q=4{-,-,1,—,-,3,2,2,5,—.,4,—,2,—,5.4, —}

QFROC ={1,2,2,2,3.4,4,5,5,—. —, — — —, —, —,—}

16



i PWCET distribution (1-CDF)
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Complexity of SPTA

= Convolving pWCETs for » instructions
= Might seem to have exponential complexity O(2")
(The case if each distribution had two arbitrary values)

= Max value is a small constant M so after n convolutions, max value
is nM and 2nM operations are required for the (n+1)th convolution

= Complexity is pseudo-polynomial O(Mn?) where M is a small
constant

» Problem is tractable in practice

Can also use re-sampling to reduce the size of the distributions

18



Probabilistic Cache Related
Pre-emption Delays (pCRPD)

= Effects of pre-emption at a single specific program point

= Pre-emption assumed to flush the cache making some re-use
distances infinite

= Pre-emption after 1st access
a, ba)c, d, b3, 2, d2 a5, e, b4, f, €2, g, a5, b%, h

= {15

= Pre-emption after 5" access

a, b,al, cd @@@@ e, b4 f, €2, g, a>, b4 h
Qs =

{2,2.3, 5}
= Accounting for effects of pre-emption
= Remove values from representation of program (path)

QFEOC = {1,2,2,2,3,4,4,5,5,—, —, —, —, —, —, —, —}
QPROC—{l -2 "l _1 —) _-._!_'.—t_'._!_F_.‘-_'f—‘-_'_}



PCRPD: Pre-emption at any point

= Effects of a single pre-emption at any program point
= Concept of a dominant virtual pre-emption point with an
impact that upper bounds the impact of pre-emption at any actual
program point
= Method to create virtual pre-emption point P*
a, b,al, ¢, d b} c?da, e bYf e g @, b% h
=« Pad representations of pre-emption effects so they are all the
same lengthe.g Q; = {1,—.—, -} Q5 = {2,2,3,5}
= Apply -'z'?'z.-z'."rfr(@i. Q;) = {k =min(ki ki) Y 7 < |Q5]}

SO mint(Q1.Q5) = 11,2.3.5}
= Do this for all possible pre-emption points:

" = "n"‘v;'”‘je{l*...,lfa} {Q:} =1{1,2.3,5}
= Remove values from representation of program (path)

PROG (mMmPROG
pe - = pre(Q .Q")

PROG
@P* :{2929494957_9_9_9_9_9_7_9_7_9_9_9_} 20



i PWCET distribution (1-CDF)
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pCRPD: Multiple pre-emptions

= Effects of multiple pre-emptions
= Remove values multiple times
Qep’ = pre(QGESp-. Q)
« If a specific value is no longer present (this is due to pessimism in
the analysis) remove next larger value (don't remove smaller ones)

« Example: a, b, ¢, d, a3, b3-c3, d3, d°, d°, d9, d9 d° d°
Q* = {0,3,3,3)
e =l ==~ =]

= 4 pre-emptions are not enough to force this program to all misses

22
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Multi-path Programs

= Static Probabilistic Timing Analysis (SPTA) and pCRPD extended
to multi-path programs

= SPTA intuition
= Upper bound re-use distances using program analysis (fixed point
iteration)

= Combine & collapse sub-paths to get a synthetic path representation
that upper bounds the pWCET of any path through the program

= PCRPD intuition

= Upper bound the pre-emption effect at each program point using
program analysis (on the re-use distances obtained by SPTA before

collapsing)

= Combine effects for all program points into a single dominant virtual
pre-emption point P*

= Apply P* to synthetic path as in the single path case

Details in the paper

23
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Evaluation

s Used Malardalen Bechmarks

FAC, FIBCALL, FDCT, JFDCINT (single path with loops)
BS, INSERTSORT, FIR (multi-path)
Compared Evict-on-Miss and Evict-on-Access random replacement
policies
Varied:
= Number of pre-emptions
= Cache size (N = 256, 128, 64, 32)
= Memory block sizes (1, 2, 4, 8 instructions)

AssumedH=1,M =10

Also compared SPTA and pCRPD analysis with simulation

24
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s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability
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s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability
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s Evict on Access

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability
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FAC Benchmark

Probability

Evict on Miss
Memory block size = 4
Cache size N = 128
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FAC Benchmark
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Varying memory block size
= Cache size N =128
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s Evict on Miss

= Varying memory block size
FAC BenCh Md rk = and cache size

Probability
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Technical Report

YCS-2012-477
= Find it on Rob Davis publications page:
http://www-users.cs.york.ac.uk/~robdavis/publications.html

Results for other benchmarks

= FAC is very simple code. Others require many more pre-emptions to
reduce them to all misses (e.g. > 500 pre-emptions for INSERTSORT)
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Conclusions

= Main contributions

= Revised Static Probabilistic Timing Analysis for Evict-on-Miss
random cache replacement policy

= Fixed a problem with dependency
= Extended SPTA to multipath programs

« Introduced analysis of pCRPD
= Including multiple pre-emptions of multi-path programs

= Evaluations

= Method is feasible and provides results that give a useful upper bound
on the pWCET

= Future work
= Improvements to the pWCET analysis via loop un-rolling

= Comparisons with deterministic analysis for systems with
traditional cache replacement policies

= Reduce the pessimism in SPTA

33
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