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ABSTRACT

In several studies in Survival Analysis, the cause of failure/ death of items or individuals may
be attributable to more than one cause. In this chapter, we consider the competing risks
model when the data is progressively Type-II censored. We provide different techniques
for the analysis of the model under the assumption of independent causes of failure and
exponential lifetimes. The maximum likelihood estimators of the different parameters and
the UMVUE’s are obtained. In addition, the exact distributions of the different estimators
are derived. We also derive the UMP and UMPU test for the equality of the failure rates of

the competing risks.

We consider the Bayesian estimation using the Inverse Gamma distribution as a prior. To
assess the performance of all these estimators, confidence intervals are developed using the
exact, asymptotic, and bootstrap distributions. In the Bayesian context, we develop credible
intervals for the parameters. The different methods are compared through a simulation study;,
and the analysis of a real dataset. Finally, we also provide some insight into inference under

the Weibull model and dependent causes of failure.
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1. INTRODUCTION

In medical studies or in the analysis of reliability data, the failure of individuals or items
may be attributable to more than one cause or factor. These “risk factors” in some sense
compete for the failure of the experimental unit. Consider the example of Hoel (1972), based
on a laboratory experiment in which mice were given a dose of radiation at 6 weeks of age.
The causes of death were recorded as Thymic Lymphoma, Reticulum Cell Sarcoma, or other.
Another example is from a study of breast cancer patients (Boag 1949), where the cause of
death was recorded as “cancer” or “other’. There are numerous examples in reliability
experiments, where items may fail due to one of several causes. In traditional analyses of
these datasets, the researcher is primarily interested in the distribution of lifetimes under
one specific cause of failure, say cancer, and all other causes are combined and treated as

censored data.

In recent years, however, models have been developed to assess the lifetimes of a specific
risk in the presence of other competing risk factors. The data for these “competing risk
models” consist of the failure time and an indicator variable denoting the specific cause of
failure of the individual or item. The causes of failure may be assumed to be independent
or dependent. In most situations, the analysis of competing risk data assumes independent
causes of failure. Even though the assumption of dependence may be more realistic, there
is some concern about the identifiability of the underlying model. Kalbfleisch and Prentice
(1980), Crowder (2001) and several other authors have argued that without information on
covariates, it is not possible using data to test the assumption of independent failure times.
See Crowder (2001) and the monograph by David and Moeschberger (1978) for an exhaustive

treatment of different competing risks models.

In this chapter, we will develop inference for the competing risk model under a very gen-
eral censoring scheme. Censoring is inevitable in life-testing and reliability studies because
the experimenter is unable to obtain complete information on lifetimes for all individuals.
For example, patients in a clinical trial may withdraw from the study, or the study may
have to be terminated at a pre-fixed timepoint. In industrial experiments, units may break
accidentally. In many situations, however, the removal of units prior to failure is pre-planned

in order to provide savings in terms of time and cost associated with testing.

The two most common censoring schemes are termed Type-I and Type-II censoring.



Consider n individuals under observation in a clinical study. In the conventional Type-I
censoring scheme, the experiment continues upto a prespecified time 7. Failures (deaths)
that occur after T" are not observed. The termination point 7" of the experiment is assumed to
be independent of the failure times. By contrast, the conventional Type-II censoring scheme
requires the experiment to continue until a prespecified number of failures m < n occur. In
this scenario, only the smallest lifetimes are observed. In Type-I censoring, the number of
failures observed is random and the endpoint of the experiment is fixed, whereas in Type-II
censoring the endpoint is random, while the number of failures observed is fixed. There
have been numerous articles and books in the reliability and survival analysis literature,
dealing with inference under Type-I and Type-II censoring for different parametric families

of distributions.

One of the drawbacks to these conventional Type-I and Type-II censoring schemes out-
lined above is that they do not allow for removal of units at points other than the terminal
point of the experiment. Cohen (1963, 1966) was one of the earliest to study a more general
censoring scheme: Fix m censoring times T4, ...T,,. At time T}, remove R; of the remaining
units randomly. The experiment terminates at time 7}, with R,, units still surviving. This
is referred to as Progressive Type-I right censoring. Cohen (1963) discussed the estimation

of parameters under this scheme for the parameters of the normal distribution.

In this chapter, we consider competing risk data under progressive Type-II censoring.
The censoring scheme is defined as follows: Consider n individuals in a study and assume
that there are K causes of failure which are known. At the time of each failure, one or more
surviving units may be removed from the study at random. The data from a progressively

Type-II censored sample is as follows:
(Xlzm:na 517 Rl); ey (Xm:m:na 5m> Rm)a

where X1, < ... < X,uman denote the m observed failure times, 61,...,9,, denote the
causes of failure, and Rq,..., R,, denote the number of units removed from the study at the
failure times X1.,0.n, - - -, Xonomn- Note that the complete and Type-II right censored samples
are special cases of the above scheme when Ri = Ry =...=R,,=0,and Ry = Ry = ... =
R,y =0, R,, = n—m, respectively. For an exhaustive list of references and further details
on progressive censoring, the reader may refer to the book by Balakrishnan and Aggarwala
(2000).

The main focus of this chapter is the analysis of the competing risk model when the



data are progressively Type-II censored. In addition, we will assume the lifetimes under the
competing risks have independent exponential distributions. We derive the maximum like-
lihood estimators (MLE) and uniformly minimum variance unbiased estimators (UMVUE)
of the hazard rates. We also show that the MLE’s and UMVUE’s of the mean lifetime of
the different causes may not always exist. We, therefore, propose the use of conditional
MLE’s of the mean lifetimes. The exact distributions of the MLE’s and conditional MLE’s
are obtained, leading to the construction of confidence intervals for the different parameters.
Bayes estimators and the corresponding credible regions of the different parameters using

inverted gamma priors are also obtained.

The organization of the chapter is as follows. In Section 2, we describe the model and
present the definitions and notation used throughout the chapter. The estimation of the
different parameters are considered in Section 3, and their distributions are derived in Section
4. Bayesian analysis of the competing risk model is provided in Section 5. Results of a
simulation study comparing the coverage probabilities and lengths of the different confidence
and credible intervals are provided in Section 6. We illustrate the performance of these
different techniques in Section 7 using a real dataset. Section 8 discusses some extensions

and generalization of our results. Finally, some conclusions are drawn in Section 9.

2. MODEL: DESCRIPTION AND NOTATION

Without loss of generality, we assume that there are only two independent causes of
failure. All the methods presented in this chapter may be easily extended to the case of

K > 2. We introduce the following notation:



X lifetime of the i** individual under cause j, j = 1, 2
F(.):  Cumulative distribution function of X;

F;(.):  cumulative distribution function of Xj;

F;(.): survival function of X;, F;(.) =1 - Fj(.)
0;: indicator variable denoting the cause of failure of the " individual
m: the number of complete failures observed before termination
Timm: 17 observed failure time, i = 1, ..., m
R;: number of units removed at the time of the i** failure,
R>0 Ri+..R,+m=n
Ij: = {Izmna(sz:j}a.] = ]-’ 2
|I;]: cardinality of I,;: we assume |[;| = n;

gamma(a, A):  denotes the gamma random variable with density function
AY a—1_,—Xz
e

T(a)”
[gamma(c, \): denotes the inverted gamma random variable with density function
A 1A
T(a) 2o ¥1€ 7
exp(A): denotes the exponential random variable with density function e **
Bin(N, p): denotes the binomial random variable with probability

mass function (Jj)p’(l —p)N-t

We assume that (X, Xo;), 7 = 1,...,n, are n independent, identically distributed (i.i.d.)
exponential random variables. Further, X;; and X5; are independent for all 7 = 1,...n and
X; = min{Xy;, X5;}. We observe the sample

(Xlzm:'m 517 R1)7 DRI (Xm:m:n7 5m7 Rm) (21>

assuming all the causes of failure are known. If some of the causes are unknown, we denote



them with a “*’. Under that setup, the observations are denoted as follows:

(Xlzm:'ru 517 Rl)a IO (Xil—l:m:na 52'1—17 Ri1—1)(X7j1:m:n7 *, Ri1)7
(Xil—‘,-l:m:na 5i1+17 Ri1+1> sy (Xik—l:m:na 5ik—17 Rik—1)7 (Xz'k:m:m *, Rzk>7
(Xik+1:m:n7 5ik+17 R’ikJrl) sy (Xm:mzwu 5m7 Rm)

(2.2)

The 4", ..., it" causes of failure are unknown. We also assume that k, the total number of

unknown causes of failure, is fixed.
3. ESTIMATION

We assume that the Xj;’s are exponential random variables with parameters A; for ¢ =

1,...,n and for j = 1,2. The distribution function F}(.) of X;; has the following form:

Fj(t)=1—eM! (3.1)

for 7 = 1 and 2. Since the minimum of 2 independent exponential random variables is also

distributed as an exponential, the likelihood function of the observed data (2.1) is
L()\l,)\g) = n(n—Rl—l)(n—Rl——Rm,l—m—i—l)
« ()\1 + )\2)m€—()\1+/\2)Z:il(RH-l)xi:m:n < Au ) ( A2 ) . (32)

)\14—)\2 )\1—|—)\2

Here, ny and ny are the number of failures due to cause 1 and cause 2, respectively. Taking
the logarithm of (3.2), and equating the partial derivatives to zero, we obtain the maximum
likelihood estimators (MLE’s) of A; and \; as

N ni Q N9 m N
AL = d = =——-A 3.3
' ?il (Rz + 1)szn o ? znll(Rz + 1)Xi:m:n Z b ( )

where Z = > (R; + 1) Xj.mn denotes the total time on test. We will suppress the use of

the subscript m in Xj.,,., for the rest of the chapter without causing any confusion.

From the likelihood function (3.2), it is immediate that (ny, > /%, (R; +1)X;.,) is a jointly
complete sufficient statistic for (A, A2). By Lehmann-Scheffe Theorem, to construct the
UMVUE’s of A\; and s, it is sufficient to find unbiased estimators that are functions of nq
and > (R + 1) X,



To construct the UMVUE’s, we consider the following transformation (see Balakrishnan
and Aggarwala (2000)):

Zi1 = nXiy
Zy = (n — Ry — 1)<X2:n - Xl;n)

Zm = (n - Rl e T Rm—l —-—m+ 1)(an - Xm—l:n)

(3.4)
The Z,’s are called the spacings. It can be easily seen (Balakrishnan and Aggarwala (2000))
that Z,;’s are i.i.d. exp(\; + \o) random variables. Therefore, > (R; + 1) X, = S, Z; is
distributed as a gamma (m, A\; + Ay) random variable. Since n; is a Bin (m, /\1);:/\), and 14
is independent of 1" | (R; + 1) X,.,, we have for m > 1

N m)\1 )\14‘/\2 m
E = = .
(M) M M1 w1 M (38:5)

and A A A
o Mg 1+ A2 m
E()) = = Ag. .
(%) M m—1 m—1 % (36)

Simple calculation yields for m > 2,

< Amo [ (m— 1)+ mA\;
V<A1):m—1l(m—1)(m—2)1’ (3.7>

IS )\gm (m — ].)/\1 + m/\g
V()Q)_m—l[(m—l)(m—Q)} (38)

and

m)\l)\z
(m—1)*(m —2)
From (3.5) and (3.6), it follows immediately that the UMVUE’s of A\; and A, are given by

Cov (5\1, 5\2) = — (39)

. 1. . 1.
)\1=m A1 and )\sz

m m

2.

The variance and covariance of the estimators are given by

~ m—11(m— 1A +mA\

V(&) =M - l<(m—1))(m—2) ] (3.10)
~ m—11(m—1) A +ms

V(A2) = - [((m—l))(m—Q) ] (3.11)

7



and
Ay

Cov (5\1, 5\2) = —m.

(3.12)

Note that the estimators are always negatively correlated which is evident from (3.3) as well.
To estimate the survival function or the cumulative distribution function, we can use the
invariance property of the MLEs. For example, the estimated survival functions due to cause

1 and cause 2 are given by

A

Fi(t) = et and ﬁg(t) = e,
respectively.

Another parameter of interest in survival analysis is the relative risk rate due to a par-
ticular cause (say, cause 1). The relative risk is defined as

A1
AL+ Ao

Once again, using the invariance property, the MLE of the relative risk is given by

T=P [Xh < XQZ] = / )\16_)\1386_)\23%1.%‘ =
0

A )\1 ny
T = = —.

M+A om

For the exponential distribution in (3.1), A1, Ay represent the hazard rates, and 6, = )\1—1,
0y = /\—12 represent the mean lifetime due to cause 1 and cause 2, respectively. Although the
MLE’s and UMVUE’s of A\; and Ay always exist, the UMVUE’s of #; and 6, do not exist.
The MLE’s of 0; (f2) do not exist if ny = 0 (ny = 0). We may then define the conditional
MLE’s of 6, (65) if ny > 0 (ny > 0) as follows:

b — i (B + 1) X

A ™ (R + 1) X
if ny >0 and 6, = iz (ffi + 1) X

if ny>0. (3.13)
ny U]

Using the forms of the estimators given above, we will now derive the exact distribution
of 5\1, 5\2, él and ég. These distributions will naturally be useful in constructing confidence

intervals. The cumulative distribution function of \; is given by
F

:\1(:13) - P[S‘lgx]:P[EZz‘ZT;l :ZP[ZZZ‘ZTS|H1:j]P(n1:j)
1= 7j=1 i=1

B é( )(Al):&)j (Ali\f)\)m | [i 2%

_ fj ~ MOV e\ e MR ) (1) (3.14)
N =1 A1+ Ao AL+ A 7! ’ )

3
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Note that the distribution function of 5\1 is a mixture of a discrete and a continuous distri-
bution. We have

Py = 0) = P(ny = 0) = (Alf&)m.

For x > 0, the density function is given by

m m VIR VA VI
fxl(ﬂf)zj;gj(:v)<j> (Aﬁ&) <A1+A2> , (3.15)

['(m) pmt1

is the density function of the inverted gamma random variable I(m,i(A; + A2)). The distri-

where

gi(x) =

bution of Ay may be obtained in a similar manner as

: N A I A L e RN )
. — < — .
B, () P[)\Q_x] Z : < ) <)\1+)\2> <>\1+>\2> ‘

7!
(3.16)

As before,

R A m
P(Ay =0) = P(ny =0) = <A1+1A2> :

and for x > 0 the density function of Ao is given by

=3 0(7) ) ) (3.17

We now obtain the distribution function of the conditional MLE of 6, as defined in (3.13).
For brevity, we denote it by Fj (r). We have

Fy(x) = P [él < z|n; > O]
= ZP{HA1§$|n1:i,n1>O}xP[n1:i|n1>0]
i=1

where

' 7 m—1i
pi=(1—q") " - ( b )( 2 ) and ¢q = o

Z!(m—@)! 91+92 91+92 91+92'

9



Note that Z is a gamma (m i ( -+ 6%)) random variable. Therefore,

Fy, (x) = i 3 1(;(#%)96 (5 + i)j

Zpl () (say). (3.18)

Here, H;(z) is the distribution function of a gamma (m,i (% + é)) random variable. The

density function of the conditional MLE of 6; becomes

o, (2 sz i (3.19)

where h;(z) is the density function of a gamma (m,i (% + é)) random variable. Similarly,

we obtain the distribution function of the conditional MLE of 8, as
Fj, () = P |6y < zlny > 0] = 3 piHi(w), (3.20)
=1

where

s (1 _ ~m>71 m' 01 ‘ 492 m—i and @ — 62
bi T m =i\ +6,) \6, 16, 1= 0,

The corresponding density function of the conditional MLE of 6, is

m

fo, (@) = pihi(). (3.21)
i=1
Using (3.19) and (3.21), we may obtain easily the moments of f; and ;. From (3.19), we
have 6,6 (m + 1)6262
A mb10y - pi soy _ m(m + 1)0705 I\ pi
E(0,) = d El)=——""")> =. 3.20
( 1) 01 + 92 v i al ( 1) (01 + 92)2 P P ( )
Similarly, we obtain from (3.21)
~ mbhby K 2y _ m(m+ 10205 I pi
9 — E(6 — ) . 3.22
Bl =5 r, X; =" vor o (3:22)

Note that, in the expressions above, the quantities within the summation sign denote the
inverse moments of positive binomial random variables. Since exact expressions are not
available, we may use tabulated values of positive binomial random variables available in
Edwin and Savage (1954). Since the estimators are clearly biased, tabulated values of the

biases given by Kundu and Basu (2000) may be used for bias correction.

10



In several examples, the investigator may be interested in testing whether the hazard
rates (mean lifetimes) of the two causes are identical. For testing Hy : Ay = A2, we may
derive the likelihood ratio test. However, in the case of the competing risks model, the
hypothesis Hy is equivalent to testing whether the proportion of deaths due to the 2 causes
are identical. This reduces to a simple test of a binomial proportion Hy : p = 1/2. We
may derive UMP or UMPU tests to determine whether there is indeed a difference in the
lifetime distributions. For more than two causes of failure, we may derive tests based on the

multinomial distribution.
4. CONFIDENCE INTERVALS

In this section, we propose four different methods of constructing confidence intervals
for A1, Ao, 61 and 0. The first method is based on the exact distributions of the MLE’s
derived in the previous section. The second method uses the asymptotic distributions of
the estimators to obtain confidence intervals of the different parameters of interest. Finally,
we construct parametric bootstrap confidence intervals using the percentile method and the

bootstrap-t.
4.1 Approximate Confidence Intervals

In this section, we will outline the procedure for constructing approximate confidence
intervals for A\; when )\, is assumed to be known. A similar construction will generate
intervals for the remaining parameters. In order to use this procedure, we need to assume
that Py, [5\1 > c} is monotonically increasing in A;. This assumption allows the invertibility
of the pivotal quantity. This approach has been used by several authors, including Chen and
Bhattacharya (1988), Gupta and Kundu (1998), Kundu and Basu (2000), and Childs et al.
(2003).

Let ¢(A) be a function such that Py, {5\1 > c()\l)} = 2. Then, for \; < A}, we have

. . < a
P)\ll [)\1 Z C()\ll)} = P)\1 [)\1 Z C(/\l)} S PX1 [)\1 Z C()\l)} = § (41)

From equation (4.1), we have ¢(A1) < ¢(A}), which implies ¢()) is an increasing function of

A. Therefore, ¢c™!()) exists and is also an increasing function of A. From (4.1), we see that

Py, [0_1(5\1) < Al} =1- %7

11



and therefore, A, = ¢™1(};) is the lower bound of the 100(1 — a)% confidence interval of \;.

Similarly, we can obtain Ay = d~'()\;), where d~1(.) is the inverse of the function d(.)

obtained as the solution of the equation
N a
Py, A <d(n)] = 5

Then, (Ar, Ay) is a 100(1 — a)% confidence interval for A;. Since it is not possible to obtain
closed form expressions of ¢(.) and d(.), we need to use numerical iterative techniques to
compute these limits. Since the confidence interval for A\; involves Ay, which is unknown,
we replace Ay by its MLE. To obtain the upper and lower confidence limits, we solve the

following two non-linear equations:

i o m—j ()\L+ 2) i
—iml< >< AL )J( Ay ) Te (/\L—l—)\2) (E) (12)
7=1 =0 )\L+)\2 )\L—i-j\g ’l' ’ )
i A m—j —QAu+ia )‘L {
imfl <m> < )\U ] )7 ( )\2 ] > I e ()\U + )\2) (5\—1) . (43)
im0 NI \ v+ X Au + Az il

The procedure outlined above requires the assumption that P, [5\1 > c} is increasing in A;.
The complicated structure of the function makes it extremely difficult to provide a rigorous
proof of this assumption. Numerical studies show that the result is true, and some heuristic
justification along the lines of Chen and Bhattacharya (1988) or Kundu and Basu (2000)
may be provided.

4.2 Fisher Information Matrix

In this subsection, we present the Fisher Information matrix of A\; and Ay. Let I(A1, A9)

= ((£i;(A1,A2)), 4, j = 1, 2, denote the Fisher Information matrix of the parameters A\; and

Ao, Where
0? In(L(A1, \2))
]i'(/\ly/\Q) =—F ( ’ .
J ONiOA;
We have
m
Ti1(A, A _
Lis(A1, A2) = Isn(Ag, M) =0,
m
Loo( A, A _—
22( 1 2) )\2()\1+A2)

12



The Fisher Information matrix of 6, and 65, say I(6y,6,), may be obtained from I(A;, Ag).
Let 1(61,6,) = ((1;j(61,62))), i,j = 1, 2, denote the Fisher Information matrix. Then,

mQQ
02(6, + 65)’
112(91792) = 121(01792) = 07

mo
Babnt) = o gy

11 (64, 02)

Using the asymptotic normality of the MLE and the above information matrix, we obtain
the 100(1 — a)% confidence intervals for A\; , Ay, 61 and 605 as

A+ 28 >\1()\1—|—)\2)’
m
o oay 201t A)
m
A~ A2 ) )
P LGl )}
2 m92
~ A2 ) )
b, + 2020110
2 m91

ath

5 percentile point of a standard normal distribution.

respectively. Here, za is the upper
4.3 Bootstrap Confidence Intervals

In this subsection, we construct confidence intervals based on the parametric bootstrap.
The two methods that are widely used are (1) the percentile bootstrap method proposed by
Efron (1982), and (2) the bootstrap-t method proposed by Hall (1988). We illustrate the
procedure for the parameter A\;. Intervals for the other parameters may be constructed in

an analogous manner.

To obtain the percentile bootstrap confidence interval for A;, we use the following algo-

rithm:
[1] Determine A\ and A, from the sample {(z1.,01, R1) - .., (Tmen, Om, Rin) } using (3.3).

13



[2] Generate a random variable from the gamma(m, A+ 5\2) distribution, and an indepen-

dent Bin(m, ;\1115\2) random variable. The ratio of the two random variables provides
the bootstrap estimate of \q, say 5\*{

[3] Repeat Step 2 NBOOT times.

[4] Let CDF(x) = P,(A\f < z) be the cumulative distribution function of A¥. Define
Opoot(x) = CDF _1(X) for a given z. The approximate 100(1 — )% confidence interval
for A\; is given by

«

(ro(5).Oroa(1 = 5))

To obtain the bootstrap-t confidence interval for A\;, we use the following algorithm:

[1] Determine A; and Ay from the sample { (214,61, R1) - - - ; (Zymins O, Rin) } using (3.3).

[2] Generate a random variable from the gamma(m, A+ 5\2) distribution, and an indepen-

dent Bin(m7 3 ’115\2) random variable. The ratio of the two random variables provides
1 A A A
the bootstrap estimate of A;, say Aj. Compute the variance of A}, say V(A]), using

(3.7).

[3] Determine the T statistic

[4] Repeat Steps 2-3 NBOOT times.

[5] From the NBOOT T values obtained, determine the upper bound and the lower bound
of the 100(1 — )% confidence bound of A; as follows: Let CDF(x) = P,(T* < x) be

the cumulative distribution function of 7. For a given z, define
Mvoors () = My +m 2V (A)CDF ' (x).

The approximate 100(1 — «)% bootstrap-t confidence interval for A; is then given by

« «

<;\boott<§)7 5\boot,g(l - 5)) .

We illustrate the performance of these different methods using a simulation study and a real

dataset in Sections 6 and 7, respectively.

14



5. BAYESTAN ANALYSIS

In this section, we approach the problem from a Bayesian perspective. We first consider
procedures for estimating (A1,Az2), followed by procedures for (61, 65). In the context of expo-
nential lifetimes, \; and Ay may be reasonably modelled using gamma priors. We assume \;
and Ay are independently distributed with gamma(as, b) and gamma(asg, by) priors, respec-
tively. The parameters aq, by, as and by are all assumed to be positive. When a; = by = 0
(ay = by = 0), we obtain non-informative priors of A; (A2). The posterior density of A\; and

Ay based on the gamma priors is given by

l()\la )\2|.’B) _ k)\ill‘i’nl*le_)\l(bl"v‘Z;il(Ri'i'l)mi:n) % )\324’“2*16_)\2(b2+z,:i1(Ri+1)$i:n). (5'1>

Here, k is the normalizing constant that ensures [(A1, A\y|x) is a proper density function.

From (5.1), it is clear that the posterior density functions of A\; and Ay, say [(A;|x) and
[(A2|x) respectively, are independent. Further, I[(A;|x) is the density function of a gamma
(a1 +ny, by + X0 (R; + 1)x4.,) random variable, and [(Az|x) is the density function of a
gamma (ag + ng, be + >0 (R; + 1)z;.,) random variable.

The Bayes estimates of A\; and Ay under squared error loss are

ap +nq
b + X7 (Ri + 1)

as + No
by + " (Ri + Dy

AlBayes = and )\ZBayes - (52>
respectively. For the non-informative priors (a1 = by = 0, a3 = by = 0), the Bayes estimators

coincide with the MLE’s.

The credible intervals for A; and Ay are obtained easily from the posterior distributions.
We observe that a posteriori, Wi = 2A; (by + X1 (R; + 1)xi) and Wo = 29 (b + X0 (Ri + 1)@i)

follow X%(al ny) and X%( ) distributions, respectively. Consequently, the 100(1—a)% cred-

a2+n2
ible interval for A; is

2 2
X2(ar+n1),2 X2(ay+n1),1—-2

2 ] (5.3)

2(b1 + X0 (R + Vi)™ 201 + X2 (Ri + 1ien)

for a; +mny > 0. Similarly, when as + no > 0, the credible interval for A, is

2

2(by + X (R + Vi)’ 2(by + X" (R 4+ 1)xyn)

(5.4)

2 2
X2(a2+n2),% X2(a2+n2)’1_ﬁ ]

15



Here X%,a is the lower o' percentile point of the central y? distribution with & degrees of

freedom.

Next, we consider the Bayes estimators for 6, and ;. Using the assumption of gamma

priors, and squared error loss, the Bayes estimators of #; and 6, are

A b m(R +1D)xiy, N b m AR+ 1)xm
elBayes = i Zl_l( i >x : and 92Bayes = 2 + Zl_l( * )37 :
a1+n1—1 a2+n2—1

respectively. An argument similar to the one outlined above may be used to obtain the
100(1 — )% credible intervals for 6; and 65 as

2(by + X2 (R + D)agy) 2(by + 300 (R + 1))
- , : (5.6)
X2(ar+n1),1-2 X2(ar+n1),2
and
2 (b + S (Rt D) 20 + S (R + 1>xm>] 57)
2 ’ 2 ! ’
X2(ag+ns),1—2 X2(ag+no2),2
respectively.

In the next section, we illustrate the methods outlined here using an example.

6. SIMULATION STUDY

To compare the coverage probabilities and the lengths of the different confidence and
credible intervals, we conducted a small simulation study. It is evident that the performance
of the different methods will not depend on the censoring scheme. This has also been observed
by Balakrishnan and Aggarwala (2000). The results for different n and m are presented in

Tables 1-4. The results are based on an average over 1000 replications.

From the tables, we observe that all the procedures provide satisfactory coverage (levels
close to the nominal value of 95 %). As m increases, the length of the intervals decrease.
Surprisingly, the intervals based on the asymptotic distribution perform well even for small
sample sizes. All the procedures give similar results: however, the credible intervals based
on a non-informative prior have the shortest length. Based on this study, any one of the

procedures outlined in Sections 4 and 5 may be used in practice.

7. NUMERICAL EXAMPLE
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In this section, we consider a dataset originally analyzed by Hoel (1972). The data arose
from a laboratory experiment in which male mice received a radiation dose of 300 roentgens
at 5 to 6 weeks of age. The cause of death for each mouse was determined by autopsy to
be thymic lymphoma, reticulum cell sarcoma, or other causes. For the purpose of analysis,
we consider reticulum cell sarcoma as cause 1 and combine the other 2 causes of death
as cause 2. There were n = 77 observations in the data. We generated a progressively
Type-II censored sample from the original measurements with m = 25 and censoring scheme
Ry = Ry = ... = Ryy = 2,Ro; = 4. There were ny = 7 deaths due to cause 1 and
ny = 18 deaths due to cause 2. Progressive censoring in these kinds of experiments may be
invaluable in obtaining information on growths of tumors in the mice. At the time of death
of a particular mouse, other mice may be randomly selected and removed from the study.

Autopsies on these mice may lead to information on the progression of the cancer over time.

The progressively Type-II censored sample thus obtained is (40, 2), (42, 2), (62, 2), (163,
2), (179, 2), (206, 2), (222, 2), (228, 2), (252, 2), (259, 2), (318, 1), (385, 2), (407, 2), (420,
2), (462, 2), (517, 2), (517, 2), (524, 2), (525, 1), (558, 1),(536, 1), (605, 1), (612, 1), (620,
2), (621, 1).

From the above data, we obtain the following:

25
> (Ri + 1)z, = 28611.00

i=1
which yields

. 7 . 18
X = —— = 0.00024 Ny = ———
17 ogery - V0u24s, 27 98611

A = 0.000235, Ay = 0.000604,

Var(h) = 98112 x 107, Var(Xy) = 2.5644 x 1075,
Cov(Ay, Az) = —2.908 x 10710,

Var(\) =9.0426 x 107, Var(Xy) = 2.3634 x 1078,
Cov(Ay, Ag) = —2.469 x 10710,

= 0.000629,

The relative risk due to cause 1 is

7
f— =028
T~ %5

The MLE’s of the mean lifetimes due to cause 1 and cause 2 are given by

0, = 4087.29, 0y = 1589.5.
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It is quite clear that cause 2 is more severe, with lifetimes almost one-third of that of cause
1.

To assess the performance of these estimators, we construct 95 % confidence and cred-
ible intervals using all the different methods outlined in Sections 4 and 5. The results are
presented in Tables 5 and 6. The intervals are very similar for A; and Ao, in terms of the
length. However, the credible intervals for #; and 6, based on the non-informative prior are

much wider.
8. SOME GENERALIZATIONS AND EXTENSIONS
8.1 Unknown Causes of Failure

In all the procedures outlined above, the cause of failure for all individuals in the study
were assumed to be known. The problem of unknown causes of failure was originally consid-
ered by Dinse (1982) and Miyakawa (1982), and more recently by Kundu and Basu (2000).
Assume we have data of type (2.2), and k causes of failure are unknown. Let I} = {d;;6; = 1},
Iy, = {0;;0; = 2}, I3 = {6;;0; = 3}, |I1]| = n1, |I2| = ny and |I3] = k = m — m* (say). Let us

also assume that m* = n; 4+ ny is fixed. The likelihood function of the observed data (2.2) is
LA, Aa) = C X PN (Mg 4 Ag)™ ™™ x e Md) i, (Rt e, (7.1)

where C' =n(n— Ry —1)...(n — Ry — ... — R;,-1 — m + 1) is the normalizing constant.
Taking the logarithm of (7.1), and equating the partial derivatives to zeros, we obtain the
MLE’s of \; and X\, as

A m ni BN m No
AL = |— d M=|— _
1 [m*] TR+ D, o ? [m*} TR+ Dy

(7.2)

* A1 * A2
PSRV 7 AitAz2

Further, > (R; + 1), is a gamma(m, A\; + Ay) random variable which is independent of

Here n; is a Bin(m ) random variable and no is Bin(m ) random variable.

ny and no.

All the procedures discussed in Sections 3 and 4 can be easily modified to the present

situation. The Bayesian analysis can also be carried out along the lines of Section 5.

8.2 Models for the Lifetime Distribution

18



The first step in generalizing the assumption of exponential lifetimes is to consider the
Weibull model. All the methods outlined in Sections 3-5 can be easily adapted to Weibull
lifetimes. If we consider a common shape parameter, it is easy to derive explicit expressions
for the two scale parameters. Unfortunately, when estimating the shape parameter, there
is no closed form solution, and numerical iterative techniques will have to be employed.
The expressions for the information matrix and the Bayesian estimators will also require
iterative methods. Since there is not much insight to be gained by providing the forms of

the estimators, we will not present here these expressions for brevity.

We have also considered the case of dependent causes of failure. As we mentioned in
the Introduction, identifiability is a major concern. If there is anecdotal or physiological
evidence that the causes of failure are dependent, we could use (among others) the bivariate
exponential model suggested by Marshall and Olkin (see Kotz, Balakrishnan, and Johnson
(2000)).

9. CONCLUSIONS

In this chapter, we have considered the competing risks model when the observed data is
progressively Type-II censored. We have assumed that the lifetimes under the different causes
have independent exponential distributions. We have obtained the MLE’s and UMVUE’s of
the hazard rates and the mean lifetimes, and also derived their exact distributions. Several
different procedures for constructing confidence intervals have been suggested. In addition,
we have derived the Bayes estimators under suitable informative and non-informative priors.
A numerical example has been provided to illustrate the methods outlined in this chapter.

We have also suggested some extensions and generalizations of these models.
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Table 1: n = 20, m = 10, A\; = 1.0, Ay = 0.8

Methods | Parameters | Average Length | Coverage Percentage
Bayes A 1.76078 0.958
A2 1.56975 0.936
Asymptotic A 1.78011 0.937
A2 1.57125 0.922
Exact A 1.52690 0.952
A2 1.37600 0.947
Boot-P A1 2.12155 0.933
A2 1.83684 0.930
Boot-t A1 2.04192 0.939
A2 1.82465 0.915

Table 2: n = 50, m = 20, Ay = 1.0, Ay = 0.8

Methods | Parameters | Average Length | Coverage Percentage
Bayes A 1.22373 0.955
A2 1.08401 0.936
Asymptotic A1 1.23344 0.940
A2 1.09470 0.926
Exact A 1.30335 0.966
A2 1.16623 0.958
Boot-P A 1.33695 0.949
A2 1.18564 0.934
Boot-t A1 1.31618 0.922
A2 1.22481 0.926
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Table 3: n =75, m = 25, \; = 1.0, Ay = 0.8

Methods | Parameters | Average Length | Coverage Percentage
Bayes A 1.08492 0.946
A2 0.96296 0.932
Asymptotic A 1.09183 0.949
A2 0.97073 0.920
Exact A 1.17490 0.951
A2 1.05530 0.956
Boot-P A1 1.15351 0.931
A2 1.02053 0.936
Boot-t A1 1.14355 0.921
A2 1.04977 0.929

Table 4: n =75, m = 35, \; = 1.0, A, = 0.8

Methods | Parameters | Average Length | Coverage Percentage
Bayes A 0.90954 0.937
A2 0.80899 0.945
Asymptotic A1 0.91367 0.940
A2 0.81363 0.946
Exact A 1.00572 0.955
A2 0.93749 0.956
Boot-P A 0.93049 0.945
A2 0.84728 0.950
Boot-t A1 0.93652 0.928
A2 0.86743 0.939
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Table 5: Confidence and Credible Intervals

Method

A1

A2

Exact (MLE)

(0.000064, 0.000426)

(0.000338, 0.000920)

Credible Interval

(non-informative prior)

(0.000098, 0.000456)

(0.000372, 0.000951)

Bootstrap-t

(0.000087, 0.000448)

(0.000349, 0.000949)

Percentile (0.000069, 0.000460) | (0.000361, 0.000959)
Table 6: Confidence Intervals
Method ‘91 92

Exact (MLE)

(1059.38, 7115.20)

(855.19, 2328.81)

Credible Interval

(non-informative prior)

(2192.98, 10204.08)

(1051.53, 2688.17)
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