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Analysis of Probabilistic Roadmaps for Path Planning

Lydia E. Kavraki, Mihail N. Kolountzakis, and Jean-Claude Latombe

Abstract—We provide an analysis of a recent path planning method
which uses probabilistic roadmaps. This method has proven very suc-
cessful in practice, but the theoretical understanding of its performance
is still limited. Assuming that a path 
 exists between two configurations
a and b of the robot, we study the dependence of the failure probability
to connect a and b on:

1) the length of 
;
2) the distance function of
 from the obstacles;
3) the number of nodesN of the probabilistic roadmap constructed.

Importantly, our results do not depend strongly on local irregularities
of the configuration space, as was the case with previous analysis. These
results are illustrated with a simple but illuminating example. In this
example, we provide estimates forN , the principal parameter of the
method, in order to achieve failure probability within prescribed bounds.
We also compare, through this example, the different approaches to the
analysis of the planning method.

Index Terms—Probabilistic roadmaps, randomized algorithms, robot
path planning.

I. INTRODUCTION

Motion planning has been an active area of research during the
last two decades [18]. The problem has gained increasing attention
because of the larger number of potential applications (e.g. robotics,
manufacturing, computer-assisted surgery, molecular biology). Sev-
eral recent papers describe path planners that can deal with robots
that have more than 3 or 4 degrees of freedom (DOF) and move in
realistic environments (for a survey see [12]). Because of the high
computational complexity of path planning, practical planners employ
different kinds of heuristics to guide the search of the robot from its
initial to its final position [1]–[3], [5], [8]–[11], [13], [16], [20], [21].

This short paper considers the success of a class of probabilistic
algorithms for path planning [11]–[14], [20], [21] and tries to establish
a framework for the theoretical understanding of their results. Our
ultimate goal is to further enhance the performance of these methods
by evaluating the role of their parameters and by finding ways to
choose good values for these parameters. We will restrict ourselves to
the description of the planner in [12]–[14] for a concise presentation
of the algorithm and our results. We hereafter refer to this planner as
probabilistic roadmap planner (PRM).

PRM builds probabilistic roadmaps in the free configuration space
(C-space) [19] of the robot by generating and interconnecting a
large number of (mostly) random configurations of the robot. These
roadmaps are used for answering path planning queries: given an
initial and final configuration of the robot, PRM connects them to the
roadmap by simple paths (e.g. straight segments) and then searches
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(a) (b)

(c) (d)

Fig. 1. Examples of motion path problems solved by the probabilistic
roadmap method.

the roadmap for a sequence of edges from one connecting node to the
other. Concatenation of the relevant local paths produces an answer
to the user query. PRM has been applied with excellent results to free
flying and articulated robots moving in the plane or in space, as well
as to nonholonomic robots. Examples of its capabilities are given in
Fig. 1. The robot in Fig. 1(a) has 7 DOF. PRM answers path planning
queries, like the one defined by the configurations in Fig. 1(a), in a
fraction of a second after 50 s of preprocessing time on a DEC Alpha
workstation rated at 126.0 SPECfp92 and 74.3 SPECint92. For similar
query times, 620 s are spent in the preprocessing stage for the robot
of Fig. 1(b) which has 16 DOF. Recently PRM is being applied to
examples from assembly maintainability similar to the ones in [6]
(aircraft engines).

As described in [12]–[14] PRM requires the tuning of several
parameters which depend on the considered workspace and robot.
For example, one such parameter isN , the size of the network that
sufficiently captures the connectivity of the free C-space within a
given probability. Currently, the output roadmap is augmented by
generating more nodes until the given initial and final configuration
of the robot get connected through it. The theoretical estimation ofN

can make the full automation of the technique possible, and permit
its application in a wide variety of environments with minimal user
effort.

The theoretical analysis of PRM is a difficult task. The work in
[15] initiated the analysis. It related the performance of the planner
to the goodnessof the C-space of the problem in consideration. A
spaceS is called�-good if the volume ofS that each point inS can
“see” is at least a� fraction of the total free volume ofS. In the PRM
framework, a point sees another point if it can be connected to it in
a simple way (e.g. by a straight-line path). With the above definition,
the value of� is constrained by the point of the space which sees the
least volume ofS, which may be very small. Using� we can estimate
how many nodes a roadmap needs to have, so that the roadmap itself
can see most of the C-space with high probability, and thus answer
planning queries correctly with high probability.

The analysis in this paper focuses on understanding how the
properties of the space in which the robot moves, the shape of

the robot, and the features of the possible paths among its distinct
configurations influence parameters of the technique such as the
size of the roadmaps that must be produced by preprocessing. We
adopt the following point of view. Assuming that a path between
two different configurations of the robot exists, we show that the
probability of failure to connect these configurations with PRM
depends on

1) the length of the assumed path;
2) the distance of the path from the obstacles;
3) the number of nodes of the roadmap generated.

Using our results and making simple assumptions for the values
of 1) and 2) above, as well as for the failure probability we are
willing to tolerate, we can estimate the size (number of nodes) of the
probabilistic roadmap that finds a path between the two configurations
with the given probability. Or, if the shortest path between two
configurations is known in a given environment, we can estimate
the size of the roadmap that will permit us to find a path which is
�-close to the shortest path. Our analysis is not very sensitive to local
difficulties of the C-space and carries over in any C-space dimension.

The analysis given in this paper together with the analysis in [15]
are also presented in the context of the general planning scheme
in [4]. In that work the distance of the robot from the obstacles in
the workspace is used to define a random sampling scheme for path
planning. PRM can be regarded as an instance of the sampling scheme
in [4]. Before proceeding let us also mention that the theoretical
evaluation of algorithms that are experimentally successful in path
planning has recently attracted considerable attention. Some examples
of research in this direction can be found in [1], [7], and [17]. The
work in [1] includes a proof of the probabilistic completeness of the
algorithm presented in [1] and [5], while the work in [17] discusses
the performance of [3]. A learning algorithm for planning is presented
and analyzed in [7].

II. DESCRIPTION OF PRM

A. PRM in Practice

Practical implementations of PRM ([12]–[14]) consist of a prepro-
cessing and a query phase. Preprocessing is further divided into the
roadmap construction and the roadmap enhancement steps.

During roadmap construction, random configurations of the robot
(nodes) are generated over the C-space of the robot and are inter-
connected with a simple, deterministic, and fast planner. We call
this planner a connector to emphasize its simplicity (for example, a
connector may attempt to connect two configurations by a straight
line-segment and fail if this does not lie in the free C-space). For
the interconnection, a distance metric is defined in C-space and the
connector only tries to connect nodes within a predefined distance.
Each successful connection yields an edge of the roadmap. After a
large number of nodes have been generated, the “difficult” (narrow)
parts of the C-space are identified heuristically and more nodes are
placed in these areas [13]. The purpose of this enhancement step is
to facilitate the formation of roadmap components that correspond to
the components of the free C-space.

A path planning query specifiesa and b, the initial and the final
configurations of the robot. PRM first connectsa to a roadmap
node by attempting to connect it first to the closest roadmap nodes.
Once a connection is obtained,b is tried for connection to the same
component. IfA and B are the nodes with whicha and b get
connected, respectively, a search of the roadmap can construct a path
betweenA andB. The resulting path can be smoothed using any
standard smoothing technique.
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B. The Simplified Probabilistic Roadmap Planner (s-PRM)

To analyze the performance of the method we work with a sim-
plified algorithm, which we call the simplified probabilistic roadmap
planner (s-PRM). We rid the approach of the heuristics employed in
practical implementations and any shortcuts taken to achieve better
performance.

Initially we assume that the C-space is two-dimensional. Later in
the paper, we show that our analysis can be carried over to higher
C-space dimensions without any complications.

The parameters of our model are as follows.

1) The Free Space
An arbitrary open subsetF of the unit squareW = [0; 1]2.

2) The Robot
A point which is free to move inF .

3) The Local Connector
It takes the robot from pointa to point b along a straight line
and succeeds if the straight line segmentab is contained inF .

4) The Collection of Random Configurations
A collection of N independent points uniformly distributed
over F .

s-PRM works as follows. We throwN independent random points
in F and connect any two of them that can be connected by a free
straight line. A roadmapG with possibly more than one connected
components results in this fashion. To solve any planning problem,
that is to go from any pointa to any pointb, we try to connect both
a andb to two nodes in the same connected component ofG using
straight lines. s-PRM succeeds if and only if this is possible.

Our purpose is to analyze the probability of failure of s-PRM as
a function of all the relevant parameters. For this we take any two
points a; b 2 F , for which we assume that they can be connected
via a continuous path


 : [0; L] 7�! F ; where
(0) = a and
(L) = b:

(The curve
 is parameterized by Euclidean arc length.) Let alsoO
be the complement ofF in W (the C-obstacle) and for anyx 2 W
write r(x) for the Euclidean distance ofx to O, that is

r(x) = inf
y2O

jx � yj

where jx � yj is the Euclidean distance of the pointsx and y of
the plane.

We shall give upper bounds for the probability of failure of s-
PRM to find a path froma to b. These bounds will involve the
numberN of random points, the functionr(
(t)) for t 2 [0; L],
as well as the lengthL of 
, and will hold for any path
 that
joins a and b. The dependence onL andr(
(t)) is to be expected.
If we have two pointsa and b for which any connecting path is
long, it gets more difficult to find the path, since a larger number of
relevant intermediate configurations must be present in our random
sample ofF . Similarly, if any connecting path has smallr(
(t)), this
intuitively means that the problem is difficult. Imagine for example
thata andb are on different sides of narrow passage. The probability
of placing random configurations inside the passage and connecting
them by straight line paths is small. Let us note here that the quantity
1=r(
(t)) has been used as a measure of the “difficulty” of the area in
which 
(t) lies in the analysis of other planning methods (e.g., [1]).

III. A B OUND THAT INVOLVES THE

MINIMUM DISTANCE FROM THE OBSTACLES

In this section we derive an upper bound on the failure probability
when connecting pairs of pointsa andb. It is assumed thata andb

Fig. 2. The parameters involved in Theorem 1.

can be connected bysomepath


 : [0; L] 7�! F

which keeps uniformly away from the obstacles, that is all its points
are at least a certain distanceR away from the C-obstacles. The key
idea is that of covering the path with few balls which overlap to a
certain degree. The parameters mentioned in the theorem below are
drawn in Fig. 2. (Here we follow closely [12].)

Theorem 1: Let 
 : [0; L] 7�! F be a path of (Euclidean) length
L, with 
(0) = a, 
(L) = b, and letR = inf0�t�L r(
(t)) be the
distance of the path to the obstacles.

Then the probability that s-PRM will fail to connect the pointsa
and b is at most

2L

R
(1� �R

2

)
N (1)

where� = �=(4jFj) is a constant.
Notation: We denote byd(s; t) the distance of the points
(s)

and 
(t) along the curve
. Since we assume that the curve
 is
parameterized by arc lengthd(s; t) = js � tj. The ball centered at
x 2 R2 and with radiusr is denoted byBr(x).

Proof: Let n = d2L=Re. Then we can find pointsx0 =

a; x1; � � � ; xn = b on the curve
, for which d(xj ; xj+1) � R=2,
for all j. Notice then that

BR=2(xj+1) � BR(xj); for j = 0; � � � ; n� 1: (2)

This is a direct consequence of the triangle inequality and the
inequality j
(s) � 
(t)j � d(s; t).

Assume now thatc 2 BR=2(xj) and d 2 BR=2(xj+1). Observe
then that alsod 2 BR(xj) because of (2). This implies that the
straight line segmentcd is free, since bothc andd are contained in
the same free ballBR(xj). An illustration of this basic fact is given
in Fig. 3.

Let now q1; � � � ; qN be the random points that our algorithm
produced. According to the preceding observation, it is enough to
have at least one of theqk’s, k = 1; � � � ; N , in each ballBR=2(xj),
j = 1; � � � ; n�1, for our algorithm to succeed to connect the pointsa

andb. Since theqk’s are independent and uniformly distributed over
F , we conclude that the probability that the ballBR=2(xj) contains
none of theqk’s is equal to(1�jBR=2j=jFj)

N , wherejBR=2j is the
area of the ball of radiusR=2. Here we use the fact that we have
thrown N independentpoints inF

Pr[FAILURE] � Pr[Some ball is empty]

�

n�1

j=1

Pr[The j-th ball is empty]

=
2L

R
� 1 1�

jBR=2j

jFj

N

: (3)
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Fig. 3. Proof of Theorem 1.

But since in two dimensions the area of the ball with radiusR=2

is �R2=4, the above relation becomes

Pr[FAILURE] �
2L

R
1�

�R2

4jFj

N

which concludes the proof of the theorem.

IV. A B OUND THAT EXPLOITS VARYING DISTANCE

The analysis of Section III uses only the minimum distance of the
path 
 from the obstacles. Yet, if this minimum is achieved rarely,
one expects the bound of Theorem 1 to be far from the truth. In this
section we establish an upper bound for the failure probability that
involves a “mean” distance from the obstacles.

Theorem 2: Let the pointsa; b 2 F be connected by a path

 : [0; L] ! F , of Euclidean lengthL, and write

r(t) = inf
x2O

j
(t)� xj

for the distance of
(t) from the obstacles.
Then the probability of failure ofs-PRM is at most

6

L

0

(1� (�=4)r2(t))N

r(t)
dt (4)

where� is again�=(4jFj).
The idea of the proof is, as was the case in Section III, to cover

the curve
 with not-too-many balls that overlap to a certain extent.
Proof: Define t0 = 0; r0 = r(0), and fork � 0 define

tk+1 = sup t 2 [tk; L] : t� tk � rk �
1

2
r(t) (5)

rk+1 = r(tk+1) (6)

and letn be defined by the requirement thattn = L. Fig. 4 illustrates
the selection of points along the path
. The above relations guarantee
that
(tk+1) will be chosen as far away from
(tk) as possible while
ensuring that

Br =2(
(tk+1)) � Br (
(tk))

for k = 0; � � � ; n � 1. By the same reasoning as in the proof of
Theorem 1

Pr[FAILURE] �
n�1

k=1

1� �r
2

k
N
: (7)

Define now the integral

I =

L

0

(1� (�=4)r2(t))N

r(t)
dt:

Let also

�rk = sup
t �t�t +1

r(t); k = 0; � � � ; n� 1:

Fig. 4. Proof of Theorem 2.

The function(1 � (�=4)r2)N=r is a decreasing function ofr. In
each interval[tk; tk+1]; k = 0; � � � ; n�1, we estimate it from below
by its infimum (1 � (�=4)�r2k)

N=�rk. We thus boundI from below
with the corresponding lower Riemann sum

I �

n�1

k=0

(tk+1 � tk)
1� (�=4)�r2k

N

�rk
: (8)

Claim 1: �rk � 2rk This follows immediately from (5) since, if
�rk = r(�tk) for some�tk 2 [tk; tk+1], we have

rk �
1

2
�rk � �tk � tk � 0:

Using Claim 1, (8) gives

I �
1

2

n�1

k=0

tk+1 � tk

rk
1� �r

2

k
N
: (9)

Claim 2: 8s; t : jr(s)� r(t)j � js� tj That is, the functionr(t)
is Lipschitzwith Lipschitz constant equal to1. This is immediate from
the triangle inequality (remember that
(t) has been parameterized
by arc length) which gives

r(s) � js� tj+ r(t)

and

r(t) � js� tj+ r(s):

Claim 3: 8k : tk+1 � tk �
1

3
rk To see this notice that, by def-

inition, we have

tk+1 � tk = rk �
1

2
rk+1

� rk �
1

2
(rk + (tk+1 � tk)) (Claim 2)

=
1

2
rk �

1

2
(tk+1 � tk)

which implies 3

2
(tk+1 � tk) �

1

2
rk and the claim.

Now (7), (9), and Claim 3 give

I �
1

6

n�1

k=1

1� �r
2

k
N
�

1

6
Pr[FAILURE]

which concludes the proof of the theorem.
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V. SIMPLIFIED EXPRESSIONS

Using the inequality

1� x � e
�x

; for x � 0

we get, from Theorems 1 and 2, the following easier-to-use upper
bounds for the failure probability.

1) The bound of Theorem 1 becomes

Pr[FAILURE] �
2L

R
exp(��R

2
N): (10)

2) The bound of Theorem 2 becomes

Pr[FAILURE] � 6

L

0

exp(�(�=4)r2(t)N)

r(t)
dt: (11)

In both formulas above� = �=(4jFj).

VI. A NALYSIS OF A PARTICULAR PROBLEM

We have found simple upper bounds for the probability of failure
to find a given path with the probabilistic roadmaps method. We are
now going to use these bounds to derive estimates onN , the number
of random points thrown uniformly in the free C-space, in order to
have the probability of failure less than a respecified number, say,
for the sake of the argument, less than1=2.

In this section, we study a simple problem in two dimensions. For
the problem shown in Fig. 5 we estimateN using (10) and (11) and
the method of analysis of [15].

The parameter of the problem is�, the length of the opening near
point a, which is taken to tend to0.

We havejFj = 1 so that� = �=4. We also haveL � 1 and
R � �. (By x � y we mean thatC�1x � y � Cx, for some absolute
constantC >0. In what follows,C stands for an absolute positive
constant, not necessarily the same in all its occurrences. However,
it is always possible to find a definite number for every occurrence
of C.)

Estimate Using (10):We get

Pr[FAILURE] �
2L

R
exp(��R

2
N)

� C
1

�
exp(�C�

2
N):

If we choose

N �
1

�2
log

1

�
(12)

we achieve that the failure probability is bounded above by a small
constant (which, of course, depends on the constant implied by the
� sign in (12), but it is the dependence ofN on � that we care
about here).

Estimate Using (11):The function r(t) for the path of Fig. 5
clearly satisfies

r(t) �
�; if 0 � t � C�

t; if t � C�:

Equation (11) then gives

Pr[FAILURE] � 6

L

0

exp(�(�=4)r2(t)N)

r(t)
dt

� C exp(�C�
2
N)

L

0

dt

r(t)

and
L

0

dt

r(t)
�

C�

0

dt

r(t)
+ C

L

C�

dt

t

� C�
1

�
+ log

1

�
� log

1

�
:

Fig. 5. A particular problem.

Therefore

Pr[FAILURE] � C exp(�C�
2
N) log

1

�

and choosing

N �
1

�2
log log

1

�
(13)

bounds the failure probability from above by a small constant.
Estimate After [15]: The space in Fig. 5 is, in the terminology of

[15], a (C�2)-good space. This means that every point ofF can be
connected with a free straight line segment to a set of points ofF

whose area is at leastC�2 (clearly because of the box on the left).
Then (see Theorem 2.1 in [15] and the definition ofadequatesets

of points) one needs to have

N �
1

�2
log

1

�
(14)

in order to bound the failure probability away from 1.
Comparison: Theorem 2 clearly exploits the fact thatr(t) is small

only briefly to gain an extra logarithm in the estimate (13) with
respect to (12) and (14). Note that Theorem 1 and the approach taken
in [15] refer to quantities—the minimum ofr(t) and thegoodness
of F—which are single numbers defined globally over the whole
space. Theorem 2 achieves a better estimate forN because it is less
sensitive to local difficulties than are the bounds of Theorem 1 and
the analysis in [15].

It should be said that the true answer is easily seen to be

N �
1

�2
(15)

since it is necessary and sufficient to put a bounded number of points
in the box, which happens with probability� �2. The estimates
(12)–(14) can thus be seen as the unavoidable1=�2 times a factor on
which they are to be compared. According to (11) and after estimating
(from above) the exponential byexp(�(�=2)R2N) (rememberR =

inft r(t)) that factor takes the very simple form

L

Rh

=

L

0

dt

r(t)

whereRh is the harmonic meanof the functionr(t).

VII. H IGHER DIMENSION

Everything in the preceding analysis extends without any changes
to spaces of higher dimension. Letd be the dimension of the space
and!d denote thed-dimensional volume of the unit ball inRd. Let
also �d = 2

�d!d=jFj.

1) The bound corresponding to (10) becomes then

Pr[FAILURE] �
2L

R
exp(��dR

d
N): (16)
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2) The bound corresponding to (11) becomes

Pr[FAILURE] � 6
L

0

exp(��d2
�drd(t)N)

r(t)
dt: (17)

VIII. C ONCLUSION

The bounds computed in this paper are not very easy to use since
they depend on the properties of the postulated connecting path
(t)

from a to b, which are difficult to measurea priori. Nevertheless,
they at least shed light on the nature of the dependence of the
algorithm on these properties. The fact that the dependence onN

is exponential is a good and, of course, expected feature. Another
nice feature revealed is that the dependence onL is linear. The
bound of Theorem 2 that exploits varying distance from the obstacles
makes our analysis useful in spaces where there are narrow regions
and large parts of free C-space. This analysis also emphasizes the
distinguishing features of PRM when compared with a planner that
creates a uniform grid of points of appropriate resolution in the free
C-space. The latter planner places many nodes in large free parts of
the C-space while a probabilistic technique like PRM as described in
[13] will avoid creating a large number of nodes in areas where local
connections are obtained easily. Undoubtedly, this contributes to the
good experimental performance of PRM.

What the bounds given by Theorems 1 and 2 and by the simplified
inequalities (10) and (11) do permit us to do is to answer questions
of the type:“Assuming that there is a path froma to b which stays
away from the obstacles a distance at least�, what shouldN be in
order to guarantee a success probability of at least 0.99?”Or, if we
know the optimal path froma to b and this stays�-away from the
obstacles, we can estimate whatN should be in order to find, with
a predefined probability, a path which stays�-close(� < �) to the
optimal path. This is done simply by using� as the distance of the
optimal path from the obstacles.

We have thus obtained quite workable expressions for the failure
probability and have demonstrated their use with a simple but
illuminating example. It should also be clarified that, in practice,
one need not restrict oneself to using the Euclidean distance. No
special properties of it were used in this paper and any other distance
would give analogous results. Finally, we note that probabilistic
roadmaps have been applied successfully to nonholonomic robots and
the interested reader is referred to [21] for the analysis in that case.

It is admittedly very hard to characterize the average performance
of PRM and we view the work in this paper as complementary to
the work in [15] which identified a property of the C-space, called
�-goodness, that is likely to account for the success of PRM in
real settings. Our analysis relates in direct way certain geometric
properties of the configuration space of the robot to the parameters
of the planning algorithm used. We are confident that research
along the direction of understanding how the geometric properties
of the environment of the robot influence the performance of specific
planning algorithms will be very important in the future and can
guide us to design faster planners.
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[21] P. Švestka and M. Overmars, “Motion planning for car-like robots using
probabilistic roadmps,” RUU-CS-94-33, Dept. Comput. Sci., Utrecht
Univ., The Netherlands, 1994.


