\‘ad__k < 2/ /\

Analysis of Probabilistic Cache
!'_ Related Pre-emption Delays

Rob Davis, Luca Santinelli, Sebastian Altmeyer,
Claire Maiza, and Liliana Cucu-Grosjean

THE UNIVERSITY 0f /07K ONERA " A y)\mp \ ’
/"’\\ UNIVERSITY OF AMSTERDAM ~ Srene®te &z, LA

Outline

Probabilistic real-time systems
System model
= Random cache replacement policies (Evict-on-Access, Evict-on-Miss)
Static Probabilistic Timing Analysis (SPTA)
= Single path programs
« Complexity
Cache Related Pre-emption Delays
= At a specific point
= Upper bounding the effect at any point
= Multiple pre-emptions
Extension to Multi-path programs
Evaluation
= Case study and simulation
Conclusions and future work

Probabilistic Real-Time Systems

= What do we mean by a probabilistic real-time system?

= One or more parameters are described by random variables

=« Example: instead of a single WCET value, we have a probabilistic
Worst-Case Execution Time (pWCET)

=« Characterised by a probability distribution
—

1.E+00
1E-01
1E-02
> LE-03
E 1.E-04
& 1.E-05
1.E-06
1E-07

1.E-08

=1-CDF

0

2

4 6

Execution time

8

Common question: What does this mean?
Isn't WCET defined as the single worst-case execution time value?

10

.@%RTS o

Analogy: dice and instructions

= Rolling 10 dice (only interested in how many sixes)
= WCET equates to 10 sixes
= pWCET upper bound probability distribution on number of sixes rolled

1.E+00

1.E-01 l_‘_l / Exceedance
LE-02 . K function
'- P

oo iy

ey
5 /
S y ’\3/
o
2 1E05
1e-06 o
1.E-06 S
1.-07 =
1.£-08 g e =
0 2 4 6 10 ¢

. 0 009
Number of Sixes N/ o=

What should the budget for ‘sixes’ be such that we get an expected
failure rate no higher than 1 per 1 million rolls of the set of dice? i.e.
runs of the program. (Failure = more sixes than budgeted) 4

”@ RTS o

..b

Common misunderstanding:
Difference between pET and pWCET

= Analogy: two options
= 10x ordinary dice
= 3X big dice that show pairs of values e.g. 2 sixes at once
= Like a program with two paths

1LEH00 e = Different pETs for
1.E-01 T the two options

T (typically dependent)

1.E-02

1.E-03

= pWCET is a tight
: upper bound on all
: possible pETs
1.E-06 | (independent)
I = pWCETs can be
' composed to get
0 2 4 6 8 10 pWCRTSs

Number of Sixes 5

1.E-04

Probability

1.E-05

1.E-07

1.E-08

Static Probabilistic Timing Analysis

(SPTA)

= Aim is to show that the probability of timing failure falls below
some threshold e.g. 10~ failures per hour: pWCET v. budget

Inputs - cPU
Random Instruction
replacement Cache
policy I

Memory

Probabilistic
WCET (pWCET)
distribution

111111

111111

111111

Execution time

(X RTS o

Cache model

= Fully associative instruction cache of NV blocks
= Memory blocks can be loaded into any block in cache
= Each instruction resides in a memory block
= Memory blocks may contain multiple instructions

= Instruction modelling

= When an instruction is requested its memory block may be in
cache (a hit) or not (a miss)

« If itis not in cache, then it has to be fetched from main memory
and loaded into the cache.

= On a miss, a random location is chosen in the cache to
accommodate the new memory block (Evict-on-Miss random
replacement policy)

= Each cache block has the same probability of being evicted 1/ N

: l: RTSZO 4
Ky

-

i Evict-on-miss random replacement

Cache with memory blocks a,b,c,d,e loaded next instruction is in
memory block f

=

Q| T |=h| D

Instruction modelling

= Instructions are either:
= Cache hit or cache miss (when executed)

= Program path
= Is a sequence of instructions

= Represented by the sequence of memory blocks for those
instructionse.g. a, b, a,c,d, b,c,d, a,e b, fe g, a b, h

s Re-use distance k

= Defined as the maximum possible number of evictions since the
last access to the memory block containing the required instruction

ac2, d?, @> e, b4 f, e, g, a% b% h
= Can have re-use distance of zero (instructions in the same block &
EoM)

a, a% b, b?, be, bo, al,

fﬂ;“‘

M;/ RTS /{)ZA

: ~=" “”%‘: \

Probability of cache hits and misses

= Each instructions has a probability of being a cache hit or a
cache miss:
= Described by a discrete random variable (PMF)

g—(H M
-~ \ P{hit} P{miss} =1— P{hit}
Note A and M are times for a cache Hit and cache Miss
= Example:

= Probability of a cache hit = 0.75 with an execution time of 1
= Probability of a cache miss = 0.25 with an execution time of 10

110
i AP
£0.75 0.25)

For each instruction we aim to lower bound the probability of
a cache hit independent of whether previous instructions

were hits or misses
10

Probabilistic real-time analysis

= Requires independence:

= Two random variables X and Y are independent if they describe
two events such that the outcome of one event does not have any
impact on the outcome of the other

= In our context an instruction having a particular execution time is
an event

= There is a dependency between these events via the cache

P

N~/ Key idea is to conservatively model the execution times of
,@
¥

~ Instructions as independent random variables (which have
no dependency on whether previous instructions were
cache hits or cache misses)

= Actual probability of a cache hit P{#xit} is dependent on the
outcome of previous events (hits or misses) but we lower bound it
with P which is independent then we can use convolution to get
pWCET distribution for a sequence of instructions

11

Probabilistic real-time analysis

= Summation of independent random variables is via

convolution
Pl{Z =2} = A_ o P{ X = k}Pi&s = 2—k}

1 10 % 1 10) (2 11 20
0.8 0.2 0.7 03) (056 0.38 0.06

12

Static Probabilistic Timing Analysis
(SPTA)

= Sequence of instructions represented by their memory blocks
and re-use distances

a, b,al, ¢, d, b} c? d% e, e bY f e g, @, b% h
= Evict-on-miss random replacement policy

= (Recall: Fully associative cache , NV cache blocks, on a cache miss
we randomly choose a cache block to be evicted)

= Initial analysis by Zhou [17] 2010
k
: N -1
P/’llt k —
(k) (—N j

= Depends only on re-use distance & (not on actual cache hit / miss
behaviour)

Formulation is not strictly correct due to a dependency via
the finite size of the cache

13

Problem of Independence

= Counter example:
= Consider a cache of size N =2
a, b, c,bl, @
= If the 2" access to b is a hit, then b and ¢ must be in cache at
that point and so the 2" access to a is certain to be a miss

Probability that the 2" access to block a is a hit is not
independent of whether previous instructions were hits or misses

Joint probability that 2" accesses to both a and b are hits is zero,
not 1/16 (as obtained from Zhou formula and convolution)

= Solution:

= Need to model instruction PMFs as independent (so can we can
compose using convolution)

HOW? Upper bound the maximum amount of known information (/
blocks that could be known to be in cache) and consider how this
may reduce the effective cache size and number of possible
evictions
14

M\f/ <RTS /5

;J;“

Static Probabilistic Timing Analysis

Proof in
the paper

Evict-on-Miss
= With % intervening hits assumed (|f h >N then P, = 0)
P (k,h) = N—hl
N-h
= Lower bound (for all values of %) so crucially independent of
previous hits / misses k
| N -1 F< N
P)=\ "N <
0 k>N

Similarly for Evict-on-Access (Cucu-Grosjean et al. [6])

(N-(k-1)-1

P££;<k)=<(N -

k
)

0

<N
k>N

Easy to see that Evict-on-Miss dominates Evict-on-Access 5

Static Probabilistic Timing Analysis

= Upper bound pWCET for each instruction based on re-use
distance & using formula modelling independent (lower bound)
probability of a cache hit
= pWCET for a single path by convolution C;, =7, ® o ®
= Convolution is commutative and associative
= Can represent a sequence of accesses
a, b,al, ¢ d, b3 c? d? a, e b4 f, e g, a, b4 h
by their re-use distances:
Q=4{-,-,1,—,-,3,2,2,5,—.,4,—,2,—,5.4, —}

QFROC ={1,2,2,2,3.4,4,5,5,—. —, — — —, —, —,—}

16

i PWCET distribution (1-CDF)

% —_—— pWCET without
o G A[—' . - pre-emption
| = o
E I
> s J—
L0
8 T 1e-09 by
o v —m > |
o |
= |
— 1CDFPROG| :
< | --- 1-CDFP* é 4143 —
“]_I'J' E B 1 ' [[|v I B
60 80 100 120 140 160

Execution time

17

Complexity of SPTA

= Convolving pWCETs for » instructions
= Might seem to have exponential complexity O(2")
(The case if each distribution had two arbitrary values)

= Max value is a small constant M so after n convolutions, max value
is nM and 2nM operations are required for the (n+1)th convolution

= Complexity is pseudo-polynomial O(Mn?) where M is a small
constant

» Problem is tractable in practice

Can also use re-sampling to reduce the size of the distributions

18

Probabilistic Cache Related
Pre-emption Delays (pCRPD)

= Effects of pre-emption at a single specific program point

= Pre-emption assumed to flush the cache making some re-use
distances infinite

= Pre-emption after 1st access
a, ba)c, d, b3, 2, d2 a5, e, b4, f, €2, g, a5, b%, h

= {15

= Pre-emption after 5" access

a, b,al, cd @@@@ e, b4 f, €2, g, a>, b4 h
Qs =

{2,2.3, 5}
= Accounting for effects of pre-emption
= Remove values from representation of program (path)

QFEOC = {1,2,2,2,3,4,4,5,5,—, —, —, —, —, —, —, —}
QPROC—{l -2 "l _1 —) _-._!_'.—t_'._!_F_.‘-_'f—‘-_'_}

PCRPD: Pre-emption at any point

= Effects of a single pre-emption at any program point
= Concept of a dominant virtual pre-emption point with an
impact that upper bounds the impact of pre-emption at any actual
program point
= Method to create virtual pre-emption point P*
a, b,al, ¢, d b} c?da, e bYf e g @, b% h
=« Pad representations of pre-emption effects so they are all the
same lengthe.g Q; = {1,—.—, -} Q5 = {2,2,3,5}
= Apply -'z'?'z.-z'."rfr(@i. Q;) = {k =min(ki ki) Y 7 < |Q5]}

SO mint(Q1.Q5) = 11,2.3.5}
= Do this for all possible pre-emption points:

" = "n"‘v;'”‘je{l*...,lfa} {Q:} =1{1,2.3,5}
= Remove values from representation of program (path)

PROG (mMmPROG
pe - = pre(Q .Q")

PROG
@P* :{2929494957_9_9_9_9_9_7_9_7_9_9_9_} 20

i PWCET distribution (1-CDF)

pWCET without _
o pre-emption Ii’WCET Wlih
S — ~— pre-emptio
: e,
| -
: E I
2 ‘ l—— o
L o i
@ 1 - A
-E o 1e09> >i
o i
1 3
& —— 1-CDF PROG 1
~ | -—-- 1-CDFP* "-v"143 —;1,170
E m i I | | B -
60 80 100 120 140 160

Execution time

21

pCRPD: Multiple pre-emptions

= Effects of multiple pre-emptions
= Remove values multiple times
Qep’ = pre(QGESp-. Q)
« If a specific value is no longer present (this is due to pessimism in
the analysis) remove next larger value (don't remove smaller ones)

« Example: a, b, ¢, d, a3, b3-c3, d3, d°, d°, d9, d9 d° d°
Q* = {0,3,3,3)
e =l ==~ =]

= 4 pre-emptions are not enough to force this program to all misses

22

RT S %7/\’

Multi-path Programs

= Static Probabilistic Timing Analysis (SPTA) and pCRPD extended
to multi-path programs

= SPTA intuition
= Upper bound re-use distances using program analysis (fixed point
iteration)

= Combine & collapse sub-paths to get a synthetic path representation
that upper bounds the pWCET of any path through the program

= PCRPD intuition

= Upper bound the pre-emption effect at each program point using
program analysis (on the re-use distances obtained by SPTA before

collapsing)

= Combine effects for all program points into a single dominant virtual
pre-emption point P*

= Apply P* to synthetic path as in the single path case

Details in the paper

23

(X RTS o

Evaluation

s Used Malardalen Bechmarks

FAC, FIBCALL, FDCT, JFDCINT (single path with loops)
BS, INSERTSORT, FIR (multi-path)
Compared Evict-on-Miss and Evict-on-Access random replacement
policies
Varied:
= Number of pre-emptions
= Cache size (N = 256, 128, 64, 32)
= Memory block sizes (1, 2, 4, 8 instructions)

AssumedH=1,M =10

Also compared SPTA and pCRPD analysis with simulation

24

2 RTS /5

s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability

|
pWCET without
pre-emption

: T T pre-emption
o T [RSSO e BN AL
1e-04 4/ PWCET estimate ') :':-. .
from simulation T A - . g-emption
107 runs LA
L b iG @
1e-11 4 —— PROG |- e gt O
——— ¥ tion
------ nxP*
1e-15 =

| | | I =— |
0 100 200 300 400 500 600
Execution time 75

”@ RTS o

..b

s Evict on Miss

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability

B.1 ~

1e-04

1e-09
1e-11

1e-15 -

| | | I B |
0 100 200 300 400 500 600
Execution time 6

s Evict on Access

= Memory block size = 1
FAC BenChmark Cache size N = 128

Probability

o TS N
- G
Simulation much E = oY
1e-04 < closer due to evictions —=%""~ N R T P
Qn every access h
!
I A
1009 —frrrmeeronriimiisisssasas s s sms st ss an by g : : e
1e-11 4 — PROG | b 1 L \Worse performance
——e Pp* . than. Evict-on-Miss
------ nxP*
1e-15 - 3

| | | | T |
0 100 200 300 400 500 600
Execution time 57

FAC Benchmark

Probability

Evict on Miss
Memory block size = 4
Cache size N = 128

pd T S A e s R e TP

0.1 -eeeeeeeeeeee by T L L S
18-04 o qlpbef St b
1e-09 - At
1e-11 A THEHEHREL
1e-15 - ST

I I
0 100 200

I
400

Execution time

28

4

e P R R AR L L (B

-l.l.)-ll-'llJ-IIOJ-I.-lnIDOJ_PDI.I.I. lllllll LR
ey T e g abteacecna
-llill.-lll-“llJfllJfllJP“Ill.P lllllllllll

e fll_-_lllIlllljllllj..ll-llll-vlll

EELER RS ’ -eew ' -- e
A Emm e ' e

Evict on Access
Memory block size
Cache size N = 128

1€-09 ooy S

1e-11

_ m
— 5t
o <9

()]
L

Aungeqoud

i FAC Benchmark

29

Execution time

FAC Benchmark

‘/ X \ -»::‘a
\ >~ 4
S

S

s Evict on Miss

Probability

1e-08 1e-02

1e-14

Varying memory block size
= Cache size N =128

WL —— PROG bs=1
i, ' -- PROG bs=2
L '_I ------ PROG bs=4
L i, -—-—- PROG bs=8
N
................................. ! T FE TR
I
|
i
1
i
! | R | ! |
0 100 200 300 400 500

Execution time

’j |8 RTS/Z{”A

30

s Evict on Miss

= Varying memory block size
FAC BenCh Md rk = and cache size

Probability

1e-08 1e-02

1e-14

-.,_' "'-._L —— PROG bs=1 N=256
1o --- PROG bs=2 N=128
S PROG bs=4 N=64
HET -=-= PROG bs=8 N=32
L
i L
'!;:. -------] R
WL
L L
| |
i 1
!
| [I | | [
0 100 200 300 400 500

Execution time 31

i:.l\.\ﬁ%RT S jork
S5 TA

Technical Report

YCS-2012-477
= Find it on Rob Davis publications page:
http://www-users.cs.york.ac.uk/~robdavis/publications.html

Results for other benchmarks

= FAC is very simple code. Others require many more pre-emptions to
reduce them to all misses (e.g. > 500 pre-emptions for INSERTSORT)

1e-02

Probability
1e-08

1e-14

1 i
0 2000 4000 6000
Execution time 32

http://www-users.cs.york.ac.uk/~robdavis/publications.html

Conclusions

= Main contributions

= Revised Static Probabilistic Timing Analysis for Evict-on-Miss
random cache replacement policy

= Fixed a problem with dependency
= Extended SPTA to multipath programs

« Introduced analysis of pCRPD
= Including multiple pre-emptions of multi-path programs

= Evaluations

= Method is feasible and provides results that give a useful upper bound
on the pWCET

= Future work
= Improvements to the pWCET analysis via loop un-rolling

= Comparisons with deterministic analysis for systems with
traditional cache replacement policies

= Reduce the pessimism in SPTA

33

@RTS!M

34

	�Analysis of Probabilistic Cache Related Pre-emption Delays
	Outline
	Probabilistic Real-Time Systems
	Analogy: dice and instructions
	Common misunderstanding:�Difference between pET and pWCET
	Static Probabilistic Timing Analysis (SPTA)
	Cache model
	Evict-on-miss random replacement
	Instruction modelling
	Probability of cache hits and misses
	Probabilistic real-time analysis
	Probabilistic real-time analysis
	Static Probabilistic Timing Analysis (SPTA)
	Problem of Independence
	Static Probabilistic Timing Analysis
	Static Probabilistic Timing Analysis
	pWCET distribution (1-CDF)
	Complexity of SPTA
	Probabilistic Cache Related�Pre-emption Delays (pCRPD)
	pCRPD: Pre-emption at any point
	pWCET distribution (1-CDF)
	pCRPD: Multiple pre-emptions
	Multi-path Programs
	Evaluation
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	FAC Benchmark
	Technical Report
	Conclusions
	Questions?

