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the robot, and the features of the possible paths among its distinct
% configurations influence parameters of the technique such as the
‘ ‘ ’ ’ size of the roadmaps that must be produced by preprocessing. We
adopt the following point of view. Assuming that a path between
two different configurations of the robot exists, we show that the

- - - - - - probability of failure to connect these configurations with PRM

depends on
1) the length of the assumed path;
‘ ’ ‘ ’ 2) the distance of the path from the obstacles;
3) the number of nodes of the roadmap generated.
Using our results and making simple assumptions for the values
@) (b) of 1) and 2) above, as well as for the failure probability we are
willing to tolerate, we can estimate the size (number of nodes) of the
= T — ,_//;”’\;\ probabilistic roadmap that finds a path between the two configurations
\:’___%:ﬁ with the given probability. Or, if the shortest path between two
configurations is known in a given environment, we can estimate
the size of the roadmap that will permit us to find a path which is
n-close to the shortest path. Our analysis is not very sensitive to local

difficulties of the C-space and carries over in any C-space dimension.
The analysis given in this paper together with the analysis in [15]

(© (d) are also presented in the context of the general planning scheme
Fig. 1. Examples of motion path problems solved by the probabilisti® [4]. In that work the distance of the robot from the obstacles in
roadmap method. the workspace is used to define a random sampling scheme for path

planning. PRM can be regarded as an instance of the sampling scheme
in [4]. Before proceeding let us also mention that the theoretical

) evaluation of algorithms that are experimentally successful in path
the roadmap for a sequence of edges from one connecting node todf@ning has recently attracted considerable attention. Some examples

other. Concatenation of the relevant local paths produces an ansyefesearch in this direction can be found in [1], [7], and [17]. The
to the user query. PRM has been applied with excellent results to f{ggri in [1] includes a proof of the probabilistic completeness of the
flying and articulated robots moving in the plane or in space, as Wﬁiborithm presented in [1] and [5], while the work in [17] discusses

Fig. 1. The robot in Fig. 1(a) has 7 DOF. PRM answers path planniggq analyzed in [7].

queries, like the one defined by the configurations in Fig. 1(a), in a

fraction of a second after 50 s of preprocessing time on a DEC Alpha

workstation rated at 126.0 SPECfp92 and 74.3 SPECIint92. For similar m
query times, 620 s are spent in the preprocessing stage for the robot

of Fig. 1(b) which has 16 DOF. Recently PRM is being applied to

examples from assembly maintainability similar to the ones in [6}. PRM in Practice

(aircraft engines). Practical implementations of PRM ([12]-[14]) consist of a prepro-
As described in [12]-[14] PRM requires the tuning of severalessing and a query phase. Preprocessing is further divided into the
parameters which depend on the considered workspace and roR4dmap construction and the roadmap enhancement steps.
For example, one such parameterNs the size of the network that  pyring roadmap construction, random configurations of the robot
Suf‘fiCiently Captures the Connectivity of the free C-Space within ﬁodes) are generated over the C_Space of the robot and are inter-
given probability. Currently, the output roadmap is augmented R¥nnected with a simple, deterministic, and fast planner. We call
generating more nodes until the given initial and final configuratigpis planner a connector to emphasize its simplicity (for example, a
of the robot get connected through it. The theoretical estimatia¥ of connector may attempt to connect two configurations by a straight
can make the full automation of the technique possible, and permife-segment and fail if this does not lie in the free C-space). For
its application in a wide variety of environments with minimal usefhe interconnection, a distance metric is defined in C-space and the
effort. connector only tries to connect nodes within a predefined distance.
The theoretical analysis of PRM is a difficult task. The work irEach successful connection yields an edge of the roadmap. After a
[15] initiated the analysis. It related the performance of the planngirge number of nodes have been generated, the “difficult” (narrow)
to the goodnesf the C-space of the problem in consideration. Avarts of the C-space are identified heuristically and more nodes are
spaces is callede-good if the volume ofS that each point irb can  placed in these areas [13]. The purpose of this enhancement step is
“see” is at least a fraction of the total free volume &f. In the PRM  to facilitate the formation of roadmap components that correspond to
framework, a point sees another point if it can be connected to itthe components of the free C-space.
a simple way (e.g. by a straight-line path). With the above definition, A path planning query specifies and b, the initial and the final
the value ofe is constrained by the point of the space which sees thenfigurations of the robot. PRM first conneatsto a roadmap
least volume of5, which may be very small. Usingwe can estimate node by attempting to connect it first to the closest roadmap nodes.
how many nodes a roadmap needs to have, so that the roadmap itSeife a connection is obtaineidjs tried for connection to the same
can see most of the C-space with high probability, and thus ansveemponent. IfA and B are the nodes with whiclk and b get
planning queries correctly with high probability. connected, respectively, a search of the roadmap can construct a path
The analysis in this paper focuses on understanding how thetweenA and B. The resulting path can be smoothed using any
properties of the space in which the robot moves, the shape stndard smoothing technique.

. DESCcRIPTION OF PRM
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B. The Simplified Probabilistic Roadmap PlannefRRM)

To analyze the performance of the method we work with a sim-
plified algorithm, which we call the simplified probabilistic roadmap
planner (s-PRM). We rid the approach of the heuristics employed in
practical implementations and any shortcuts taken to achieve better
performance.

Initially we assume that the C-space is two-dimensional. Later in
the paper, we show that our analysis can be carried over to higher L : path length
C-space dimensions without any complications.

The parameters of our model are as follows.

1) The Free Space

An arbitrary open subsef of the unit squaré/V = [0, 1]°.

2) The Robot

Fig. 2. The parameters involved in Theorem 1.

A point which is free to move ir. can be connected byomepath

3) The Local Connector
It takes the robot from poini to pointb along a straight line v:[0,L] — F
and succeeds if the straight line segmehis contained inF. . . ) . .

4) The Collection of Random Configurations which keeps uniformly away from the obstacles, that is all its points
A collection of N independent points uniformly distributed @€ at least a certain distanf&eaway from the C-obstacles. The key
over F. idea is that of covering the path with few balls which overlap to a

certain degree. The parameters mentioned in the theorem below are

. ._drawn in Fig. 2. (Here we follow closely [12].)
- T
s-PRM works as follows. We throuV independent random points Theorem 1: Let ~ : [0, L] F be a path of (Euclidean) length

in F and connect any two of them that can be connected by a free

straight line. A roadmag¥ with possibly more than one connected’” with 4(0) = a, 7(L) = b, and letR = info<<, 7(7(#)) be the
components results in this fashion. To solve any planning probler%'stance of the path to the obstacles.
) Then the probability that s-PRM will fail to connect the poinats

that is to go from any point to any pointb, we try to connect both .
. : and b is at most
a andb to two nodes in the same connected componerd afsing
straight lines. s-PRM succeeds if and only if this is possible. %(1 —aR*)N 1)
Our purpose is to analyze the probability of failure of s-PRM as
a function of all the relevant parameters. For this we take any tWgherew = #/(4|F|) is a constant.
p_oints a,b € F, for which we assume that they can be connected Notation: We denote byd(s, ) the distance of the points(s)
via a continuous path and ~(t) along the curvev. Since we assume that the curveis
i lengtt(s,¢) = |s — t|. The ball centered at
v:[0,L F, wherey(0) =a and~(L) = 0. param‘eterlzed_by arc fen: ;
10, 1] — 1(0) =a nL) x € R? and with radiusr is denoted byB, (x).

(The curvey is parameterized by Euclidean arc length.) Let ai%o Proof: Let n = [2L/R]. Then we can find pointsrg =
be the complement of in W (the C-obstacle) and for any € W @ 1,---,&n = b on the curvey, for which d(z;, j+1) < R/2,
write r(z) for the Euclidean distance of to O, that is for all j. Notice then that
r(a) = inf [o -y Brya(2jt1) C Br(zj), forj=0,---,n—1. )
yeC

where |z — y| is the Euclidean distance of the pointsand y of ThIS is a Q|rect consequence of the triangle inequality and the
the plane inequality [v(s) — ()| < d(s.1).

We shall give upper bounds for the probability of failure of s Assume now that € Brys(v;) andd € Brys(ws41). Observe
PRM to find th f t0 b. Th bounds will involve th then that alsal € Br(x;) because of (2). This implies that the
numbe(r)Nmof ?ar?gom ;;)(;Ti]r(l’fsoth.e fuﬁsteiomgu(r:f))sf\grl tlnevo[(;/eL] € straight line segmentd is free, since botlr andd are contained in
as well as the lengtiL of ~. and will hold for any pathy that the same free balBr(z;). An illustration of this basic fact is given

joins @ andb. The dependence oh andr(v(t)) is to be expected. in Fig. 3.

If we have two pointss and b for which anv connecting path is Let now ¢, --,qn be the random points that our algorithm
W ve o pointse whi y Ing p ' Troduced. According to the preceding observation, it is enough to

o o o L e T e aeat one o1 5. = 1. . in e bl )

sample ofF. Similarly, if any connecting path has smaik(¢)), this =1 e 1, for our e_tlgorlthm o succeed_ to connect _the points

intuitively n‘.leans that, the problem is difficult Imagine’for éxamplandb' Since they's are mdepen(_:i_ent and uniformly dlstrlbuteq over
) i‘;’F, we conclude that the probability that the bk, («;) contains

thata andb are on different sides of narrow passage. The probabil None of ther,s is equal 1o(1 — | By a/|F])™ , where| B a| is the

of placing ra.“do".“ conflgur_atlons inside the passage and connectlr}ga of the ball of radiug?/2. Here we use the fact that we have
them by straight line paths is small. Let us note here that the quan %Fown N independenpoints in

1/7(~v(¢)) has been used as a measure of the “difficulty” of the area in

which ~(¢) lies in the analysis of other planning methods (e.g., [1]). Pr[FAILURE] < Pr[Some ball is empty]
n—1
lll. A BOUND THAT INVOLVES THE < Z Pr[The j-th ball is empty]
MINIMUM DISTANCE FROM THE OBSTACLES 7=t N
In this section we derive an upper bound on the failure probability = <[£—‘ - 1) <1 — |BR/2|> . (3)
when connecting pairs of pointsandb. It is assumed that andb R |7
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Fig. 3. Proof of Theorem 1.

But since in two dimensions the area of the ball with radiy® Fig. 4. Proof of Theorem 2.

is 7R?/4, the above relation becomes

9L SR\ The function(1 — (a/4)r2)N/'r is a decreasing function of. In
Pr[FAILURE] < — <1 - m) each intervalty, ty11], k = 0,---,n — 1, we estimate it from below
. by its infimum (1 — (a/4)7)™ /rk We thus bound from below
which concludes the proof of the theorem. O with the corresponding lower Riemann sum
IV. A BOUND THAT EXPLOITS VARYING DISTANCE - 1 - (a/4)'7'}3)‘\’
The analysis of Section Ill uses only the minimum distance of the Z trra = te) i ’ ®)

path~ from the obstacles. Yet, if this minimum is achieved rarely,
one expects the bound of Theorem 1 to be far from the truth. In thiscjaim 1: 7, < 2r, This follows immediately from (5) since, if
section we establish an upper bound for the failure probability that — (7, for some?, € [ty,#s41], We have
involves a “mean” distance from the obstacles.

Theorem 2: Let the pointsa,b € F be connected by a path

1_ _
v :[0.L] — F, of Euclidean lengthL, and write Tk gk 2 =t 2 0.

r(t) = inf (1) - 2| Using Claim 1, (8) gives
for the distance ofy(¢) from the obstacles.
Then the probability of failure 06-PRM is at most tror — t N
ol (1—((v/4)r2(7‘))N I> 27’,‘ (1_0‘7k) . (9)
6 St 4
0 r(t)
where o is againw/(4|F)). Claim 2:Vs,t : |r(s) — r(t)| < |s — t| That is, the function-(¢)

The idea of the proof is, as was the case in Section IIl, to covisrLipschitzwith Lipschitz constant equal to This is immediate from
the curvey with not-too-many balls that overlap to a certain extenthe triangle inequality (remember thaft) has been parameterized

Proof: Definet, = 0, ro = r(0), and fork > 0 define by arc length) which gives
1
ther = sup{t €[tes L] it —tp < 1i — §l(t)} 5) r(s) < |s—t+r(t)
Thtt = 7(tesr) 6 and

. _ o r(t) < s =t +r(s).
and letn. be defined by the requirement thiat= L. Fig. 4 illustrates
the selection of points along the pathThe above relations guarantee Claim 3: Vi -
that~(¢,+1) will be chosen as far away from(¢; ) as possible while

ensuring that

tes1 —tr > 27 To see this notice that, by def-
inition, we have

, ; 1
BrHl/z(V(tk-&-l)) C By, (v(tr)) tepr — e =78 — §TL~+1
for k = 0,---,n — 1. By the same reasoning as in the proof of 1 .
Theorem 1 >rE - §(rk + (tk+1 — t)) (Claim 2)
n—1 1 1 R
Pr{FAILURE] < Y (1 - arf)". @) = 57 = St — )

k=1
Define now the integral which implies 2 (¢,11 — tx) > %74 and the claim.
Now (7), (9), and Claim 3 give
7= A= (/)
0 r(t) 1<
Let also Iz 6 Z (1- ‘”’k) 25

k=1

Pr[FAILURE]

CN»—A

Fro= sup r(f), k=0,---,n—1.
t<t<tptl which concludes the proof of the theorem. (I
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V. SIMPLIFIED EXPRESSIONS 1
Using the inequality
1—z<e™™, forz>0 §(03)

- b
we get, from Theorems 1 and 2, the following easier-to-use upper J'Ctg/_\.

bounds for the failure probability.
1) The bound of Theorem 1 becomes (3

Pr[FAILURE] < %‘ exp(—aR*N). (10) 0

2) The bound of Theorem 2 becomes
Fig. 5. A particular problem.

L —(~ 2 N
Pr[FAILURE] < 6/ exp( <”'/(j))r BN g @y
0 r
Therefore
In both formulas abover = 7/(4]F|). Pr{FAILURE] < C exp(—Cé> N} log 1
- €
VI. ANALYSIS OF A PARTICULAR PROBLEM and choosing

We have found simple upper bounds for the probability of failure
to find a given path with the probabilistic roadmaps method. We are
now going to use these bounds to derive estimated pthe number ,nds the failure probability from above by a small constant.
of random points thrown uniformly in the free C-space, in order t0 Eqtimate After [15]: The space in Fig. 5 is, in the terminology of
have the probability of failure less than a respecified number, Sq5], a (Ce?)-good space. This means that every pointfotan be
for the sake of the argument, less thgfe. _ _ connected with a free straight line segment to a set of point§ of

In this section, we study a simple problem in two dimensions. FQfose area is at leaste? (clearly because of the box on the left).
the problem shown in Fig. 5 we estimate using (10) and (11) and  Then (see Theorem 2.1 in [15] and the definitioradequatesets

1 1
N x — loglog - (13)
€ €

the method of analysis of [15]. of points) one needs to have
The parameter of the problem désthe length of the opening near 1 1
point a, which is taken to tend t®. N x —log - (14)
€= €

We have|F| = 1 so thata = w/4. We also havel. =< 1 and
R = e. (By z < y we mean thaC~'z < y < C, for some absolute in order to bound the failure probability away from 1.
constantC' >0. In what follows,C' stands for an absolute positive Comparison: Theorem 2 clearly exploits the fact thaftt) is small
constant, not necessarily the same in all its occurrences. Howewtly briefly to gain an extra logarithm in the estimate (13) with
it is always possible to find a definite number for every occurrenéespect to (12) and (14). Note that Theorem 1 and the approach taken

of C\) in [15] refer to quantities—the minimum of(¢) and thegoodness
Estimate Using (10):We get of F—which are single numbers defined globally over the whole
9L . space. Theorem 2 achieves a better estimatéVfdrecause it is less
Pr{FAILURE] < — exp(—aR"N) sensitive to local difficulties than are the bounds of Theorem 1 and
1 , . the analysis in [15].
< C; exp(=Ce N). It should be said that the true answer is easily seen to be
If we choose N 1 (15)
N =< lz log = (12) S e
€ €

ce it is necessary and sufficient to put a bounded number of points

the box, which happens with probability ¢>. The estimates
%)—(14) can thus be seen as the unavoidajé times a factor on

which they are to be compared. According to (11) and after estimating

(from above) the exponential bykp(—(a/2)R*N) (remembetR =

inf; r(t)) that factor takes the very simple form

L
e fO<t<Ce LZ/ _dt
AUESE PR PNy R, Jo r(t)

Equation (11) then gives where R, is the harmonic mearof the functionr(t).

we achieve that the failure probability is bounded above by a smS[1
constant (which, of course, depends on the constant implied by
= sign in (12), but it is the dependence &f on e that we care
about here).

Estimate Using (11):The functionr(¢) for the path of Fig. 5
clearly satisfies

"Loexp(—(a/4)r? (£)N)

Pr[FAILURE] < 6/ dt VIl. HIGHER DIMENSION

r(t
’ ’ , ( ).L Jt Everything in the preceding analysis extends without any changes

< Cexp(—Ce N)/ — to spaces of higher dimension. Létbe the dimension of the space

o r(®) andw, denote thel-dimensional volume of the unit ball iR". Let
and also g = 27 %wa/|F|.
/" . /C‘ dt /‘r‘ dt 1) The bound corresponding to (10) becomes then
o T T Jo r(®) v t 2L dan
g OE% +10g% ~ log % Pr[FAILURE] < 7 exp(—agR"N). (16)
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2) The bound corresponding to (11) becomes

L . o—d.d AN
Pr[FAILURE] < 6/ exp(=aa2” 1 () N)

0 = dt.

17

VIII. CONCLUSION

(2]

(3]
(4]

The bounds computed in this paper are not very easy to use since : : o )
] P. Bessierre, E. Mazer, and J.-M. Ahuactzin, “Planning in a continuous

they depend on the properties of the postulated connectingpath
from a to b, which are difficult to measura priori. Nevertheless,

they at least shed light on the nature of the dependence of the
algorithm on these properties. The fact that the dependencd on [6]

is exponential is a good and, of course, expected feature. Another - ' ;
1 P. C. Chen, “Learning to improve path planning performance,” Rep.

nice feature revealed is that the dependenceLois linear. The

bound of Theorem 2 that exploits varying distance from the obstacl
makes our analysis useful in spaces where there are narrow regions
and large parts of free C-space. This analysis also emphasizes the
distinguishing features of PRM when compared with a planner tha®

8]

creates a uniform grid of points of appropriate resolution in the free

C-space. The latter planner places many nodes in large free part$10f

the C-space while a probabilistic technique like PRM as described in
[13] will avoid creating a large number of nodes in areas where local

connections are obtained easily. Undoubtedly, this contributes to I[ﬁ

good experimental performance of PRM.

What the bounds given by Theorems 1 and 2 and by the simplifigr]
inequalities (10) and (11) do permit us to do is to answer questions

of the type:“*Assuming that there is a path from to b which stays
away from the obstacles a distance at legstvhat shouldV be in
order to guarantee a success probability of at least 0.99%7 if we
know the optimal path fromx to b and this stays-away from the
obstacles, we can estimate whtshould be in order to find, with
a predefined probability, a path which stayslose(; < ¢) to the

optimal path. This is done simply by usingas the distance of the

optimal path from the obstacles.

[14]

15]

[16]

We have thus obtained quite workable expressions for the failure

probability and have demonstrated their use with a simple b
illuminating example. It should also be clarified that, in practice;

7

one need not restrict oneself to using the Euclidean distance. No
special properties of it were used in this paper and any other distarhtg]
would give analogous results. Finally, we note that probabilistid®]

roadmaps have been applied successfully to nonholonomic robots fﬂﬁ'

the interested reader is referred to [21] for the analysis in that case.
It is admittedly very hard to characterize the average performance
of PRM and we view the work in this paper as complementary t@1]

the work in [15] which identified a property of the C-space, called

e-goodness, that is likely to account for the success of PRM in
real settings. Our analysis relates in direct way certain geometric
properties of the configuration space of the robot to the parameters
of the planning algorithm used. We are confident that research
along the direction of understanding how the geometric properties
of the environment of the robot influence the performance of specific

planning algorithms will be very important in the future and can

guide us to design faster planners.
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