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ABSTRACT

In several studies in Survival Analysis, the cause of failure/ death of items or individuals may

be attributable to more than one cause. In this chapter, we consider the competing risks

model when the data is progressively Type-II censored. We provide different techniques

for the analysis of the model under the assumption of independent causes of failure and

exponential lifetimes. The maximum likelihood estimators of the different parameters and

the UMVUE’s are obtained. In addition, the exact distributions of the different estimators

are derived. We also derive the UMP and UMPU test for the equality of the failure rates of

the competing risks.

We consider the Bayesian estimation using the Inverse Gamma distribution as a prior. To

assess the performance of all these estimators, confidence intervals are developed using the

exact, asymptotic, and bootstrap distributions. In the Bayesian context, we develop credible

intervals for the parameters. The different methods are compared through a simulation study,

and the analysis of a real dataset. Finally, we also provide some insight into inference under

the Weibull model and dependent causes of failure.
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1. INTRODUCTION

In medical studies or in the analysis of reliability data, the failure of individuals or items

may be attributable to more than one cause or factor. These “risk factors” in some sense

compete for the failure of the experimental unit. Consider the example of Hoel (1972), based

on a laboratory experiment in which mice were given a dose of radiation at 6 weeks of age.

The causes of death were recorded as Thymic Lymphoma, Reticulum Cell Sarcoma, or other.

Another example is from a study of breast cancer patients (Boag 1949), where the cause of

death was recorded as “cancer” or “other’. There are numerous examples in reliability

experiments, where items may fail due to one of several causes. In traditional analyses of

these datasets, the researcher is primarily interested in the distribution of lifetimes under

one specific cause of failure, say cancer, and all other causes are combined and treated as

censored data.

In recent years, however, models have been developed to assess the lifetimes of a specific

risk in the presence of other competing risk factors. The data for these “competing risk

models” consist of the failure time and an indicator variable denoting the specific cause of

failure of the individual or item. The causes of failure may be assumed to be independent

or dependent. In most situations, the analysis of competing risk data assumes independent

causes of failure. Even though the assumption of dependence may be more realistic, there

is some concern about the identifiability of the underlying model. Kalbfleisch and Prentice

(1980), Crowder (2001) and several other authors have argued that without information on

covariates, it is not possible using data to test the assumption of independent failure times.

See Crowder (2001) and the monograph by David and Moeschberger (1978) for an exhaustive

treatment of different competing risks models.

In this chapter, we will develop inference for the competing risk model under a very gen-

eral censoring scheme. Censoring is inevitable in life-testing and reliability studies because

the experimenter is unable to obtain complete information on lifetimes for all individuals.

For example, patients in a clinical trial may withdraw from the study, or the study may

have to be terminated at a pre-fixed timepoint. In industrial experiments, units may break

accidentally. In many situations, however, the removal of units prior to failure is pre-planned

in order to provide savings in terms of time and cost associated with testing.

The two most common censoring schemes are termed Type-I and Type-II censoring.
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Consider n individuals under observation in a clinical study. In the conventional Type-I

censoring scheme, the experiment continues upto a prespecified time T . Failures (deaths)

that occur after T are not observed. The termination point T of the experiment is assumed to

be independent of the failure times. By contrast, the conventional Type-II censoring scheme

requires the experiment to continue until a prespecified number of failures m ≤ n occur. In

this scenario, only the smallest lifetimes are observed. In Type-I censoring, the number of

failures observed is random and the endpoint of the experiment is fixed, whereas in Type-II

censoring the endpoint is random, while the number of failures observed is fixed. There

have been numerous articles and books in the reliability and survival analysis literature,

dealing with inference under Type-I and Type-II censoring for different parametric families

of distributions.

One of the drawbacks to these conventional Type-I and Type-II censoring schemes out-

lined above is that they do not allow for removal of units at points other than the terminal

point of the experiment. Cohen (1963, 1966) was one of the earliest to study a more general

censoring scheme: Fix m censoring times T1, . . . Tm. At time Ti, remove Ri of the remaining

units randomly. The experiment terminates at time Tm with Rm units still surviving. This

is referred to as Progressive Type-I right censoring. Cohen (1963) discussed the estimation

of parameters under this scheme for the parameters of the normal distribution.

In this chapter, we consider competing risk data under progressive Type-II censoring.

The censoring scheme is defined as follows: Consider n individuals in a study and assume

that there are K causes of failure which are known. At the time of each failure, one or more

surviving units may be removed from the study at random. The data from a progressively

Type-II censored sample is as follows:

(X1:m:n, δ1, R1), . . . , (Xm:m:n, δm, Rm),

where X1:m:n < . . . < Xm:m:n denote the m observed failure times, δ1, . . . , δm denote the

causes of failure, and R1, . . . , Rm denote the number of units removed from the study at the

failure times X1:m:n, . . . , Xm:m:n. Note that the complete and Type-II right censored samples

are special cases of the above scheme when R1 = R2 = . . . = Rm = 0, and R1 = R2 = . . . =

Rm−1 = 0, Rm = n−m, respectively. For an exhaustive list of references and further details

on progressive censoring, the reader may refer to the book by Balakrishnan and Aggarwala

(2000).

The main focus of this chapter is the analysis of the competing risk model when the
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data are progressively Type-II censored. In addition, we will assume the lifetimes under the

competing risks have independent exponential distributions. We derive the maximum like-

lihood estimators (MLE) and uniformly minimum variance unbiased estimators (UMVUE)

of the hazard rates. We also show that the MLE’s and UMVUE’s of the mean lifetime of

the different causes may not always exist. We, therefore, propose the use of conditional

MLE’s of the mean lifetimes. The exact distributions of the MLE’s and conditional MLE’s

are obtained, leading to the construction of confidence intervals for the different parameters.

Bayes estimators and the corresponding credible regions of the different parameters using

inverted gamma priors are also obtained.

The organization of the chapter is as follows. In Section 2, we describe the model and

present the definitions and notation used throughout the chapter. The estimation of the

different parameters are considered in Section 3, and their distributions are derived in Section

4. Bayesian analysis of the competing risk model is provided in Section 5. Results of a

simulation study comparing the coverage probabilities and lengths of the different confidence

and credible intervals are provided in Section 6. We illustrate the performance of these

different techniques in Section 7 using a real dataset. Section 8 discusses some extensions

and generalization of our results. Finally, some conclusions are drawn in Section 9.

2. MODEL: DESCRIPTION AND NOTATION

Without loss of generality, we assume that there are only two independent causes of

failure. All the methods presented in this chapter may be easily extended to the case of

K > 2. We introduce the following notation:
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Xji: lifetime of the ith individual under cause j, j = 1, 2

F (.): Cumulative distribution function of Xi

Fj(.): cumulative distribution function of Xji

F j(.): survival function of Xji, F j(.) = 1 - Fj(.)

δi: indicator variable denoting the cause of failure of the ith individual

m: the number of complete failures observed before termination

xi:m:n: ith observed failure time, i = 1, . . ., m

Ri: number of units removed at the time of the ith failure,

Ri ≥ 0, R1 + . . . Rm +m = n

Ij: = {xi:m:n; δi = j}, j = 1, 2

|Ij|: cardinality of Ij: we assume |Ij| = nj

gamma(α, λ): denotes the gamma random variable with density function
λα

Γ(α)
xα−1e−λx

Igamma(α, λ): denotes the inverted gamma random variable with density function
λα

Γ(α)
1

xα+1 e
−λ
x

exp(λ): denotes the exponential random variable with density function λe−λx

Bin(N, p): denotes the binomial random variable with probability

mass function
(

N

i

)

pi(1− p)N−i.

We assume that (X1i, X2i), i = 1, . . . , n, are n independent, identically distributed (i.i.d.)

exponential random variables. Further, X1i and X2i are independent for all i = 1, . . . n and

Xi = min{X1i, X2i}. We observe the sample

(X1:m:n, δ1, R1), . . . , (Xm:m:n, δm, Rm) (2.1)

assuming all the causes of failure are known. If some of the causes are unknown, we denote
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them with a ‘*’. Under that setup, the observations are denoted as follows:

(X1:m:n, δ1, R1), . . . , (Xi1−1:m:n, δi1−1, Ri1−1)(Xi1:m:n, ∗, Ri1),

(Xi1+1:m:n, δi1+1, Ri1+1) . . . , (Xik−1:m:n, δik−1, Rik−1), (Xik:m:n, ∗, Rik),

(Xik+1:m:n, δik+1, Rik+1) . . . , (Xm:m:n, δm, Rm).

(2.2)

The ith1 , . . ., i
th
k causes of failure are unknown. We also assume that k, the total number of

unknown causes of failure, is fixed.

3. ESTIMATION

We assume that the Xji’s are exponential random variables with parameters λj for i =

1, . . . , n and for j = 1, 2. The distribution function Fj(.) of Xji has the following form:

Fj(t) = 1− e−λjt (3.1)

for j = 1 and 2. Since the minimum of 2 independent exponential random variables is also

distributed as an exponential, the likelihood function of the observed data (2.1) is

L(λ1, λ2) = n(n−R1 − 1) . . . (n−R1 − . . .−Rm−1 −m+ 1)

× (λ1 + λ2)
me−(λ1+λ2)

∑m

i=1
(Ri+1)xi:m:n

(

λ1
λ1 + λ2

)n1
(

λ2
λ1 + λ2

)n2

. (3.2)

Here, n1 and n2 are the number of failures due to cause 1 and cause 2, respectively. Taking

the logarithm of (3.2), and equating the partial derivatives to zero, we obtain the maximum

likelihood estimators (MLE’s) of λ1 and λ2 as

λ̂1 =
n1

∑m
i=1(Ri + 1)Xi:m:n

and λ̂2 =
n2

∑m
i=1(Ri + 1)Xi:m:n

=
m

Z
− λ̂1, (3.3)

where Z =
∑m

i=1(Ri + 1)Xi:m:n denotes the total time on test. We will suppress the use of

the subscript m in Xi:m:n for the rest of the chapter without causing any confusion.

From the likelihood function (3.2), it is immediate that (n1,
∑m

i=1(Ri+1)Xi:n) is a jointly

complete sufficient statistic for (λ1, λ2). By Lehmann-Scheffe Theorem, to construct the

UMVUE’s of λ1 and λ2, it is sufficient to find unbiased estimators that are functions of n1

and
∑m

i=1(Ri + 1)Xi:n.
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To construct the UMVUE’s, we consider the following transformation (see Balakrishnan

and Aggarwala (2000)):

Z1 = nX1:n

Z2 = (n−R1 − 1)(X2:n −X1:n)
...

...

Zm = (n−R1 − . . .−Rm−1 −m+ 1)(Xm:n −Xm−1:n)

(3.4)

The Zi’s are called the spacings. It can be easily seen (Balakrishnan and Aggarwala (2000))

that Zi’s are i.i.d. exp(λ1 + λ2) random variables. Therefore,
∑m

i=1(Ri + 1)Xi:n =
∑m

i=1 Zi is

distributed as a gamma (m,λ1 + λ2) random variable. Since n1 is a Bin
(

m, λ1

λ1+λ2

)

, and n1

is independent of
∑m

i=1(Ri + 1)Xi:n, we have for m > 1

E
(

λ̂1
)

=
mλ1

λ1 + λ2
× λ1 + λ2

m− 1
=

m

m− 1
× λ1 (3.5)

and

E
(

λ̂2
)

=
mλ2

λ1 + λ2
× λ1 + λ2

m− 1
=

m

m− 1
× λ2. (3.6)

Simple calculation yields for m > 2,

V
(

λ̂1
)

=
λ1m

m− 1

[

(m− 1)λ2 +mλ1
(m− 1)(m− 2)

]

, (3.7)

V
(

λ̂2
)

=
λ2m

m− 1

[

(m− 1)λ1 +mλ2
(m− 1)(m− 2)

]

(3.8)

and

Cov
(

λ̂1, λ̂2
)

= − mλ1λ2
(m− 1)2(m− 2)

. (3.9)

From (3.5) and (3.6), it follows immediately that the UMVUE’s of λ1 and λ2 are given by

λ̃1 =
m− 1

m
λ̂1 and λ̃2 =

m− 1

m
λ̂2.

The variance and covariance of the estimators are given by

V
(

λ̃1
)

= λ1
m− 1

m

[

(m− 1)λ2 +mλ1
(m− 1)(m− 2)

]

, (3.10)

V
(

λ̃2
)

= λ2
m− 1

m

[

(m− 1)λ1 +mλ2
(m− 1)(m− 2)

]

, (3.11)
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and

Cov
(

λ̃1, λ̃2
)

= − λ1λ2
m(m− 2)

. (3.12)

Note that the estimators are always negatively correlated which is evident from (3.3) as well.

To estimate the survival function or the cumulative distribution function, we can use the

invariance property of the MLEs. For example, the estimated survival functions due to cause

1 and cause 2 are given by

ˆ̄F 1(t) = e−λ̂1t and ˆ̄F 2(t) = e−λ̂2t,

respectively.

Another parameter of interest in survival analysis is the relative risk rate due to a par-

ticular cause (say, cause 1). The relative risk is defined as

π = P [X1i < X2i] =
∫ ∞

0
λ1e

−λ1xe−λ2xdx =
λ1

λ1 + λ2
.

Once again, using the invariance property, the MLE of the relative risk is given by

π̂ =
λ̂1

λ̂1 + λ̂2
=
n1
m
.

For the exponential distribution in (3.1), λ1, λ2 represent the hazard rates, and θ1 =
1
λ1
,

θ2 =
1
λ2

represent the mean lifetime due to cause 1 and cause 2, respectively. Although the

MLE’s and UMVUE’s of λ1 and λ2 always exist, the UMVUE’s of θ1 and θ2 do not exist.

The MLE’s of θ1 (θ2) do not exist if n1 = 0 (n2 = 0). We may then define the conditional

MLE’s of θ1 (θ2) if n1 > 0 (n2 > 0) as follows:

θ̂1 =

∑m
i=1(Ri + 1)Xi:n

n1
if n1 > 0 and θ̂2 =

∑m
i=1(Ri + 1)Xi:n

n2
if n2 > 0. (3.13)

Using the forms of the estimators given above, we will now derive the exact distribution

of λ̂1, λ̂2, θ̂1 and θ̂2. These distributions will naturally be useful in constructing confidence

intervals. The cumulative distribution function of λ̂1 is given by

Fλ̂1
(x) = P

[

λ̂1 ≤ x
]

= P

[

m
∑

i=1

Zi ≥
n1
x

]

=
m
∑

j=1

P

[

m
∑

i=1

Zi ≥
n1
x
|n1 = j

]

P (n1 = j)

=
m
∑

j=1

(

m

j

)(

λ1
λ1 + λ2

)j (

λ2
λ1 + λ2

)m−j

× P

[

m
∑

i=1

Zi ≥
j

x

]

=
m
∑

j=1

m−1
∑

i=0

(

m

j

)(

λ1
λ1 + λ2

)j (

λ2
λ1 + λ2

)m−j e−(λ1+λ2)
j
x (λ1 + λ2)

i
(

j
x

)i

i!
. (3.14)
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Note that the distribution function of λ̂1 is a mixture of a discrete and a continuous distri-

bution. We have

P (λ̂1 = 0) = P (n1 = 0) =

(

λ2
λ1 + λ2

)m

.

For x > 0, the density function is given by

fλ̂1
(x) =

m
∑

j=1

gj(x)

(

m

j

)(

λ1
λ1 + λ2

)j (

λ2
λ1 + λ2

)m−j

, (3.15)

where

gi(x) =
(i(λ1 + λ2))

m

Γ(m)
e−

(λ1+λ2)i

x
1

xm+1

is the density function of the inverted gamma random variable I(m, i(λ1 + λ2)). The distri-

bution of λ̂2 may be obtained in a similar manner as

Fλ̂2
(x) = P

[

λ̂2 ≤ x
]

=
m
∑

j=1

m−1
∑

i=0

(

m

j

)(

λ2
λ1 + λ2

)j (

λ1
λ1 + λ2

)m−j e−(λ1+λ2)
j
x (λ1 + λ2)

i
(

j

x

)i

i!
.

(3.16)

As before,

P (λ̂2 = 0) = P (n2 = 0) =

(

λ1
λ1 + λ2

)m

,

and for x > 0 the density function of λ̂2 is given by

fλ̂2
(x) =

m
∑

j=1

gj(x)

(

m

j

)(

λ2
λ1 + λ2

)j (

λ1
λ1 + λ2

)m−j

. (3.17)

We now obtain the distribution function of the conditional MLE of θ1 as defined in (3.13).

For brevity, we denote it by Fθ̂1(x). We have

Fθ̂1(x) = P
[

θ̂1 ≤ x|n1 > 0
]

=
m
∑

i=1

P
[

θ̂1 ≤ x|n1 = i, n1 > 0
]

× P [n1 = i|n1 > 0]

=
m
∑

i=1

P





m
∑

j=1

Zj

i
≤ x



× pi,

where

pi = (1− qm)−1
m!

i!(m− i)!

(

θ2
θ1 + θ2

)i (

θ1
θ1 + θ2

)m−i

and q =
θ1

θ1 + θ2
.
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Note that Zj
i
is a gamma

(

m, i
(

1
θ1

+ 1
θ2

))

random variable. Therefore,

Fθ̂1(x) =
m
∑

i=1











1−
m−1
∑

j=0

e
−

(

i
θ1
+ i
θ2

)

x ( i
θ1

+ i
θ2

)j

j!











× pi =
m
∑

i=1

piHi(x) (say). (3.18)

Here, Hi(x) is the distribution function of a gamma
(

m, i
(

1
θ1

+ 1
θ2

))

random variable. The

density function of the conditional MLE of θ1 becomes

fθ̂1(x) =
m
∑

i=1

pihi(x), (3.19)

where hi(x) is the density function of a gamma
(

m, i
(

1
θ1

+ 1
θ2

))

random variable. Similarly,

we obtain the distribution function of the conditional MLE of θ2 as

Fθ̂2(x) = P
[

θ̂2 ≤ x|n2 > 0
]

=
m
∑

i=1

p̃iHi(x), (3.20)

where

p̃i = (1− q̃m)−1
m!

i!(m− i)!

(

θ1
θ1 + θ2

)i (

θ2
θ1 + θ2

)m−i

and q̃ =
θ2

θ1 + θ2
.

The corresponding density function of the conditional MLE of θ2 is

fθ̂2(x) =
m
∑

i=1

p̃ihi(x). (3.21)

Using (3.19) and (3.21), we may obtain easily the moments of θ̂1 and θ̂2. From (3.19), we

have

E(θ̂1) =
mθ1θ2
θ1 + θ2

m
∑

i=1

pi
i

and E(θ̂21) =
m(m+ 1)θ21θ

2
2

(θ1 + θ2)2

m
∑

i=1

pi
i2
. (3.20)

Similarly, we obtain from (3.21)

E(θ̂2) =
mθ1θ2
θ1 + θ2

m
∑

i=1

p̃i
i

and E(θ̂22) =
m(m+ 1)θ21θ

2
2

(θ1 + θ2)2

m
∑

i=1

p̃i
i2
. (3.22)

Note that, in the expressions above, the quantities within the summation sign denote the

inverse moments of positive binomial random variables. Since exact expressions are not

available, we may use tabulated values of positive binomial random variables available in

Edwin and Savage (1954). Since the estimators are clearly biased, tabulated values of the

biases given by Kundu and Basu (2000) may be used for bias correction.
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In several examples, the investigator may be interested in testing whether the hazard

rates (mean lifetimes) of the two causes are identical. For testing H0 : λ1 = λ2, we may

derive the likelihood ratio test. However, in the case of the competing risks model, the

hypothesis H0 is equivalent to testing whether the proportion of deaths due to the 2 causes

are identical. This reduces to a simple test of a binomial proportion H∗
0 : p = 1/2. We

may derive UMP or UMPU tests to determine whether there is indeed a difference in the

lifetime distributions. For more than two causes of failure, we may derive tests based on the

multinomial distribution.

4. CONFIDENCE INTERVALS

In this section, we propose four different methods of constructing confidence intervals

for λ1, λ2, θ1 and θ2. The first method is based on the exact distributions of the MLE’s

derived in the previous section. The second method uses the asymptotic distributions of

the estimators to obtain confidence intervals of the different parameters of interest. Finally,

we construct parametric bootstrap confidence intervals using the percentile method and the

bootstrap-t.

4.1 Approximate Confidence Intervals

In this section, we will outline the procedure for constructing approximate confidence

intervals for λ1 when λ2 is assumed to be known. A similar construction will generate

intervals for the remaining parameters. In order to use this procedure, we need to assume

that Pλ1

[

λ̂1 ≥ c
]

is monotonically increasing in λ1. This assumption allows the invertibility

of the pivotal quantity. This approach has been used by several authors, including Chen and

Bhattacharya (1988), Gupta and Kundu (1998), Kundu and Basu (2000), and Childs et al.

(2003).

Let c(λ) be a function such that Pλ1

[

λ̂1 ≥ c(λ1)
]

= α
2
. Then, for λ1 < λ

′

1, we have

Pλ′1

[

λ̂1 ≥ c(λ′1)
]

= Pλ1

[

λ̂1 ≥ c(λ1)
]

≤ Pλ′1

[

λ̂1 ≥ c(λ1)
]

=
α

2
. (4.1)

From equation (4.1), we have c(λ1) < c(λ′1), which implies c(λ) is an increasing function of

λ. Therefore, c−1(λ) exists and is also an increasing function of λ. From (4.1), we see that

Pλ1

[

c−1(λ̂1) ≤ λ1
]

= 1− α

2
,
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and therefore, λL = c−1(λ̂1) is the lower bound of the 100(1−α)% confidence interval of λ1.

Similarly, we can obtain λU = d−1(λ̂1), where d
−1(.) is the inverse of the function d(.)

obtained as the solution of the equation

Pλ1

[

λ̂1 ≤ d(λ1)
]

=
α

2
.

Then, (λL, λU) is a 100(1− α)% confidence interval for λ1. Since it is not possible to obtain

closed form expressions of c(.) and d(.), we need to use numerical iterative techniques to

compute these limits. Since the confidence interval for λ1 involves λ2, which is unknown,

we replace λ2 by its MLE. To obtain the upper and lower confidence limits, we solve the

following two non-linear equations:

1− α

2
=

m
∑

j=1

m−1
∑

i=0

(

m

j

)(

λL

λL + λ̂2

)j (

λ̂2

λL + λ̂2

)m−j e
−(λL+λ̂2)

j

λ̂1 (λL + λ̂2)
i
(

j

λ̂1

)i

i!
, (4.2)

α

2
=

m
∑

j=1

m−1
∑

i=0

(

m

j

)(

λU

λU + λ̂2

)j (

λ̂2

λU + λ̂2

)m−j e
−(λU+λ̂2)

j

λ̂1 (λU + λ̂2)
i
(

j

λ̂1

)i

i!
. (4.3)

The procedure outlined above requires the assumption that Pλ1

[

λ̂1 ≥ c
]

is increasing in λ1.

The complicated structure of the function makes it extremely difficult to provide a rigorous

proof of this assumption. Numerical studies show that the result is true, and some heuristic

justification along the lines of Chen and Bhattacharya (1988) or Kundu and Basu (2000)

may be provided.

4.2 Fisher Information Matrix

In this subsection, we present the Fisher Information matrix of λ1 and λ2. Let I(λ1, λ2)

= ((Iij(λ1, λ2)), i, j = 1, 2, denote the Fisher Information matrix of the parameters λ1 and

λ2, where

Iij(λ1, λ2) = −E
(

∂2 ln(L(λ1, λ2))

∂λi∂λj

)

.

We have

I11(λ1, λ2) =
m

λ1(λ1 + λ2)
,

I12(λ1, λ2) = I21(λ1, λ2) = 0,

I22(λ1, λ2) =
m

λ2(λ1 + λ2)
.
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The Fisher Information matrix of θ1 and θ2, say I(θ1, θ2), may be obtained from I(λ1, λ2).

Let I(θ1, θ2) = ((Iij(θ1, θ2))), i, j = 1, 2, denote the Fisher Information matrix. Then,

I11(θ1, θ2) =
mθ2

θ21(θ1 + θ2)
,

I12(θ1, θ2) = I21(θ1, θ2) = 0,

I22(θ1, θ2) =
mθ1

θ22(θ1 + θ2)
.

Using the asymptotic normality of the MLE and the above information matrix, we obtain

the 100(1− α)% confidence intervals for λ1 , λ2, θ1 and θ2 as

λ̂1 ± zα
2

√

λ̂1(λ̂1 + λ̂2)

m
,

λ̂2 ± zα
2

√

λ̂2(λ̂1 + λ̂2)

m
,

θ̂1 ± zα
2

√

√

√

√

θ̂21(θ̂1 + θ̂2)

mθ̂2
,

θ̂2 ± zα
2

√

√

√

√

θ̂22(θ̂1 + θ̂2)

mθ̂1
,

respectively. Here, zα
2
is the upper α

2
th percentile point of a standard normal distribution.

4.3 Bootstrap Confidence Intervals

In this subsection, we construct confidence intervals based on the parametric bootstrap.

The two methods that are widely used are (1) the percentile bootstrap method proposed by

Efron (1982), and (2) the bootstrap-t method proposed by Hall (1988). We illustrate the

procedure for the parameter λ1. Intervals for the other parameters may be constructed in

an analogous manner.

To obtain the percentile bootstrap confidence interval for λ1, we use the following algo-

rithm:

[1] Determine λ̂1 and λ̂2 from the sample {(x1:n, δ1, R1) . . . , (xm:n, δm, Rm)} using (3.3).

13



[2] Generate a random variable from the gamma(m, λ̂1+ λ̂2) distribution, and an indepen-

dent Bin
(

m, λ̂1

λ̂1+λ̂2

)

random variable. The ratio of the two random variables provides

the bootstrap estimate of λ1, say λ̂
∗
1.

[3] Repeat Step 2 NBOOT times.

[4] Let ˆCDF (x) = P∗(λ̂
∗
1 ≤ x) be the cumulative distribution function of λ̂∗1. Define

θ̂boot(x) = ˆCDF
−1
(x) for a given x. The approximate 100(1− α)% confidence interval

for λ1 is given by
(

θ̂boot(
α

2
), θ̂boot(1−

α

2
)
)

.

To obtain the bootstrap-t confidence interval for λ1, we use the following algorithm:

[1] Determine λ̂1 and λ̂2 from the sample {(x1:n, δ1, R1) . . . , (xm:n, δm, Rm)} using (3.3).

[2] Generate a random variable from the gamma(m, λ̂1+ λ̂2) distribution, and an indepen-

dent Bin
(

m, λ̂1

λ̂1+λ̂2

)

random variable. The ratio of the two random variables provides

the bootstrap estimate of λ1, say λ̂∗1. Compute the variance of λ̂∗1, say V(λ̂∗1), using

(3.7).

[3] Determine the T statistic

T ∗ =

√
m(λ̂∗1 − λ̂1)

V (λ̂∗1)
.

[4] Repeat Steps 2-3 NBOOT times.

[5] From the NBOOT T ∗ values obtained, determine the upper bound and the lower bound

of the 100(1− α)% confidence bound of λ1 as follows: Let ˆCDF (x) = P∗(T
∗ ≤ x) be

the cumulative distribution function of T ∗. For a given x, define

λ̂boott(x) = λ̂1 +m− 1
2

√

V (λ̂1) ˆCDF
−1
(x).

The approximate 100(1− α)% bootstrap-t confidence interval for λ1 is then given by
(

λ̂boott(
α

2
), λ̂boott(1−

α

2
)
)

.

We illustrate the performance of these different methods using a simulation study and a real

dataset in Sections 6 and 7, respectively.
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5. BAYESIAN ANALYSIS

In this section, we approach the problem from a Bayesian perspective. We first consider

procedures for estimating (λ1,λ2), followed by procedures for (θ1, θ2). In the context of expo-

nential lifetimes, λ1 and λ2 may be reasonably modelled using gamma priors. We assume λ1

and λ2 are independently distributed with gamma(a1, b1) and gamma(a2, b2) priors, respec-

tively. The parameters a1, b1, a2 and b2 are all assumed to be positive. When a1 = b1 = 0

(a2 = b2 = 0), we obtain non-informative priors of λ1 (λ2). The posterior density of λ1 and

λ2 based on the gamma priors is given by

l(λ1, λ2|x) = kλa1+n1−1
1 e−λ1(b1+

∑m

i=1
(Ri+1)xi:n) × λa2+n2−1

2 e−λ2(b2+
∑m

i=1
(Ri+1)xi:n). (5.1)

Here, k is the normalizing constant that ensures l(λ1, λ2|x) is a proper density function.

From (5.1), it is clear that the posterior density functions of λ1 and λ2, say l(λ1|x) and
l(λ2|x) respectively, are independent. Further, l(λ1|x) is the density function of a gamma

(a1 + n1, b1 +
∑m

i=1(Ri + 1)xi:n) random variable, and l(λ2|x) is the density function of a

gamma (a2 + n2, b2 +
∑m

i=1(Ri + 1)xi:n) random variable.

The Bayes estimates of λ1 and λ2 under squared error loss are

λ̂1Bayes =
a1 + n1

b1 +
∑m

i=1(Ri + 1)xi:n
and λ̂2Bayes =

a2 + n2
b2 +

∑m
i=1(Ri + 1)xi:n

, (5.2)

respectively. For the non-informative priors (a1 = b1 = 0, a2 = b2 = 0), the Bayes estimators

coincide with the MLE’s.

The credible intervals for λ1 and λ2 are obtained easily from the posterior distributions.

We observe that a posteriori,W1 = 2λ1 (b1 +
∑m

i=1(Ri + 1)xi:n) andW2 = 2λ2 (b2 +
∑m

i=1(Ri + 1)xi:n)

follow χ22(a1+n1)
and χ22(a2+n2)

distributions, respectively. Consequently, the 100(1−α)% cred-

ible interval for λ1 is





χ22(a1+n1),
α
2

2 (b1 +
∑m

i=1(Ri + 1)xi:n)
,

χ22(a1+n1),1−
α
2

2 (b1 +
∑m

i=1(Ri + 1)xi:n)



 (5.3)

for a1 + n1 > 0. Similarly, when a2 + n2 > 0, the credible interval for λ2 is





χ22(a2+n2),
α
2

2 (b2 +
∑m

i=1(Ri + 1)xi:n)
,

χ22(a2+n2),1−
α
2

2 (b2 +
∑m

i=1(Ri + 1)xi:n)



 . (5.4)
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Here χ2k,α is the lower αth percentile point of the central χ2 distribution with k degrees of

freedom.

Next, we consider the Bayes estimators for θ1 and θ2. Using the assumption of gamma

priors, and squared error loss, the Bayes estimators of θ1 and θ2 are

θ̂1Bayes =
b1 +

∑m
i=1(Ri + 1)xi:n

a1 + n1 − 1
and θ̂2Bayes =

b2 +
∑m

i=1(Ri + 1)xi:n
a2 + n2 − 1

, (5.5)

respectively. An argument similar to the one outlined above may be used to obtain the

100(1− α)% credible intervals for θ1 and θ2 as




2 (b1 +
∑m

i=1(Ri + 1)xi:n)

χ22(a1+n1),1−
α
2

,
2 (b1 +

∑m
i=1(Ri + 1)xi:n)

χ22(a1+n1),
α
2



 (5.6)

and




2 (b2 +
∑m

i=1(Ri + 1)xi:n)

χ22(a2+n2),1−
α
2

,
2 (b2 +

∑m
i=1(Ri + 1)xi:n)

χ22(a2+n2),
α
2



 , (5.7)

respectively.

In the next section, we illustrate the methods outlined here using an example.

6. SIMULATION STUDY

To compare the coverage probabilities and the lengths of the different confidence and

credible intervals, we conducted a small simulation study. It is evident that the performance

of the different methods will not depend on the censoring scheme. This has also been observed

by Balakrishnan and Aggarwala (2000). The results for different n and m are presented in

Tables 1-4. The results are based on an average over 1000 replications.

From the tables, we observe that all the procedures provide satisfactory coverage (levels

close to the nominal value of 95 %). As m increases, the length of the intervals decrease.

Surprisingly, the intervals based on the asymptotic distribution perform well even for small

sample sizes. All the procedures give similar results: however, the credible intervals based

on a non-informative prior have the shortest length. Based on this study, any one of the

procedures outlined in Sections 4 and 5 may be used in practice.

7. NUMERICAL EXAMPLE
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In this section, we consider a dataset originally analyzed by Hoel (1972). The data arose

from a laboratory experiment in which male mice received a radiation dose of 300 roentgens

at 5 to 6 weeks of age. The cause of death for each mouse was determined by autopsy to

be thymic lymphoma, reticulum cell sarcoma, or other causes. For the purpose of analysis,

we consider reticulum cell sarcoma as cause 1 and combine the other 2 causes of death

as cause 2. There were n = 77 observations in the data. We generated a progressively

Type-II censored sample from the original measurements with m = 25 and censoring scheme

R1 = R2 = . . . = R24 = 2, R25 = 4. There were n1 = 7 deaths due to cause 1 and

n2 = 18 deaths due to cause 2. Progressive censoring in these kinds of experiments may be

invaluable in obtaining information on growths of tumors in the mice. At the time of death

of a particular mouse, other mice may be randomly selected and removed from the study.

Autopsies on these mice may lead to information on the progression of the cancer over time.

The progressively Type-II censored sample thus obtained is (40, 2), (42, 2), (62, 2), (163,

2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), (385, 2), (407, 2), (420,

2), (462, 2), (517, 2), (517, 2), (524, 2), (525, 1), (558, 1),(536, 1), (605, 1), (612, 1), (620,

2), (621, 1).

From the above data, we obtain the following:

25
∑

i=1

(Ri + 1)xi:n = 28611.00

which yields

λ̂1 =
7

28611
= 0.000245, λ̂2 =

18

28611
= 0.000629,

λ̃1 = 0.000235, λ̃2 = 0.000604,

V ar(λ̂1) = 9.8112× 10−9, V ar(λ̂2) = 2.5644× 10−8,

Cov(λ̂1, λ̂2) = −2.908× 10−10,

V ar(λ̃1) = 9.0426× 10−9, V ar(λ̃2) = 2.3634× 10−8,

Cov(λ̃1, λ̃2) = −2.469× 10−10.

The relative risk due to cause 1 is

π̂ =
7

25
= 0.28.

The MLE’s of the mean lifetimes due to cause 1 and cause 2 are given by

θ̂1 = 4087.29, θ̂2 = 1589.5.
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It is quite clear that cause 2 is more severe, with lifetimes almost one-third of that of cause

1.

To assess the performance of these estimators, we construct 95 % confidence and cred-

ible intervals using all the different methods outlined in Sections 4 and 5. The results are

presented in Tables 5 and 6. The intervals are very similar for λ1 and λ2, in terms of the

length. However, the credible intervals for θ1 and θ2 based on the non-informative prior are

much wider.

8. SOME GENERALIZATIONS AND EXTENSIONS

8.1 Unknown Causes of Failure

In all the procedures outlined above, the cause of failure for all individuals in the study

were assumed to be known. The problem of unknown causes of failure was originally consid-

ered by Dinse (1982) and Miyakawa (1982), and more recently by Kundu and Basu (2000).

Assume we have data of type (2.2), and k causes of failure are unknown. Let I1 = {δi; δi = 1},
I2 = {δi; δi = 2}, I3 = {δi; δi = 3}, |I1| = n1, |I2| = n2 and |I3| = k = m−m∗ (say). Let us

also assume that m∗ = n1+n2 is fixed. The likelihood function of the observed data (2.2) is

L(λ1, λ2) = C × λn1
1 λ

n2
2 (λ1 + λ2)

m−m∗ × e−(λ1+λ2)
∑m

i=1
(Ri+1)xi:n , (7.1)

where C = n(n − R1 − 1) . . . (n − R1 − . . . − Rm−1 − m + 1) is the normalizing constant.

Taking the logarithm of (7.1), and equating the partial derivatives to zeros, we obtain the

MLE’s of λ1 and λ2 as

λ̂1 =
[

m

m∗

]

n1
∑m

i=1(Ri + 1)xi:n
and λ̂2 =

[

m

m∗

]

n2
∑m

i=1(Ri + 1)xi:n
. (7.2)

Here n1 is a Bin
(

m∗, λ1

λ1+λ2

)

random variable and n2 is Bin
(

m∗, λ2

λ1+λ2

)

random variable.

Further,
∑m

i=1(Ri + 1)xi:n is a gamma(m,λ1 + λ2) random variable which is independent of

n1 and n2.

All the procedures discussed in Sections 3 and 4 can be easily modified to the present

situation. The Bayesian analysis can also be carried out along the lines of Section 5.

8.2 Models for the Lifetime Distribution
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The first step in generalizing the assumption of exponential lifetimes is to consider the

Weibull model. All the methods outlined in Sections 3-5 can be easily adapted to Weibull

lifetimes. If we consider a common shape parameter, it is easy to derive explicit expressions

for the two scale parameters. Unfortunately, when estimating the shape parameter, there

is no closed form solution, and numerical iterative techniques will have to be employed.

The expressions for the information matrix and the Bayesian estimators will also require

iterative methods. Since there is not much insight to be gained by providing the forms of

the estimators, we will not present here these expressions for brevity.

We have also considered the case of dependent causes of failure. As we mentioned in

the Introduction, identifiability is a major concern. If there is anecdotal or physiological

evidence that the causes of failure are dependent, we could use (among others) the bivariate

exponential model suggested by Marshall and Olkin (see Kotz, Balakrishnan, and Johnson

(2000)).

9. CONCLUSIONS

In this chapter, we have considered the competing risks model when the observed data is

progressively Type-II censored. We have assumed that the lifetimes under the different causes

have independent exponential distributions. We have obtained the MLE’s and UMVUE’s of

the hazard rates and the mean lifetimes, and also derived their exact distributions. Several

different procedures for constructing confidence intervals have been suggested. In addition,

we have derived the Bayes estimators under suitable informative and non-informative priors.

A numerical example has been provided to illustrate the methods outlined in this chapter.

We have also suggested some extensions and generalizations of these models.
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Table 1: n = 20, m = 10, λ1 = 1.0, λ2 = 0.8

Methods Parameters Average Length Coverage Percentage

Bayes λ1 1.76078 0.958

λ2 1.56975 0.936

Asymptotic λ1 1.78011 0.937

λ2 1.57125 0.922

Exact λ1 1.52690 0.952

λ2 1.37600 0.947

Boot-P λ1 2.12155 0.933

λ2 1.83684 0.930

Boot-t λ1 2.04192 0.939

λ2 1.82465 0.915

Table 2: n = 50, m = 20, λ1 = 1.0, λ2 = 0.8

Methods Parameters Average Length Coverage Percentage

Bayes λ1 1.22373 0.955

λ2 1.08401 0.936

Asymptotic λ1 1.23344 0.940

λ2 1.09470 0.926

Exact λ1 1.30335 0.966

λ2 1.16623 0.958

Boot-P λ1 1.33695 0.949

λ2 1.18564 0.934

Boot-t λ1 1.31618 0.922

λ2 1.22481 0.926
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Table 3: n = 75, m = 25, λ1 = 1.0, λ2 = 0.8

Methods Parameters Average Length Coverage Percentage

Bayes λ1 1.08492 0.946

λ2 0.96296 0.932

Asymptotic λ1 1.09183 0.949

λ2 0.97073 0.920

Exact λ1 1.17490 0.951

λ2 1.05530 0.956

Boot-P λ1 1.15351 0.931

λ2 1.02053 0.936

Boot-t λ1 1.14355 0.921

λ2 1.04977 0.929

Table 4: n = 75, m = 35, λ1 = 1.0, λ2 = 0.8

Methods Parameters Average Length Coverage Percentage

Bayes λ1 0.90954 0.937

λ2 0.80899 0.945

Asymptotic λ1 0.91367 0.940

λ2 0.81363 0.946

Exact λ1 1.00572 0.955

λ2 0.93749 0.956

Boot-P λ1 0.93049 0.945

λ2 0.84728 0.950

Boot-t λ1 0.93652 0.928

λ2 0.86743 0.939
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Table 5: Confidence and Credible Intervals

Method λ1 λ2

Exact (MLE) (0.000064, 0.000426) (0.000338, 0.000920)

Credible Interval (0.000098, 0.000456) (0.000372, 0.000951)

(non-informative prior)

Bootstrap-t (0.000087, 0.000448) (0.000349, 0.000949)

Percentile (0.000069, 0.000460) (0.000361, 0.000959)

Table 6: Confidence Intervals

Method θ1 θ2

Exact (MLE) (1059.38, 7115.20) (855.19, 2328.81)

Credible Interval (2192.98, 10204.08) (1051.53, 2688.17)

(non-informative prior)
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