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Abstract

Objectives: Osteosarcoma is the most common type
of malignant bone tumour in children and adoles-
cents; it has poor prognosis, is highly metastatic
and is resistant to current therapeutic approaches.
In this study, different herbal extracts used in phy-
totherapy have been screened after searching inno-
vative natural anti-cancer components.

Materials and methods: Twenty steroid glycosides
were examined for accordance to their potential of
inhibiting cell proliferation and inducing apoptosis
in the osteosarcoma cell line 143B. Cell prolifera-
tion was examined using a CASY counter. Effects
of cardiac glycosides on induction of apoptosis
were evaluated by Annexin V-APC and flow
cytometry, caspase activity assay and measurement
of mitochondrial membrane potential.

Results: The study revealed that various steroid
glycosides suppress cell proliferation in a concen-
tration-dependent manner. Further investigations
indicated apoptotic induction by 17 of the 20 tested
cardenolides and bufadienolides. Bufadienolide
proscillaridin A, arenobufagin, and cardenolides
evomonoside, convallatoxol and ouabain waged
strongest apoptotic induction, associated with
breakdown of mitochondrial membrane potential
and activation of caspases -8 and -9. In contrast,
the bufadienolide resibufogenin and cardenolide
uzarin had no effect on proliferation inhibition,
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apoptotic induction or change in mitochondrial
membrane potential.

Conclusion: These results indicate that bufadieno-
lides proscillaridin A and arenobufagin and carde-
nolide evomonoside, or related natural compounds
might be promising new starting points for devel-
opment of novel anti-cancer agents for treatment of
osteosarcoma.

Introduction

Osteosarcoma is the most common primary malignant
bone tumour, mainly occurring in children and adoles-
cents (1). The most challenging problem facing ortho-
paedic oncologists is to counter multidrug resistance
(MDR) induced by classic chemotherapeutic agents such
as methotrexate, adriamycin and cisplatin. In the order
of 50% of osteosarcoma cases are resistant to
chemotherapy or acquire resistance during treatment
(2,3). Thus, there is great need for exploring mechanisms
of chemotherapeutic resistance and developing new or
additional treatment regimens for chemotherapy-resistant
osteosarcoma. Novel strategies in cancer therapy based
on steroid glycosides are discussed as possibilities for
counteracting multidrug resistance by using cardiac
glycosides.

Steroid glycosides have been used in the treatment
of congestive heart failure, arrhythmia (4,5) and malig-
nant diseases in the past (6,7). They are a category of
compounds isolated from plants or animals (mainly
bufo) from which their names have originated (8).
Chemically, they can be categorized into two groups.
On the one hand are the cardenolides, characterized by
having an unsaturated butyrolactone ring of five mem-
bers at C-17, plus C-23 steroids, and on the other hand
the bufadienolides, which have a six-membered double
unsaturated pyrone ring (9). Both groups are able to
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bind to and inhibit the Na*/K"-ATPase pump, which
results in activation of different signal cascades involved
in the mechanism of proliferation, induction of apoptosis
or gene expression (10-15). For example, for
19-hydroxy-2-oxovoruscharine anti-cancer activity in
chemosensitive versus MDR, cancer and apoptosis-resis-
tant cells, has been described (16—18).

However, over the few last decades, several studies
have demonstrated anti-cancer properties of different
steroid glycosides, for example digoxin and ouabain in
human breast cancer cell lines (19,20). McConkey et al.
demonstrated apoptotic induction by steroid glycosides
such as oleandrin, ouabain and digoxin in human pros-
tate cancer cell lines in vitro (14). Digoxin and digitoxin
have already been reported in clinical studies to afford
therapeutic effectiveness in breast cancer and prostate
cancers and leukaemia (21-23). For ouabain and
digoxin, apoptotic induction has been described in
human acute T-cell lines (24,25). Lopez-Lazaro et al.
reported that digitoxin inhibited cell proliferation in can-
cer cell lines at concentrations commonly found in the
plasma of cardiac patients (26). Of the bufadienolides,
bufalin and cinobufagin, an anti-proliferative effect and
anti-cancer properties in prostate cancer and human hep-
atocellular carcinoma cells have already been published
(27,28).

The aim of this study was to analyse growth inhibi-
tory effect and induction of apoptosis in 20 structurally
different steroid glycosides, in the 143B osteosarcoma
cell line, hopefully to discover new agents to negotiate a
way around multidrug resistance.

Materials and methods

Steroid glycosides

A library of cardioactive steroids was obtained from
Prof. Brigitte Kopp (Department of Pharmacognosy,
University of Vienna, Austria). Their purities were
>95% determined by HPLC/UV analysis. The cardeno-
lides desglucocheirotoxin, strophanolloside, lokund-
joside, convallatoxol and the bufadienolide proscillaridin
A as well as the bufadienolide aglycons arenobufagin,
resibufogenin, bufarenogin, bovogenin A, gamabufo-
genin, bufotaline and the cardenolide evomonoside, were
isolated from Convallaria majalis L. toad venoms and
Urginea species. Their chemical structures were eluci-
dated by NMR spectroscopy and mass spectrometry
(MS) as described in more detail previously (29-35).
Cardenolides digitoxin, gitoxin, lanatosid C, digoxin,
ouabain, k-strophanthin and helveticoside were pur-
chased from Sigma-Aldrich (Munich, Germany) and
uzarin was provided by ChromaDex (Irvine, CA, USA).
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Ouabain, k-strophanthin, uzarin and helveticoside were
dissolved in phosphate-buffered saline (PBS, Gibco Life
technologies, Darmstadt, Germany) to constitute 5 mM
stock solutions, and stored at room temperature.
Remaining substances were dissolved in DMSO from
Sigma-Aldrich for stock solutions (5 mm). Bufarenogin,
uzarin and resibufogenin stock solutions were diluted in
PBS to a final concentration of 100 pMm, the remaining
substances to a 20 um/PBS working solution, before
use. Highest DMSO concentration did not exceed
0.04 % (v/v).

Cell culture

Human 143B and U-20S osteosarcoma cell lines were
obtained from the ATCC (American Type Culture Col-
lection, Rockwille, MD, USA). 143B was cultured in
RPMI 1640 medium, and U-20S in McCoys medium
supplemented with 10% heat inactivated foetal calf
serum (Biochrom, Berlin, Germany), 100 U/ml peni-
cillin and 100 pg/ml streptomycin at 37 °C and
5% CO,. Both cell lines were transferred to six-well
plates at 4 x 10%/well 18 h before assay set-up. Cells
were treated at indicated concentrations and duration
with different cardiac glycosides, and then subjected to
analysis. RPMI 1640 and McCoys medium base and
penicillin/streptomycin stock solution were purchased
from Gibco, Life Technologies.

Effects of cardiac glycosides on cell viability were
measured after 4 h using a Cytotoxicity Detection Kit
Plus (Roche, Grenzach-Wyhlen, Germany) that quanti-
fies lactate dehydrogenase (LDH) release, according to
the manufacturer’s protocol.

Propidium iodide and annexin V binding assay

Cells were incubated for 24 h with described cardiac
glycosides and concentrations. After incubation, apop-
totic level was analysed as described previously (30).
Results were evaluated with FlowJo Software (TreeStar,
Ashland, OR, USA).

Analysis of mitochondrial membrane potential (A¥Pm)

Mitochondrial membrane potential was assessed using
5,5,6,6-tetrachloro-1,1,3,3-tetraethylbenzimidazol-carbo-
cyanine iodide (JC-1, Sigma-Aldrich) and flow cytomet-
ric analysis, as described previously (36). Cells were
analysed after 24 h incubation or depicted time points.
Depolarizing carbonyl cyanide 3-chlorophenylhydrazone
(CCCP; Sigma-Aldrich) was used as reference, cells
being treated with 50 uM CCCP (final concentration)
for 30 min.
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Measurement of caspase activity

Activity of caspases -8 and -9 was measured by fluores-
cent caspase staining kit according to the manufacturer’s
protocol (Promokine, Heidelberg, Germany). For caspase
inhibitor assay, cells were pre-incubated with 100 uM
z-VAD-fmk for 1 h. After additional incubation with
depicted cardiac glycosides for 24 h, induction of apopto-
sis was determined using annexin V-APC/PI with FACS
analyses. DMSO was added to extracts as solvent control.

Statistical analyses

Student’s #-test was applied to determine differences
between glycoside-treated cells and controls and signifi-
cance level was set at P < 0.05 for all tests.

Results

Steroid glycosides affected proliferation of 143B cells

Anti-proliferative  effect of 20 steroid glycosides
(Table 1) was evaluated using the CASY® Counter sys-
tem, after incubation with increasing concentrations of
reagents (range 0.05-1 pm) for 24 h. Cell population
growth was inhibited in a dose-dependent manner in 17
of the 20 steroid glycoside-treated cells (Fig. 1). Classical
digitalis glycosides ouabain and digitoxin, were able to
inhibit cell proliferation within a range of 0.1-0.15 pum
(50% cell population growth inhibition). Data in Fig. 1
demonstrate that most efficient anti-proliferative effect

Table 1. Overview of used cardiac glycosides

was obtained by cardenolides convallatoxol and evomo-
noside and bufadienolide proscillaridin A, as well as oua-
bain and bufadienolide aglycon arenobufagin A. In
contrast, neither uzarin nor resibufagenin altered cell pro-
liferation after 24 h incubation.

Steroid glycosides induced apoptosis in a concentration-
dependent manner

To assess possible effects of steroid glycosides on apoptotic
induction, 143B cells were incubated with increasing doses
of identical steroid glycosides as used before. Figure 2 dis-
plays apoptotic induction after 24 h. Glycosides evomono-
side, ouabain and arenobufagenin caused 50% apoptotic
induction in a range of 0.05-0.15 pm, whereas bufotalin,
bovogenin A, lokundjoside, desglucocheirotoxin and stro-
phanallosid induced 50% apoptosis in a range of 0.2—1 pm.
Treatment with bufadienolide proscillaridin A showed
strongest apoptotic effect between 0.05 and 0.1 pm.

Steroid glycosides induced apoptosis via the
mitochondrial pathway

To determine whether apoptotic induction by the most effec-
tive cardiac glycosides (IC50 range between 0.05 and
0.2 uMm) was attributable to breakdown of mitochondrial
membrane potential (AYm/MMP), cells were incubated
under the same conditions as before and analysed after JC-1
staining, by flow cytometry. Data in Fig. 3 reveal dose-
dependent breakdown of A%m for all tested substances.

Drug Originated from

Family

Convallatoxol Convallaria majalis L.

Cardenolide glycoside

Desglucocheirotoxin Convallaria majalis L.

Digitoxin Digitalis purpurea L.

Digoxin Digitalis lanata Ehrh.
Evomonoside Euonymus europaeus L.

Gitoxin Digitalis purpurea L

Helveticoside Erysimum cheiranthoides L.
k-strophanthin Strophanthus kombé Oliv.
Lanatosid C Digitalis lanata Ehrh.
Lokundjoside Convallaria majalis L.
Strophanollosid Convallaria majalis L.

Uzarin Xysmalobium undulatum (L.) R.Br.
Ouabain Strophanthus gratus (Wall. et Hook. Ex Benth.) Baill.

Proscillaridin A
Arenobufagin
Bovogenin A
Bufarenogin
Bufotaline
Gamabufotalin
Resibufogenin

Drimia maritima (L.) Stearn

Bufo melanostictus Schneider, 1799
Bufo melanostictus Schneider, 1799
Bufo melanostictus Schneider, 1799
Bufo melanostictus Schneider, 1799
Bufo melanostictus Schneider, 1799
Bufo melanostictus Schneider, 1799

Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Cardenolide glycoside
Bufadienolide glycoside
Bufadienolide aglycon
Bufadienolide aglycon
Bufadienolide aglycon
Bufadienolide aglycon
Bufadienolide aglycon
Bufadienolide aglycon
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Counter. Eighteen of 20 steroid glycosides 0
were able to inhibit cell proliferation in a con-
centration-dependent manner (n = 3).

Ctrl 0.1

Time-dependent analysis of apoptotic induction by the
most potent substances, evomonoside, proscillaridin A
and arenobufagin

Next, level of apoptosis and breakdown of MMP were
analysed at different time points for the three most
effective glycosides (proscillaridin A, arenobufagin,
evomonoside). Data in Fig. 4 reveal that drug-induced
apoptosis occurred after 6 h and that there was no
significant difference in apoptotic level and loss of
mitochondrial membrane potential between 16 and
24 h. To exclude unwanted cytotoxic effects such as
necrosis, LDH release was measured after 4 h incuba-
tion with proscillaridin A, arenobufagin and evomono-
side. As shown in Fig. 4b, no significant LDH release
was measurable for different doses of the three tested
drugs.

Furthermore, effectiveness of  proscillaridin,
evomonoside and arenobufagin was analysed in a
secondary osteosarcoma cell line U-20S. In that, these
glycosides were also able to induce apoptosis in a
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concentration-dependent manner accompanied by loss of
A¥m (Fig. S1), but were less sensitive to the glycosides
than line 143B.

Cardiac glycosides affected caspase activity of both
intrinsic and extrinsic apoptotic pathways

For further characterization of the molecular pathways
involved in apoptosis, activation of caspases -8 and -9
were assessed in 143B cells. Both caspases are upstream
initiator proteases, which play key roles in the extrinsic
(caspase-8) or the intrinsic (caspase-9) apoptotic path-
way. Data in Fig. 5a reveal similar activation of both
caspases by proscillaridin, evomonoside and arenob-
ufagin in a concentration-dependent manner.

To analyse the role of caspases, 143B cells were
treated in the absence or presence of the broad range
caspase inhibitor z-VAD-fmk. In all three treated cell
types, z-VAD-fmk treatment reduced apoptotic induction
between 30% and 40%.

Cell Proliferation, 48, 600-610
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group (*P < 0.05).

These results indicate that both extrinsic and intrinsic in various cancer cell lines, although little has been
signalling pathways play a role in cardiac glycoside- known concerning their effects on osteosarcoma cells.
induced apoptosis in osteosarcoma in vitro. To our knowledge, this is the first time that an anti-pro-
liferative effect and apoptotic induction have been anal-
ysed for evomonoside, convallatoxol, lokundjoside,
desglucocheirotoxin and strophanolloside in cancer cells.
Previous studies have shown anti-proliferative and anti- These five cardenolides have the ability to inhibit cell
tumour properties for some analysed steroid glycosides proliferation and exert induction of apoptosis in a

Discussion
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Figure 4. Apoptotic induction took place after 6 h incubation. Cells were incubated with described concentrations of proscillaridin A, evomono-
side and arenobufagin for 6, 16 or 24 h. After incubation, apoptotic level and loss of mitochondrial membrane potential were analysed as shown
previously. Early cytotoxicity was measured after 4 h incubation, by LDH release assay. There was no relevant induction of LDH release after 4 h
by the three steroid glycosides. (n = 3). Asterisk represents statistically significant differences compared to control group (*P < 0.05, **P < 0.001).

concentration range in the order of 0.080—1 pm. Here,
evomonoside had the strongest effect within 0.08-
0.15 pm. In the literature, we found no data to be avail-
able on an anti-cancer effect of this cardenolide.

By comparison of all 20 steroid glycosides analysed
here, the bufadienolide proscillaridin A displayed the
strongest effect in causing apoptosis and inhibition of
cell proliferation. Johansson et al. have shown apoptotic
induction in 9 of 10 analysed human cancer cell lines at
concentration of 0.06 — 0.67 um (37). In our study, con-
centration ranged between 0.05 and 0.1 pum. Bielawski
et al. demonstrated an anti-proliferative effects of
proscillaridin A, digitoxin and ouabain at nanomolar
drug concentrations, whereas proscillaridin A was much
more effective at lower concentrations (0.03 um for

© 2015 John Wiley & Sons Ltd

proscillaridin A, 0.1 um for digitoxin and ouabain) in
breast cancer cells (38). In glioblastoma, proscillaridin A
causes cytotoxicity in vitro (IC50 2-4 nm), reduces
tumour weight and improves survival of tumour bearing
mice in vivo (39). Recent studies by Cerella ef al. have
validated Mcl-1 as a common target of cardenolides
(40), with down-regulation of Mcl-1 before apoptotic
induction in U937 cells, not only for the hemi-synthetic
cardenolide UNBS1450 but also for proscillaridin,
oubain, digoxin and digitoxin. These data are consistent
with the results obtained by other groups at the level of
protein expression under requirement of proteasome
degradation (41,42).

Anti-proliferative effects of 27 bufadienolides have
been reported in six human and two mouse cancer cell

Cell Proliferation, 48, 600-610



606 C. I. Delebinski et al.

a e < p
( )120 : Pro§C|IIarld|n A 120 Arenobufagin 120 EvgmonOSIde

mmm Caspase-9 s = Caspase-9 = Caspase-9
g 100 | === Caspase-8 -, * l g 100 { === Caspase-8 | :2 ®» g 100 | === Caspase-8 > g
§ 80 t @ g0 @ g0
[} o (]
a o a "
% 60 g 60 g 60 *
Qo (3] & Q
2 2 4 - 2 4
e =} - "
© 7] ©
< 20 < 20 < 20 I

Ctrl 0.08 0.15 0.5 Ctrl 0.15 0.5 Ctrl 0.08 0.15 0.5
Concentration [um] Concentration [um] Concentration

(b)

-
(=3
=1

90
80
70
60
50
40
30
20
10
0

[%] of apoptosis inhibition

3 ae
e 0%V
tos°‘“a‘\ o
w ¥ 5o
3 oA
oo

"
oou®
et
e
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annexin V/propidium iodide staining and flow cytometry, +SD, n = 3. Asterisk represents statistically significant differences compared to control

group (*P < 0.05).

lines in comparison to ouabain and digoxin. Moreno
et al. showed that several bufadienolides, for example
gamabufotalin rhamnoside (2-8 nm), bufotalin (9-
74 nm) and hellebrin (7-68 nm), displayed higher rates
of proliferation inhibition than digoxin (40-266 nm) and
ouabain (28-211 nm) after 3 days culture (32).

In our study, strongest effect in cell population
growth inhibition and apoptotic induction among the
group of cardiac glycosides, was observed for the com-
mon cardiac glycosides ouabain > digi-
toxin > digoxin > k-strophantin. For these glycosides,
apoptotic level has been shown in vitro and in vivo
(43,44).

For the cardiotonic steroid ouabain, an anti-prolifera-
tive effect was observed, at the very high concentrations
of 1-10 uM, in three different prostate and breast cancer
and leukaemia cell lines (20,45). Moreover, activity of
caspases -3 and -9 was described in HeLa, neuroblas-
toma SH-SYS5Y and human fibroblasts (46). Further-
more, ouabain triggered cytochrome c release from
mitochondria in neuroblastoma and HeLa cells in corre-
lation with down-regulation of anti-apoptotic proteins
Bcl-2 and Bcel-XL (43,46). Recent studies have proposed
caspase-independent autophagic cell death via JNK acti-
vation and Bcl-2 reduction, for oubain, in non-small cell

© 2015 John Wiley & Sons Ltd

lung cancer (concentration 50-100 nm) (44). Pezzani
et al. were able to show an anti-proliferative effect in
adrenocortical cell lines, whereas concentrations from 1
to 1000 nm did not induce apoptosis after 24 h (47). In
our study, we observed both inhibition of cell popula-
tion growth and induction of apoptosis, at clearly lower
concentrations than described previously. Overall, these
data indicate that the ouabain-induced apoptotic mecha-
nism might be dependent on the particular cancer under
consideration. Hiyoshi ef al. have reported that ouabain
significantly reduced tumour growth in a xenografted
neuroblastoma mouse model in vivo without significant
toxicity to the host (48). These data were confirmed by
two other groups with an AML and prostate cancer
xenograft mouse models (49,50).

For digitoxin, Stenkvist et al. reported epidemiologi-
cal studies in which women with breast cancer on digi-
talis therapy developed more benign forms of breast
tumour and succumbed to levels death (6%) compared
to control patients (51-53). Furthermore, the recurrence
rate of patients with digitalis treatment was 9.6-times
lower than that of control patients.

Within the group of bufadienolide aglycons in our
study, arenobufagin A was the most effective glycoside.
Effectiveness of bufadienolide aglycons in order of

Cell Proliferation, 48, 600-610



rank are: arenobufagin A >gamabufotalin > bufotalin >
bovogenin A. Arenobufagin A is listed as a key car-
diotonic steroid of toad venom, but only a small number
of studies on arenobufagin and cancer, seem to have
been published. We observed induction of apoptosis,
accompanied by loss of mitochondrial membrane poten-
tial and activation of caspases -8 and -9, between
0.1 and 0.2 pm of arenobufagin A. Additionally, arenob-
ufagin A markedly inhibited population growth of 143B
cells. In accord with our results, Zhang et al. reported
for the first time that arenobufagin A induced apoptosis
via caspase 3- and -9 activation and autophagy through
inhibition of the phosphatidyl inositol 3-kinase (PI3K)/
Akt/mammalian target of rapamycin (mTOR) pathway
in hepatocellular carcinoma (HCC) cells, in a concentra-
tion range between 0.2 and 0.5 pm (54). Moreover it
has been reported that arenobufagin is able to block the
Na*/K*-ATPase pump (55) and vascular endothelial
growth factor-mediated angiogenesis, in several human
cancer cell lines, in vitro and in vivo (56).

The bufadienolide bufalin was the first identified
bufadienolide to be analysed as a potential agent in dif-
ferent osteosarcoma cell lines in vitro and in vivo (57—
62). Xie et al. demonstrated strong inhibition of tumour
growth in a methotrexate-resistant cancer model in vivo,
without reduction in host body weight (63). Other stud-
ies have shown caspase-independent apoptotic induction
with involvement of autophagy-mediated cell death and
JNK activation, after bufalin treatment (64,65).

Mechanisms of cardiac glycoside activity in cardiac
disease treatment, with involvement of Na*/K*-ATPase
are well characterized, whereas less is known regarding
mechanisms of their anti-cancer effects. Correlation
between binding to Na*/K*-ATPase and apoptotic
induction plays an important role in the question of anti-
cancer mechanisms. Binding to Na*/K*-ATPase leads to
inhibition of ATPase, increase in intracellular Na* and
Ca?*, intracellular reduction in K* and inhibition of IL-8
production and the TNF-a/NF-kB pathway. Furthermore,
DNA topoisomerase II was found to have been inhibited
and the Src kinase pathway was activated (10,11,66,67).
For digitoxin, it has already been described that apop-
totic induction is connected to inhibition of Na*/K-
ATPase and increase in intracellular Ca** (14,68). For
human lung adenocarcinoma, anti-cancer effects of oua-
bain have been reported to regulate and inactivate Src-to-
ezrin signalling, Na*/K*-ATPase subunits and proteins
involved in focal adhesion (69). However, Akimova et al.
reported that ouabain and other cardiac glycosides
induced apoptosis in vascular endothelial cells and renal
epithelial cells, Na*/K" independently (70,71). One expla-
nation for the different potency of apoptotic induction by
the investigated steroidal glycosides could be different

© 2015 John Wiley & Sons Ltd
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affinity to a Na'/K*-ATPase o-subunit, which is not
primarily involved in ion efflux but in signal transduction,
within the process of apoptotic induction (72). Further
studies are warranted to examine whether inhibition of
Na*/K*-ATPase is the main target structure for induction
of apoptosis.

Moreover, several cardiac glycosides are known to
be potent P-glycoprotein inhibitors with low resistance
indices in multidrug resistant P-glycoprotein-overex-
pressing cells (37,73,74). Overexpression of the ABC
transporter P-glycoprotein is responsible for classical
MDR, by extruding chemotherapeutics to the outside of
the cell. Thus, cardiac glycosides with the capability of
modulating P-glycoprotein, represent a significant source
of alternatives in cancer treatment. Mahringer et al.
analysed the potential of P-glycoprotein inhibition by 57
compounds used in Chinese medicine combined with
inhibition of cancer cell population growth. Among
these, bufalin was identified as a potent inhibitor without
any cross-resistance, whereas proscillaridin inhibited P-
glycoprotein with low cross-resistance. Resibufogenin
interestingly revealed collateral sensitivity in drug resis-
tant CEM/ADRS5000 cells (74). In that study, microRNA
expression experimentation revealed an MDR-indepen-
dent cytotoxic effect for the analysed bufadienolides,
except for resibufogenin.

Some theories on the mechanism of inhibition are
mentioned below. On the one hand cardiac glycosides
can act as transport-independent inhibitors of P-glyco-
protein-like cyclosporine A. On the other hand, it has
been shown that they are able to inhibit stimulated
P-glycoprotein ATPase activity slightly, despite acting
as substrates for P-glycoprotein (73). To gain more
insight into the details of the mechanisms and the role
of P-glycoprotein for our compounds, further studies
need to be performed.

The results from the in vivo studies of, for example
ouabain and bufalin, and clinical trials with digitoxin
and digoxin, support the idea that therapeutic potential
of these drugs should be further evaluated in cancer
patients. To counteract chemotherapeutic resistance, a
combination of polychemotherapy with novel strategies
is indispensable for osteosarcoma therapy. In our study,
we provide a first hint for cardiac glycosides as anti-can-
cer drugs for osteosarcoma treatment. We have been
able to show cell population growth inhibition, not only
for common cardiac glycosides like ouabain, digoxin
and digitoxin, but also for proscillaridin A, evomonoside
and arenobufagin A. Our findings suggest that these car-
diac glycosides are promising candidates for combined
therapy with classical chemotherapeutic agents, to
achieve potential synergism of effectiveness in treat-
ment, and to overcome resistance to apoptosis in

Cell Proliferation, 48, 600-610
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patients currently with dismal prognoses. Thus, the ther-
apeutic potential of steroid glycosides in combination
with cytostatics must be further evaluated in vivo.
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Fig. S1 Apoptotic induction in U20S cells.
A. U20S were incubated with depicted concentrations
of steroid glycosides for 24 h. After treatment, apoptotic
induction was analysed with annexin V-APC and pro-
pidium iodide (PI). Values are given as percentages of
annexin-positive cells £SD. B. Mitochondrial membrane
potential was evaluated using fluorescent dye JC-1 and
flow cytometry. Values of mitochondrial permeability
transition are given as percentages of cells with low
MMP £SD (n = 3). Asterisk represents statistically sig-
nificant  differences compared to control group
(*P < 0.05, **P < 0.001).
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